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Abstract: Unmanned aerial vehicles (UAVs) are becoming popular in various applications. However,
there are still challenging issues to be tackled, such as effective obstacle avoidance, target identification
within a crowd, and specific target tracking. This paper focuses on dynamic target following and
obstacle avoidance to realize a prototype of a quadcopter drone to serve as an autonomous object
follower. An adaptive target identification system is proposed to recognize the specific target
in the complicated background. For obstacle avoidance during flight, we introduce an idea of
space detection and use it to develop a so-called contour and spiral convolution space detection
(CASCSD) algorithm to evade obstacles. Thanks to the low architecture complexity, it is appropriate
for implementation on onboard flight control systems. The target prediction is integrated with
fuzzified flight control to fulfill an autonomous target tracker. When this series of technical research
and development is completed, this system can be used for applications such as personal security
guard and criminal detection systems.

Keywords: UAV; vision-based identification; autonomous tracking; guidance

1. Introduction

Over the past few years, various innovative applications of unmanned aerial vehicles
(UAVs) have emerged due to lower cost in hardware and appearance of powerful onboard
microcomputers.

UAVs can conquer topographic barrier so that they are appropriate for conducting
missions in dangerous zones, replacing manpower to transport goods, or even serving as a
personal standby assistant.

Recently, artificial intelligence (AI)-based automatic control technology has received
attention attributed to the significant improvement such as the generalization capability
of deep learning. Deep learning drives many AI applications that improve automation,
performing analytical and physical tasks without human intervention. For instance: the
robot “pepper” in [1] is used for domestic and navigation purposes; the biped robot is used
to replace soldiers [2]; there are medical hospitality robots [3], autonomous cars [4,5], and
much more. In addition to land vehicles, there are various aerospace vehicles developed for
specific purposes, such as the delivery UAVs [6–8], disaster relief UAVs, and multi-machine
protocol flying UAVs [9].

UAVs that track targets need to adapt to various environments to fly. In [10], the
authors proposed a robust adaptive recursive sliding mode attitude control, which can
make the quadrotor effectively resist unknown interference. The work of [11] proposed an
anti-jamming control scheme based on multi-observers to counteract multiple interferences
so that the quadrotor can resist strong wind and load interference.

Focusing on the technical issues, while research efforts in target following and obstacle
avoidance techniques have been quite mature in the field of robotics, the two issues are still
challenging for the operational scenarios of miniature UAVs such as quadcopter drones
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because of the relatively limited hardware resources available and the resulting neutral
instability [12].

Improving the reliability of UAVs is one of the challenging issues in the market.
Crash events of UAVs are not unusual. Moreover, static or dynamic target identification
in a crowd is also a difficult issue for miniature UAV development due to the limited
computational resources and budget cameras used [13]. In the academic research field,
while there are research efforts dedicated to investigating target tracking [14–16] and
obstacle avoidance [17–20], further improvement on functional enhancement, especially
in target identification and tracking, is still highly demanded. For example, the proposed
target tracking in [15] requires the target to be identified wearing a special T-shirt with a QR
code on it. The study of [16] relies on color features to identify the specific target. The rough
obstacle avoidance method adopted in [19] might cause the UAV to collide with obstacles
when the sensor is not in parallel with the obstacles. Although the research tasks of [21,22]
have combined the capability of target tracking and obstacle avoidance, their results were
only verified via simulation study. The common difficulty of various research efforts is that
the extremely large computational resources were unsuitable for implementation on the
onboard microprocessor.

Considering the general weaknesses of the current approaches, this research task
proposes the methods developed for target identification and movement prediction, the
adaptive cruise control (ACC) system, and the Kalman filtering navigation to fulfill a
mission-oriented flight control system. Our research motivations are listed as follows:

• The tracking capability of the commercial miniature UAV is still immature [12,13].
The methods developed in the papers might not be applicable in real-world applica-
tions [14,15]. These methods are feasible, but are slightly restricted from the viewpoint
of practical applications. For human target following, this research proposes an adap-
tive target identification system to resolve the problem when the specific target is in
a crowd.

• The current UAV obstacle avoidance algorithms revealed in the papers were difficult
to implement in the small-scale embedded system because of the large computational
sizes. Here, we propose a novel contour and spiral convolution space detection
(CASCSD) algorithm to tackle the issue. Through the emulated expansion and etching
of the image processing, we can filter out noises while enlarging imaging signals
to indicate that if the obstacles might interfere with the flight path. This algorithm
consumes less computational resources and is appropriate to be used in the current
miniature UAV applications.

• Intelligent mobile assistants have recently become popular; however, UAVs moving
inside a building, on stairs, or in rugged areas is still a challenge. A miniature UAV
drone is one of the potential substitutes for work under these scenarios.

In addition, in order to improve the research quality, we also refer to other UAV and
tracking-related literature, such as [23], which mainly discusses the deep learning applica-
tion of UAVs in Internet of Things applications and investigates the related applications
of UAVs in detail. Ref. [24] discusses the issues related to the bionic control of UAVs,
which can provide more ideas for the control of UAVs in this paper. In the research of
tracking, [25] uses a UAV to track the landing point on the roof of a car and allows the
UAV to safely land at the target point. Ref. [26] proposed an adaptive lightweight UAV
tracking algorithm, which allows UAVs to track various targets at high altitudes. Ref. [27]
proposed a distance estimation method based on hybrid stereo vision, which can accurately
calculate the distance between the robot and the object and can provide more ideas for
this research on obstacle avoidance. Ref. [28] used deep learning, simulated tracking, and
obstacle avoidance with multiple UAVs, and the results showed the algorithm’s effective-
ness. Synthesizing various research ideas, this study found that the ability of UAVs to
fly indoors and outdoors is still lacking, and this research intends to complete a personal
security guard system. The overall system of UAVs needs to have identification, tracking,
and obstacle avoidance at the same time. The three functions and the algorithm need to be
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as lightweight as possible. Only by fulfilling these demands can the experimental purpose
of the research be achieved.

2. System Description

The dynamics of the UAV directly affect flight stability [29]; to enable the UAV to
have intelligent tracking and obstacle avoidance functions, we first need to establish a
quadrotor flight dynamic model and control equations. Secondly, the image and the entire
coordinate system must be convertible so that we can import the image information and
various algorithms into the flight control perform tasks.

2.1. Architecture

Figure 1 illustrates the quadcopter architecture implemented in this research task. The
miniature UAV drone is designed to be a vision-based autonomous target follower. The
functions of the key modules include the following modules: a flight control system includ-
ing an inertial navigation system (INS), gyroscope, optical flow sensor using ground texture
and visible features for indoor positioning, and barometer for attitude determination; an
onboard AI processor is responsible for intelligent target identification and tracking, flight
path computation with obstacle avoidance, and realization of all supporting algorithms;
and a depth camera is responsible for transmitting external images to the AI processor. It
also provides information of the relative distance between the target and the environment.

Aerospace 2023, 10, 82 3 of 21 
 

 

tracking, and obstacle avoidance at the same time. The three functions and the algorithm 

need to be as lightweight as possible. Only by fulfilling these demands can the experi-

mental purpose of the research be achieved. 

2. System Description 

The dynamics of the UAV directly affect flight stability [29]; to enable the UAV to 

have intelligent tracking and obstacle avoidance functions, we first need to establish a 

quadrotor flight dynamic model and control equations. Secondly, the image and the entire 

coordinate system must be convertible so that we can import the image information and 

various algorithms into the flight control perform tasks. 

2.1. Architecture 

Figure 1 illustrates the quadcopter architecture implemented in this research task. 

The miniature UAV drone is designed to be a vision-based autonomous target follower. 

The functions of the key modules include the following modules: a flight control system 

including an inertial navigation system (INS), gyroscope, optical flow sensor using 

ground texture and visible features for indoor positioning, and barometer for attitude de-

termination; an onboard AI processor is responsible for intelligent target identification 

and tracking, flight path computation with obstacle avoidance, and realization of all sup-

porting algorithms; and a depth camera is responsible for transmitting external images to 

the AI processor. It also provides information of the relative distance between the target 

and the environment. 

 

Figure 1. Architecture of the miniature quadcopter drone implemented in this research. 

2.2. Modeling 

The four-rotor mathematical model of the miniature quadcopter for the purpose of 

target identification and tracking is given in Appendix A. 

Flight Dynamics Model (FDM) Description 

The world frame and the quadcopter body frame of this study are shown in Figure 

2, where ( , , )E E EX Y Z  is the inertial coordinate system, EO  is the origin of the inertial coor-

dinate, and 1 2 3( , , )e e e  is the unit vector along the inertial coordinate axis. ( , , )UB UB UBX Y Z  is 

the rigid body coordinate system of the quadcopter body, UBO  is the origin of the rigid 

body coordinate, and 1 2 3( , , )b b b  is the unit vector along the rigid body coordinate axes. 

XUB

YUB

ZUB

ZE

YE

XE
OE

OUB

 

Figure 2. The world and body frames. 

Figure 1. Architecture of the miniature quadcopter drone implemented in this research.

2.2. Modeling

The four-rotor mathematical model of the miniature quadcopter for the purpose of
target identification and tracking is given in Appendix A.

Flight Dynamics Model (FDM) Description

The world frame and the quadcopter body frame of this study are shown in Figure 2,
where (XE, YE, ZE) is the inertial coordinate system, OE is the origin of the inertial coordi-
nate, and (e1, e2, e3) is the unit vector along the inertial coordinate axis. (XUB, YUB, ZUB)
is the rigid body coordinate system of the quadcopter body, OUB is the origin of the rigid
body coordinate, and (b1, b2, b3) is the unit vector along the rigid body coordinate axes.
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Proceeding to the development given in the Appendix A, we have the acceleration
and angular acceleration equations of the quadcopter as:

..
x = 1

M k2GR3(
−→
b3 ,

→
e1)(ω

2
1 + ω2

2 + ω2
3 + ω2

4),
..
y = 1

M k2GR3(
−→
b3 ,

→
e2)(ω

2
1 + ω2

2 + ω2
3 + ω2

4),
..
z = 1

M (k2GR3(
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b3 ,

→
e3)(ω

2
1 + ω2

2 + ω2
3 + ω2

4)−Mg),
.
p = 1

I11
lk2(ω

2
1 + ω2

4 −ω2
2 −ω2

3)
.
q = 1

I22
lk2(ω

2
3 + ω2

4 −ω2
1 −ω2

2),
.
r = 1

I33
lk1(ω

2
1 + ω2

3 −ω2
2 −ω2

4)

(1)

To proceed, we perform coordinate transformation from the body frame to the world
frame along the yaw, roll, and pitch axes:cψ −sψ 0

sψ cψ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

1 0 0
0 cφ −sφ
0 sφ cφ

 =

cψcθ cψsθsφ− sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 (2)

where θ, φ, ψ denote the angles of pitch, roll, and yaw respectively (see Figure 3). For
completeness, the coefficients of the air resistance CD1, CD2, CD3 and coefficients of the
rotary resistance C1DR, C2DR, C3DR are considered. It can then be further transferred into
the state space representation by considering the gyro effect:

..
x = 1

M (k2(cψsθcφ + sψsφ)u1 − CD1
.
x),

..
y = 1

M (k2(sψsθcφ− cψsφ)u1 − CD2
.
y),

..
z = 1

M (k2(cθcφ)u1 −Mg− CD3
.
z),

.
p = 1

I11
(lk2u2 − C1DR p)− I33−I22

I11
,

.
q = 1

I22
(lk2u3 − C2DRq)− I11−I33

I22
,

.
r = 1

I33
(lk1u4 − C3DRr)− I22−I11

I33

(3)
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3. Target Tracking and Obstacle Avoidance

A depth camera is utilized to detect the target and surrounding objects. Before
conducting target identification, image calibration is conducted.
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3.1. Calibration and Coordinate Conversion

The pinhole imaging model [30,31] is used to describe this process, and it is corrected
by the principle of similar triangles (see Figure 4).
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Suppose that the camera coordinate system is denoted by (XH , YH , ZH) with the origin
OH . The pixel coordinates are X′H , Y′H , Z′H and the origin is O′H , as shown in Figure 4.
Furthermore, there is a targeted point P(xh, yh, zh) in reality, and its new coordinate mapped
to the pixel plane is P(x′h, y′h, z′h). Let the focal length f be the distance from the pinhole
to the pixel coordinate plane. This gives rise to the following ratio formula:

X′H = f
XH
ZH

, Y′H = f
YH
ZH

(4)

We define the origin of the pixel coordinate system c as being located at the upper left
corner of the image; the UH axis is parallel to the XH axis, and the VH axis is parallel to the
YH axis and is at the same plane as the pixel coordinate system. Thus, there is a two-axis
difference between the two-pixel coordinates.

Assume that the UH and VH axes are zoomed in by α and β times, respectively, and
the origin is linearly shifted by the base unit

[
cx, cy

]T . One obtains:

UH = αX′H + cx, VH = βY′H + cy (5)

Let α f = fx and β f = fy, then

UH = fx
XH
ZH

+ cx, VH = fy
YH
ZH

+ cy (6)

Transforming this into a matrix representation gives

ZH

UH
VH
1

 =

 fx 0 cx
0 fy cy
0 0 1

XH
YH
ZH

 = KP (7)

where K is the camera’s inner parameter matrix. It is used to compute the camera’s outer
parameter matrix.

Let Pw be the point P from the camera coordinate to the world coordinate, where R
and t are the rotation and translation of the camera, respectively.

ZH

UH
VH
1

 = K(RPw + t) (8)
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Performing normalization gives

RPw + t→
[

XH
ZH

YH
ZH

1
]T

(9)

The point P is at the normalized plane at the point ZH = 1. The normalized coordinate
that multiplies the camera intrinsic parameters results in the modified pixel coordinate.

3.2. Dynamic Target ID and Locking

The traditional YOLO model [32] can only identify objects that are already trained, it
would be insufficient while being applied to the current objective. We updated the function
of specific target identification by considering the limited onboard resources.

At first, the results bw, bh, bx, by of the bounding boxes generated by the modified
YOLO network given in [33] are used to determine the centroid position of the targeted
person. The coordinates of the four vertices of each bounding boxes are (bx − bw

2 , by − bh
2 ),

(bx +
bw
2 , by − bh

2 ), (bx − bw
2 , by +

bh
2 ), and (bx +

bw
2 , by +

bh
2 ). To be realized on the onboard

computer, the modified YOLO is only used to frame possible objects in the image frame.
To track the specific object with the limited computational resources, a lightweight

algorithm is proposed in this research task for dynamic target identification. The algorithm
involves three parts which are calculated per video frame, including: the color scores of
the target’s clothes, pants, and hair; the respective length-to-width ratio scores; and the
tracking error of the dynamic target. The equations are described as follows:

CS =
n
∑

i=1
w1i · component color[i],

LS =
m
∑

i=1
w2i · component length[i]

(10)

where component color [i] denotes the ith colored component with a Boolean value (“1” for
matched and “0” for unmatched), component length [i] denotes the ith length-to-width ratio
component (“1” for matched and “0” for unmatched), m and n represent the total number
of colored components and length-to-width ratio components, respectively, and w1i and
w2i are the ith weighted exponents. After obtaining scores of CS and LS, the position score
is calculated according to the target locking schematic illustrated in Figure 5 with the score

PS = A
1− e−s(PA−bias)

1 + e−s(PA−bias)
(11)

where A = CS + LS, PA refers to the accuracy of calculating the target position of each
frame. bias and s are the offset and slope of the sigmoid function, respectively, with their

respective equations being as follows: PA =

(√(
xp − xc

)2
+
(
yp − yc

)2
+
(
zp − zc

)2
)−1

,

where
(

xp, yp, zp
)

denotes the position of the current target frame, (xc, yc, zc) denotes the

position of the previous frame, and bias = n1
/
IS, where n1 represents the number of targets

locked within the image space IS = L ·W, with L and W being the image length and width,
respectively. The bias is used to adjust the maximum error size of the position and filter
out the surrounding noise. For the value of s, when the target position falls within the gray
area as shown in Figure 5, it means that the target position is not located in the central
focused region. The closer the position is to the edge, the lower the score. It is designed by

s =
RS/

m1
, where m1 represents the number of people locked within the reconnaissance

space RS(= πab) ⊂ IS with the semi-major axis of length a = αW and semi-minor axis of
length b = βL and 0 < β ≤ α ≤ 1. The rules are summarized as follows:

1. There are many people that appear in the image. The bias is increased to reflect the
noisy background.
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2. There are few people in the image, but they are tightly crowded. The bias is decreased
and s is increased by increasing β, α to rise discriminative sensitivity.

3. There are many people, but they are widely dispersed. The bias is decreased to aid
highlighting the target.

4. There are few people and they are widely dispersed. The bias is set to zero and a large
s is suggested to boost the discriminative effect.

After obtaining CS, LS, and PS, the target ID score is characterized by

RR =
(
CS′W1 + LS′W2 + PS′W3

)
· 100% (12)

where the normalized individual scores CS′, LS′, and PS′ correspond to CS, LS, and PS,

respectively, and Wi, i = 1 ∼ 3 are the respective weighting factors satisfying
3
∑

i=1
Wi = 1.
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3.3. Target Positioning in 3D Space

Once the target position in the pixel coordinates is obtained, it is transferred to the
Cartesian plane. In addition, the relative distance D with respect to the target provided
by the depth lens is integrated with the pixel coordinate representation to yield the target
position in the spherical coordinates, as shown in Figure 7.
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For the current experiment, the camera’s field of view (FOV) is 69.4× 42.5× 77 degrees
with 640× 480 p (4:3) pixel resolutions. It is used to compute the degree of the pixels within
a frame. We end up with the following equations to transform the spherical coordinate
system to the Cartesian coordinates:

XT = D cos(θp) sin(θy),

YT = D cos(θp) cos(θy),

ZT = D cos(θy) sin(θp)

(13)

where θp and θy are the pitch and yawing plane line-of-sight (LOS) angles, respectively.
The quadcopter rotates its body to move; thus, we have

Pnew = RPorigin (14)

where Pnew is the quadcopter position after performing rotation and R is the coordinate
rotational matrix.

3.4. Target Movement Estimation

Let the target state vector be xt, including the target position p, the velocity v, and the
acceleration a, which is random and conformed to the Gaussian distribution with mean µ
and variance Σ. Consider external interference and measurement so that the prediction of
measurement statistics is characterized by the estimated measurement ẑt = Ht x̂t, with the
error covariance of estimation Pt and t denoting the current time step and the real measure-
ment characterized by (µ1, ∑1) = (zt, Rt) , where Rt is the measurement noise covariance.

The prediction equations of the state and error covariance Pt are given by

x̂t = Ft x̂′t−1,

Pt = FtPt−1Ft
T + Qt

(15)

where the process noise covariance Qt = εq I9 and the system matrix Ft given by

Ft = I9 +

03 δtI3 0.5δt2

03 03 δtI3
03 03 03


where δt is the sampling period. Including the two Gaussian distribution terms provides
the state update equations:

x̂′t = x̂t + K′(zt − ẑt),

Pt
′ = Pt(I9 − K′Ht),

K′ = PtHt
T(HtPtHt

T + Rt)−1

(16)

where Ht =
[
I3 03×6

]
and Rt = εr I3, with εr being a small positive constant.
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3.5. Flight Path Planning

The imaging processing system uses an embedded microcomputer to realize deep
learning and Kalman filtering computation. We first propose a contour and spiral con-
volution space detection algorithm (CASCSD) to handle obstacle avoidance and plan an
appropriate flight path to track the target with its center of mass located at OS(xs,ys, zs).

Using the flyable space detection process, the image is divided into two types of blocks,
denoted by “1” or “0”, which refer to the safe-to-fly (STF) and non-STF regions, respectively.
We use the infrared of the depth camera to measure the relative distance. As it is easily
affected by environmental light, the image processing system first slightly erodes the scope
of the space, that is, the expanded scope of the obstacle, which is performed to prevent
smaller obstacles from being filtered. Next, it enhances the dilated space range to filter
out the light pollution or other noise that infrared ray cannot measure. Then, the space is
eroded back to its original size; see Figure 8 for the process. A safety buffering range to
prevent the UAV from drifting is reserved at the edge of each detected obstacle.
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To ensure that the target can be tracked with the shortest path, the two-dimensional
pixel coordinates are inversely derived from the predicted coordinates generated by the
Kalman filter. Let the predicted coordinates of the Kalman filter be OP =

[
xp, yp, zp

]T . The
line-of-sight (LOS) angles θp and θy can be deduced from

θp = cos−1(
zp

Dp
), θy = cos−1(

xp

Dp
) (17)

where DP =
∥∥Op

∥∥. Based on the current camera’s FOV, the center position of the target
measured from the image are cx = 11.3θp and cy = 9.22θy.

The spiral convolution from the centroid position outwards determines whether there
is available space for the quadcopter to fly forward. The spiral convolution means that the
filter matrix rotates from inside to outside and convolves the spatial detection feature map.
The size of the filter depends on the coverage of the boundary on the imaging plane, as
illustrated in Figure 9.
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As shown in Figure 9, the image projection will be zoomed in. Therefore, it is necessary
to set up a threshold of the mapping frame from the FOV. For the current system, the

lengths of x and y axes per pixel are determined by imagewidth =
threshold tan (34.7)/

240

and imageheight =
threshold tan (21.25)/

320.

The control system measures the distance between the camera and the global position-
ing system (GPS), the left and right wings, and the feet and the ratio between them, and
calculates the size of the quadcopter on the imaging plane at the critical distance.

For the spiral convolution, it starts from the target mass center on the pixel coordinates
to find the space to move from the inside to the outside. If the target is not found, the
next process is completed. Because the space around the target has already been searched
during the process of spiral convolution, there is no need to continue searching for the
shortest path around the target. Instead, it directly starts searching for the remaining part.

4. Adaptive Cruise Control (ACC)

The adaptive cruise control system aims at the distance between the quadcopter drone
and the target by adaptive adjusting the speed of target tracking.

4.1. Thrust Force

The acceleration of the quadcopter is determined by the body inclination angle
a = g tan(θ). As the moment of inertia Ixx, arm length l, and motor coefficient k2 are
all constants, thus the rotational speed of the motor is a major concern. The thrust force is

computed by ‖F‖ = 23( length
10 )

3 pitch
10 ( volt·kV

1000 )
2
, where length is the propeller diameter, pitch

denotes the propeller pitch angle, and kV denote the voltage per revolution of the motor.
The thrust force of the motor is 1392 gram-force. With the obtained thrust force, propeller
diameter, and moment of inertia, the inclination is θ(t) = θ0 + 0.5

..
θt2.

4.2. Fuzzy Control Implementation

Figure 10 illustrates the scenario of the target follower. When the quadcopter is far
away from the target, the flight control command increases the angle of the pitch axis to
speed up the task.

Aerospace 2023, 10, 82 10 of 21 
 

 

 

Figure 9. Graphical explanation of the CACSD distinguishing the safety zone. 

As shown in Figure 9, the image projection will be zoomed in. Therefore, it is neces-

sary to set up a threshold of the mapping frame from the FOV. For the current system, the 

lengths of x and y  axes per pixel are determined by 
tan(34.7)

240width

threshold
image =

and 
tan(21.25)

320height

threshold
image = . 

The control system measures the distance between the camera and the global posi-

tioning system (GPS), the left and right wings, and the feet and the ratio between them, 

and calculates the size of the quadcopter on the imaging plane at the critical distance. 

For the spiral convolution, it starts from the target mass center on the pixel coordi-

nates to find the space to move from the inside to the outside. If the target is not found, 

the next process is completed. Because the space around the target has already been 

searched during the process of spiral convolution, there is no need to continue searching 

for the shortest path around the target. Instead, it directly starts searching for the remain-

ing part. 

4. Adaptive Cruise Control (ACC) 

The adaptive cruise control system aims at the distance between the quadcopter 

drone and the target by adaptive adjusting the speed of target tracking.  

4.1. Thrust Force 

The acceleration of the quadcopter is determined by the body inclination angle 

tan( )=a g  . As the moment of inertia xxI , arm length , and motor coefficient 2k  are 

all constants, thus the rotational speed of the motor is a major concern. The thrust force is 

computed by 
3 223( ) ( )

10 10 1000

length pitch volt kV
F


= , where length is the propeller diameter, pitch 

denotes the propeller pitch angle, and kV  denote the voltage per revolution of the mo-

tor. The thrust force of the motor is 1392  gram-force. With the obtained thrust force, pro-

peller diameter, and moment of inertia, the inclination is 
2

0( ) 0.5t t  = + . 

4.2. Fuzzy Control Implementation 

Figure 10 illustrates the scenario of the target follower. When the quadcopter is far 

away from the target, the flight control command increases the angle of the pitch axis to 

speed up the task. 

 

Figure 10. Graphical explanation of the target follower. Figure 10. Graphical explanation of the target follower.



Aerospace 2023, 10, 82 11 of 21

As the quadcopter drone gradually approaches the target with higher speed, the
relative distance between the target and quadcopter would be gradually decreasing. When
the quadcopter decelerates but the target person starts to move forward, the quadcopter
would respond by speeding up again. The faster the target walks, the faster the quadcopter
will follow.

Figure 11 displays the schematic diagram of the overall control system where the
motor mixing algorithm (MMA) transfers the roll, yaw, and pitch control commands to the
driving commands of four DC brushless motors.
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Figure 11. The flight control system.

To cope with the high nonlinearity of the quadcopter flight dynamics, a fuzzy logic
control is incorporated here as the core of the ACC system. A fuzzy guidance controller
with two inputs and one output is implemented. The adopted membership functions are
shown in Figures 12–14, where the fuzzified inputs are µ(D) and µ(V) and the fuzzified
output is µ(O), with µ(.) representing the degree of membership of fuzzification; D and
V are the relative distance and speed between the quadcopter and the target, respectively,
and O is the acceleration output. Each group of the membership functions possesses seven
fuzzy sets. The membership functions in Figure 12 specify the relative distance between
the quadcopter and the target. Considering the capability of the camera, the fixed relative
distance is set to be 3.5 m. This corresponds to the linguistic variable ZO.

Figure 12. Membership functions for characterizing the target–quadcopter relative distance.
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The membership functions in Figure 13 are used to fuzzify the relative speed. In the
universe of discourse, zero means that the target and the quadcopter are in still status or they
are synchronously moving; the interval from zero to two refers to the walking status of the
target, and the interval from two to four refers to the running status. Refined fuzzification
of the variables is achievable by increasing the number of membership functions.

Figure 13. Membership functions for characterizing the target–quadcopter relative speed.

Figure 14 shows the membership functions characterizing the acceleration command.
The goal is for the quadcopter to maintain a certain distance and quadcopter speed and
LOS between to the target.

Figure 14. Membership functions for characterizing control command.

There are 25 guidance rules in total that are sorted in Table 1. The guidance law adopts
proportional navigation guidance (PNG) commonly adopted by homing air target missiles
based on the fact that the target and quadcopter are on a contact course when their direct
LOS does not significantly change direction as the range closes. The guidance rules here
are to keep a constant relative distance between the target and the quadcopter. The center
of gravity method is adopted for the defuzzification of the inferred results.

Table 1. Fuzzy guidance rule base.

O
D

Nb Ns Zo Ps Pb

nb Pb Pb Ps Ps Zo
ns Pb Ps Ps Zo Ns

V zo Ps Ps Zo Ns Ns
ps Ps Zo Ns Ns Nb
pb Zo Ns Ns Nb Nb

5. Experimental Verification

In order to prove the feasibility of the theory, we conducted experiments such as
outdoor tracking targets, indoor tracking targets, ladder tracking targets, and intelligent
obstacle avoidance. The results are shown and explained as follows, and one can also refer
to the following video URL: https://www.youtube.com/watch?v=ko9BaSFTcwA (accessed
on 21 November 2021).

https://www.youtube.com/watch?v=ko9BaSFTcwA
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5.1. Autonomous Flight

Firstly, to examine the capability of a fundamentally stable flight, a 3D rectangular
flight for the performance validation of the ACC was conducted. The real-world exper-
imental results are shown in Figure 15 for the autonomous flight. The green solid line
shows the planned flight path, the blue dotted line shows the flight result estimated by the
extended Kalman filter (EKF), and the red dotted line presents the GPS measurement result.
It verifies that under the interference of strong wind, the offset of the UAV flight path and
the planned path is satisfactorily less than 0.2 m under the help of the real-time kinematic
positioning (RTK) technique [23].

Figure 15. The experimentally autonomous rectangular flight.

5.2. Target Identification

A demonstrative image for locating the object based on the proposed YOLO algorithm
is shown in Figure 16, where the matching scores are shown corresponding to the target
feature, human face, clothing, and shorts.

Figure 16. Demonstration of the locking the target.
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The setting of weighting factors for target features is W1 : W2 : W3 = 0.3 : 0.2 : 0.5. IS
is set to 4 × 3, a = 0.8, and b = 0.6. The position accuracy is normalized via the sigmoidal
function, and

(
xp, yp, zp

)
are the prediction coordinates from the previous frame of the

target. It is based on the prediction of the position from the last frame compared with the
measured position in the current frame. If the target achieves a high score with an accuracy
level higher than, for example, 70%, the subject is recognized. We aimed to track the target
with an orange jacket, blue trousers, and short black hair, as illustrated in Figure 17. The
experimental result of the recognition rate (RR) of each subject within the video frame is
listed in Table 2.

Table 2. RR of the objects that appear in Figure 17.

Object No. 1 2 3

RR (%) 99.7 41.0 7.5

Object No. 4 5 6

RR (%) 41.0 15.1 5.2

Figure 17. Experimental test of the adaptive target identification.

5.3. Estimation of Target Movement

Figure 18 illustrates the experimental result of the estimated target trajectory. The
specific scenario is an inclined stair. The red line denotes the target trajectory and the green
line denotes the predicted trajectory. This scenario represents a kind of extremal situation
for the quadcopter drone during flight. When the target moves back and forth along the
stair, the Kalman filter can still accurately predict the moving target trajectory.
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Figure 18. Kalman filtering estimation of the moving target movement along an inclined stair.

Figure 19 displays the real-world experimental results, which shows that even when
the target is walking past a shelter, the state estimator can keep tracking the target. In the
photo, the red dot denotes the human target center and the green dot shows the predicted
point generated by the Kalman filter.

Figure 19. The experimental results of the target trajectory estimation.

5.4. Dynamic Target Tracking

The test environment includes outdoor grass, indoor corridors, and staircase. Figure 20
demonstrates the outdoor tracking test where the image tracking system, based on the deep
learning algorithm proposed, has precisely locked target and started tracking.

Figure 20. Front tracking of the target from the view of the quadcopter.
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As shown in Figure 21, there are two difficulties when the quadcopter is tracking the
target under a windy environment. It is difficult for a lightweight quadcopter to maintain
a stable altitude because the air pressure sensor might be affected by the environmental
disturbance. The second is that the quadcopter itself is susceptible to the influence of wind,
which always destabilizes the body attitude. The fuzzy control tuning proposed here has
reserved a margin for tracking performance under the severe operating environments.

Figure 21. UAV tracking target test outdoors (The sequence of target movement and UAV tracking is
shown in 1–4).

Figure 22 demonstrates the quadcopter tracking a target who is climbing the stairs.
The difficulty in this case is that the target may simultaneously move horizontally and
vertically. Thus, the quadcopter speed has to be accurately controlled to avoid the loss of
locking.

Figure 22. UAV tracking target test on stairs (The sequence of target movement and UAV tracking is
shown in 1–3).

The case of target tracking in a narrow corridor is shown in Figure 23. This scenario
tests the stability of the quadcopter without GPS assistance. For this kind of constricted
environment, the quadcopter may suffer from the self-generated wind turbulence while
the propelled air rebounds from the wall. Moreover, the indoor sharp corner movement
becomes another critical issue to challenge the quadcopter’s capability in space detection
and agility of attitude control.
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Figure 23. UAV tracking target test at the corridor (The sequence of target movement and UAV
tracking is shown in 1–5).

5.5. Feature Comparison

The smart tracking and obstacle avoidance functions of this study are mainly based on
the UAV personal security guard system. In order to prove the significance of the research,
we cite several documents to show that the functions do not meet the research requirements.
The comparison is as follows in Table 3.

Table 3. Feature comparison table.

Comparator Application Field Functional Narrative

This article Indoor, outdoor (low altitude), stairwell Identify by clothing; available for crowd, tracking, and
obstacle avoidance

[15] Indoor, outdoor (low altitude) QR-code identification (strict conditions), tracking but no
obstacle avoidance

[23] Outdoor (high altitude) Recognition and tracking functions are used for drones to
park on the landing zone on the roof of the car

[24] Outdoor (high altitude) UAVs identify and track targets at a high altitude

[26] Indoor Use 3D vision to measure the distance between UAVs and
objects (can be used for obstacle avoidance)

[28] Outdoor Using deep learning and simulating multiple UAV tracking
and obstacle avoidance (simulation only)

6. Conclusions

This paper proposes a lightweight and intelligent UAV tracking and obstacle avoidance
system. First, we used the YOLO model with fewer layers to recognize humanoid objects.
Secondly, we proposed a lightweight adaptive target identification algorithm, which can
extract personal clothing features and filter out complex image backgrounds other than
the targets for target identification among crowds. Next, it was necessary to determine
the movable space of the UAV, so we proposed the contour and spiral convolutional
space detection (CASCSD) algorithm to search the moving area with the shortest distance
between the UAV and the object and combine it with the Kalman filter, which estimates the
displacement path when obstacles block the tracked object. Finally, a fuzzy adaptive cruise
control (ACC) system keeps the drone at an optimal distance while tracking targets. As the
selected experimental sites of this study are indoors, outdoors, and in stairwells, it can be
applied to the personal security guard scenario.

Because the YOLO model is used for human recognition, it accounts for most of the
computing power of the embedded system, resulting in only about ten frames of images
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during tracking, so the tracking efficiency is not good. However, we have also tested the
sum of the other algorithms; it only takes 0.03 s to complete all calculations. We believe that
more experts and scholars will propose more lightweight human recognition algorithms in
the future. By then, with the lightweight algorithm of this research, the personal security
guard system will have higher flexibility and stability.
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Appendix A

The following development for quadcopter dynamics is standard in [34], in which
necessary modifications been considered to fit in the current purpose. Firstly, for the
upward thrust force of four motors shown in Figure 2, we define

‖Fi‖ = k2
.

ωi
2 (A1)

where ωi is the rotational speed of each motor and k2 is a proportional constant.
The quadcopter heads move in the direction of b3. The four propellers generating

downward thrust are standard and given by

F1 = k2
∣∣ .
ω1
∣∣ .
ω1
−→
b3 ,

F2 = −k2
∣∣ .
ω2
∣∣ .
ω2
−→
b3 ,

F3 = k2
∣∣ .
ω3
∣∣ .
ω3
−→
b3 ,

F4 = −k2
∣∣ .
ω4
∣∣ .
ω4
−→
b3

(A2)

Assume that the magnitude of the generated torque is proportional to the square of
the rotation speed. That is,

‖τi‖ = k1
.

ω
2, i = 1, ..., 4 (A3)

where k1 is a positive gain. The torques of the four motors can then be written as

−→
τ1 = −k1

∣∣ .
ω1
∣∣ .
ω1
−→
b3 ,

−→
τ2 = −k1

∣∣ .
ω2
∣∣ .
ω2
−→
b3 ,

−→
τ3 = −k1

∣∣ .
ω3
∣∣ .
ω3
−→
b3 ,

−→
τ4 = −k1

∣∣ .
ω4
∣∣ .
ω4
−→
b3

(A4)

One can obtain the relationship between the above-mentioned motor thrusts F1–F4
and the arm length of the quadcopter. The induced torque generated by the outer product
of the force arm vector and the thrust is given by

−→
τFi =

−→
lbi × Fi = l‖Fi‖

→
bi (A5)
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where l refers to the arm length and
−→
lbi denotes the ith force arm vector. The induced

torques of four motors are, respectively, given by

−→
τF1 = −l(k2

∣∣ .
ω1
∣∣ .
ω1)

→
b 2,

−→
τF2 = l(−k2

∣∣ .
ω2
∣∣ .
ω2)

→
b 1,

−→
τF3 = l(k2

∣∣ .
ω3
∣∣ .
ω3)

→
b 2,

−→
τF4 = −l(−k2

∣∣ .
ω4
∣∣ .
ω4)

→
b 1

(A6)

The rigid body momentum and angular momentum are described by

dpi
dt

=
−−→
Fi,ex ,

dLi
dt

=
−−→
τi,ex (A7)

where pi is the rigid body momentum, Li denotes the angular momentum, and the subscript
ex represents the external force applied to the rigid body.

Lagrangian mechanics are adopted for the analysis. The configuration space of the
quadcopter is denoted as Q =

(
R3 × SO(3)

)
×
(

R3 × SO(3)
)4, where R3 × SO(3) and(

R3 × SO(3)
)4 refer to the position and direction of the quadcopter and motor frames,

respectively. Because the four motors on the quadcopter are fixed on the frame and
can only rotate around their respective axis, this means that they have only one degree
of freedom relative to the quadcopter frame. Therefore, it can be further simplified to
Q = (R3 × SO(3)× SO(2))4.

The quadcopter movement is controlled by the motor rotational speed. R =
[
xb yb zb

]
is in the SO(3) group. It has the following property:

−
.
R

T
R = (

.
R

T
R)

T
(A8)

Next, define the angular speed matrix
_
Ω = −

.
RRT , where Ω =

[
p q r

]T and ∩
denotes the antisymmetric matrix operation.

The kinetic energy of the quadcopter is given by

KE = KEtran + KErot (A9)

where the translational kinetic energy is

KEtran =
1
2

M‖v‖2
R3 (A10)

with M being the quadcopter mass and the rotational kinetic energy:

KErot = 1
2

∫
V |Ω× (Xi − Xc)|2ρdv

= 1
2 GR3(IC(Ω), Ω)

(A11)

where GR3(·) is the standard inner product in R3 and IC(Ω) is the inertia tensor, ρ is the
atmospheric density, Xi is each mass point on the quadcopter, i = 1, 2, 3 ... n, Xc is the center
of mass, and Xi − Xc is the position of the small mass dm in the Cxyz coordinate system.

Let V = [
.
x

.
y

.
z]T. We calculate the kinetic energy metric for the manifold by the

following equation:

Gij =
∂2KE
∂vi∂vj (A12)

where vi and vj are the velocity parameters of
.
x,

.
y,

.
z, p, q, r on the manifold. That is,

G = diag(MI3, I11, I22, I33) (A13)
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where Iii denotes the moment of inertia of the corresponding axis and
.
x,

.
y,

.
z are the re-

spective linear speed of the center of mass along the corresponding axes. As SO(3) is
the smooth function, it is a pseudo-Riemannian manifold because of its characteristics.
Therefore, one can use a tensor to derive the Levi-Civita connection coordinate and adopt
the Christoffel symbols in the holonomic equation:

Γk
ij =

1
2

Gkl(
∂Gli

∂xj +
∂Gjl

∂xi −
∂Gij

∂xl
) (A14)

As G is a constant matrix, it represents a flat manifold.

Lagrangian Mechanics

Recalling (A4)–(A6) and (A14), those are the conditions for the Newtonian mechanics
that transfer to the Lagrangian mechanics. Let v be the element in the tangent bundle
of the manifold of (8). vq ∈ TQ is the dual vector in the dual tangent space, F(t,vq) is the
Lagrangian force, and

F(t,vq)(wq) = GR3( f(t,vq), V(wq)) + GR3(τ(t,vq)Ω(wq)) (A15)

where wq ∈ TqQ, τ(t,vq) was defined in (A3) and V(wq) and Ω(wq) are the velocity and
angular speed, respectively. One can expand F(t,vq)(·) by linear projection:

F = Fxdx + Fydy + Fzdz + Fpdp + Fqdq + Frdr (A16)

Substituting (A1)–(A6) into (18) gives

Fx = k2GR3(
−→
b3 ,

→
e1)(ω

2
1 + ω2

2 + ω2
3 + ω2

4),

Fy = k2GR3(
−→
b3 ,

→
e2)(ω

2
1 + ω2

2 + ω2
3 + ω2

4),

Fz = k2GR3(
−→
b3 ,

→
e3)(ω

2
1 + ω2

2 + ω2
3 + ω2

4)−Mg,

Fp = lk2(ω
2
1 + ω2

4 −ω2
2 −ω2

3),

Fq = l k2(ω
2
3 + ω2

4 −ω2
1 −ω2

2),

Fr = l k1(ω
2
1 + ω2

3 −ω2
2 −ω2

4)

(A17)

where g is the gravitational constant.
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