
Citation: Shi, Q.; Li, L.; Feng, J.; Chen,

W.; Yu, J. Automated Model

Hardening with Reinforcement

Learning for On-Orbit Object

Detectors with Convolutional Neural

Networks. Aerospace 2023, 10, 88.

https://doi.org/10.3390/

aerospace10010088

Academic Editor: Umut Durak

Received: 7 December 2022

Revised: 12 January 2023

Accepted: 13 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Automated Model Hardening with Reinforcement Learning for
On-Orbit Object Detectors with Convolutional
Neural Networks
Qi Shi 1,2, Lu Li 1,2, Jiaqi Feng 1,2, Wen Chen 1,2 and Jinpei Yu 1,2,*

1 Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201306, China
2 University of Chinese Academy of Sciences, Beijing 100039, China
* Correspondence: yujp@microsate.com

Abstract: On-orbit object detection has received extensive attention in the field of artificial intelligence
(AI) in space research. Deep-learning-based object-detection algorithms are often computationally
intensive and rely on high-performance devices to run. However, those devices usually lack space-
qualified versions, and they can hardly meet the reliability requirement if directly deployed on
a satellite platform, due to software errors induced by the space environment. In this paper, we
evaluated the impact of space-environment-induced software errors on object-detection algorithms
through large-scale fault injection tests. Aside from silent data corruption (SDC), we propose an
extended criterial SDC-0.1 to better quantify the effect of the transient faults on the object-detection
algorithms. Considering that a bit-flip error could cause severe detection result corruption in many
cases, we propose a novel automated model hardening with reinforcement learning (AMHR) frame-
work to solve this problem. AMHR searches for error-sensitive kernels in a convolutional neural
network (CNN) through trial and error with a deep deterministic policy gradient (DDPG) agent and
has fine-grained modular-level redundancy to increase the fault tolerance of the CNN-based object
detectors. Compared to other selective hardening methods, AMHR achieved the lowest SDC-0.1 rates
for various detectors and could tremendously improve the mean average precision (mAP) of the SSD
detector by 28.8 in the presence of multiple errors.

Keywords: on-orbit object detection; fault tolerance analysis; selective hardening; reinforcement learning

1. Introduction

There is growing interest in the research on artificial intelligence (AI) applied to
space in recent years. With the deployment of AI algorithm types such as deep learning,
the autonomy level of the satellite can be tremendously increased. The on-orbit analysis of
Earth observation satellite (EOS) payload data is one of the most-important applications of
AI in the area of space. The capability of EOSs is often limited by the uplink and downlink
bandwidth combined with ground station availability [1]. A convolutional neural network
(CNN) can serve as a good feature extractor and is well suited for the analysis of remote
sensing data. Running deep learning (DL) algorithms on-orbit allows for data consumption
at the source rather than on the ground and, thus, requires only a tiny fraction of the
downlink bandwidth that would be otherwise required. Successful demonstrations of
DL applications in EOSs include weather monitoring [2], land cover classification [3,4],
and object detection [5].

To enable the efficient inference of the deep neural network (DNN), devices such as
application-specific hardware accelerators or graphic processing units (GPUs) are utilized.
However, most of these devices only provide commercial off-the-shelf (COTS) versions,
which are not space-qualified. When applied to space, the devices face challenges due
to the ionizing radiation. Transient effects such as a single-event effect (SEU) can either

Aerospace 2023, 10, 88. https://doi.org/10.3390/aerospace10010088 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10010088
https://doi.org/10.3390/aerospace10010088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace10010088
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10010088?type=check_update&version=2

Aerospace 2023, 10, 88 2 of 19

manifest as single-bit upset or a multiple-bit upset software errors. The SEU can flip
bits in the control logics and memory and might eventually cause silent data corruption
(SDC), meaning the final output will deviate from the expected detection result, as shown
in Figure 1. On the other hand, experimental results have shown that the accuracy of a
DL-based classification algorithm can drastically drop due to the impact of soft errors [6].

Software Level

Software Error

DNN Accelerator
DDR Memory

Layer l Layer l+1Layer l-1

Weight l

Weight l+1

PE PE PE PE

PE PE PE PE

Single Event Upset

Input: airplanes Detection result: airplanes and ships

Silent Data

Corruption

Figure 1. Demonstration of an on-orbit object detection anomaly caused by a transient fault. The SEU
flips a register bit in the processing element, which causes a software error in the feature map. This
error eventually leads to a corrupted object detection result.

To mitigate the risk of a transient fault, space-borne devices often feature informa-
tion redundancy techniques such as triple modular redundancy (TMR), which increases
the complexity of the design at the expense of performance [7]. For the DL algorithms,
selective hardening of the DNN models has become a feasible choice [8–10]. This method
provides fine-grained modular-level redundancy and achieves a balance between system
performance and robustness. However, most of the current works have focused on DL-
based classification algorithms, increasing the fault tolerance of DL-based object-detection
algorithms, which remains an important, but unsolved issue.

This paper focuses on the EOS mission of on-orbit object detection in remote sensing
images (RSIs) and is aimed at a fault-tolerant solution for object detectors with CNNs. We
first evaluated the impact of the software errors caused by the SEU through massive fault
injection tests. Our fault injection tests covered most representative deep-learning-based
object detectors, including both region-proposal-based and regression-based algorithms.
Aside from SDC, an extended criterial SDC-0.1 is proposed to better quantify the effect
of transient faults on the object-detection algorithms, with a detailed description given in
Section 3.3.

We further propose a novel automated model hardening with reinforcement learning
(AMHR) framework, which provides a general solution to quickly search for the most error-
sensitive kernels in various CNN structures. AMHR formulates the search for sensitive
kernels as a sequential decision process and trains a deep deterministic policy gradient
(DDPG) agent [11] to solve the problem. The agent observes the state of each layer and
outputs the ratio of sensitive kernels as the action. The weight-sum method [12] is then
applied to pinpoint the exact positions of the sensitive kernels. This two-stage searching
pattern extremely compresses the search space. We propose two different fault-tolerance-
evaluation methods as the reward functions. The experimental results showed that our
AMHR method can effectively reduce the model’s SDC-0.1 rate by over 3.3×, with a
computational overhead of less than 2x. In the presence of multiple errors, the mean average

Aerospace 2023, 10, 88 3 of 19

precision (mAP) of the AMHR hardening SSD detector was tremendously improved by
more than 53.4 compared to the original model.

We made the following major contributions in this paper:

• We performed a large-scale fault injection study for representative DL-based object-
detection algorithms. We compared the SEU-caused error propagation behaviors
based on the detection frameworks, the CNN structures, the position of the layers,
and the data types. The performance losses of the object detectors in the presence of
multiple errors were also evaluated, providing a practical insight into the vulnerability
of DL applications;

• We propose a novel AMHR framework to effectively perform model hardening for
CNN-based object-detection algorithms. The usefulness of our AMHR method was
evaluated with the SSD and Faster R-CNN detectors. The experimental results showed
that the fault tolerance of models hardened with AMHR outperformed the models
with other selective hardening strategies.

2. Related Works
2.1. Space AI Applications in EOS

Currently, hundreds of EOSs are operating on-orbit, producing a huge amount of
high-resolution observation data. Many agencies have conducted space AI application test,
allowing EOSs to analyze raw data on-orbit and only download those with maximum scien-
tific value. The Earth Observing 1 spacecraft deployed three machine learning algorithms,
including two cloud detectors and an unsupervised novelty detector [13]. Spacecraft Super-
computing for Image and Video Processing (SSIVP) was a payload aboard the International
Space Station. A TensorFlow Lite framework for onboard classification and prototype
models for land-cover classification were deployed on SSIVP [3,14]. Phi-sat 1 ran a neural
network dedicated to cloud detection, which greatly enhanced the scouting capability of
the satellite [15]. The onboard image processing payload of the HISEA-1 satellite is able to
perform real-time ship detection and the detection of ground changes [16].

2.2. Object Detection with CNN

DL-based object-detection algorithms have made seen improvement thanks to the
innovation of network structures, optimized detection frameworks, and model training
strategies. DL-based object-detection algorithms normally fall into two categories: region-
proposal-based and regression-based. Region-proposal-based algorithms follow the tra-
ditional object detection task flow; they first generate regions of interest and then classify
these region proposals. Some influential works include the R-CNN [17], Faster R-CNN [18],
FPN [19], and Mask R-CNN [20]. Regression-based algorithms consider the object detection
task as a regression problem; they directly calculate the locations and classes of targets from
the input image data. Representative works include SSD [21] and the YOLO series [22–24].
DL-based detectors also achieve excellent performances when applied to the RSI object
detection task [25–27].

The CNN is the most-popular backbone network model for object-detection algorithms.
Common CNN models include VGG [28], ResNet [29], MobilNet [30], etc. A CNN model
consists of multiple convolutional layers, and Figure 2 shows the general structure of a
convolutional layer. Each convolutional layer can be represented as a 4D tensor. Let W(l)

be the convolutional kernels of layer l, with its shape C(l+1) × C(l) ×U(l) × V(l), where
C(l+1) is the number of output feature map channels, corresponding to the number of
convolutional kernels in the current layer. C(l) is the number of input feature map channels.
U(l) × V(l) is the size of a single convolutional kernel. Let F(l) be the input feature map
for W(l), with its shape C(l) ×M(l) × N(l), where M(l) × N(l) is the size of the single-input
feature map. The convolutional layer would first obtain a 3D tensor A(l+1), with each
element calculated using Equation (1).

Aerospace 2023, 10, 88 4 of 19

a(l+1)
k,x,y =

C(l)−1

∑
c=0

U(l)−1

∑
u=0

V(l)−1

∑
v=0

f (l)c,x+u,y+v · w
(l)
k,c,u,v

0 ≤ k ≤ C(l+1), 0 ≤ x ≤ M(l+1), 0 ≤ y ≤ N(l+1).

(1)

In Equation (1), M(l+1) × N(l+1) is the size of the single-output feature map. Finally,
a ReLU activation function is utilized to calculate the output feature map of layer l:
F(l+1) = max

(
0, A(l+1)

)
.

U(l)

V(l)

M(l)

N(l)

C(l)

M(l+1)

F(l) * W(l) A(l+1)

N(l+1)

C(l+1)

Layer l output

F(l+1)

ReLU(.)

2D Convolution ReLU Nonlinearity

Layer l input

F(l)

Figure 2. General structure of a convolutional layer. Convolutional kernels are first applied to
the input feature map, and then, a nonlinear activation function is utilized to calculate the output
feature map.

2.3. Model-Layer Fault Tolerance for Deep Learning System

In order to mitigate the influence of transient faults on the DNN system, a number
of approaches from various angles have been proposed. Since the fault-tolerant deep
learning design in the architecture layer or the circuit layer usually comes at a great
expense, model-level fault tolerance techniques are preferred. To exploit a fault-tolerant
solution for the DNN system, one should first understand the behavior of the DNN models
with computational faults by conducting neuron sensitivity analysis [31]. We divide
sensitivity analysis methods into two types: simulation-based methods and sensitivity
estimation methods.

Simulation-based methods conduct large-scale fault injection tests to empirically mea-
sure the error sensitivity for different parts [9,32,33]. To obtain statistically meaningful
results, a large number of fault injection tests have to be performed, and this process could
be very time consuming for large-scale networks. Sensitivity estimation methods try to
derive neuron sensitivity values analytically. Reference [10] proposed a bit-flip resilience
evaluation metric and conducted a sensitivity analysis of each individual neuron. Refer-
ence [34] designed multiple ranking methods to measure the order of importance among
neurons and evaluated the improvement in the accuracy of a DNN in the presence of errors.
However, as the working mechanism of the DNN is not yet fully understood, the above
sensitivity estimation methods often lack a theoretical basis, and their validity requires
further rigorous proof.

Our AMHR method overcomes the limitations of existing methods by combining both
simulation-based and sensitivity estimation methods: we borrowed the idea of sensitivity
estimation to guide the search for error-sensitive kernels within a network layer to compress
the search space, and we empirically verified the fault tolerance of the model hardening
through fault injection tests.

3. Fault Tolerance Analysis of CNN-Based Object Detectors
3.1. Exploration of Design Space

This paper focused on the mission of EOSs’ on-orbit object detection and conducted
a large-scale fault injection tests for pre-trained object detectors with a CNN. We sought
to understand how SEU causes software errors to propagate in a CNN model and to

Aerospace 2023, 10, 88 5 of 19

quantitatively measure the fault tolerance of some widely used object detectors. To estimate
the SDC rate, we ran fault injection tests multiple times to count the number of times SDC
occurs. Our fault injection tests mainly focused on the following aspects:

• Detection framework and network structure: Each object detector has its own dis-
tinct work flow and backbone network structure, which may affect the error propaga-
tion. We compared the overall SDC rates of various detectors to explore the impact of
the detector frameworks and network structures on the fault tolerance.

• Network layers: Network layers could have different fault tolerance capabilities, since
the position and characteristic of a network layer may affect the error propagation.
We wanted to understand how the SDC probabilities vary among the convolutional
layers in the CNN.

• Data type and bit position: The sensitivity of each bit position is also different due
to the different significances. As CNN models can use multiple data types in their
implementations, we examined the SDC rate of each bit position with different data
types. We sought to find the critical bits for each data type in terms of fault tolerance.

• Multiple errors: Multiple SEUs can have a devastating impact on object detectors.
We evaluated the effect of this extreme case through multiple bit-flip error injections
into different detectors. We analyzed their performance losses to understand the
vulnerability of both region-proposal-based detectors and regression-based detectors.

3.2. Fault Model

The SEU causes bit-flips in the registers or memories, which is one of most-common
transient effects that poses a challenge to space-borne devices [35,36]. Though software
errors can be mitigated by techniques such as an error correction code (ECC) or cyclic
redundancy check (CRC), these mechanisms do not cover all failure modes such as transient
faults in the compute or control logic [37]. In this paper, we considered random bit-
flip errors caused by SEUs in a CNN. As the inference result of a CNN depends on the
convolution result between the kernel weight and input feature map, we considered errors
of two types: weight error and feature map error.

3.3. Experiment Setup

To simulate the EOSs’ on-orbit object detection mission, we first chose some of the
most-representative DL-based object detectors and trained these models with the NWPU
VHR-10 RSI dataset [38]. We randomly picked 70% of the images from NWPU VHR-10 as
the training set and used the remaining 30% as the test set. The detectors were implemented
with MMDetection [39], which is an open-source object detection toolbox based on PyTorch.

We conducted fault injection tests using PyTorchFI [40], which is a runtime DNN per-
turbation tool for the PyTorch platform. Based on PyTorchFI, we developed our customized
SEU fault model by performing random bit-flips on the weights or feature maps of the
CNN at runtime.

In a typical program, SDC means a failure outcome, which deviates from the golden
output, and it is normally used to quantify the fault tolerance of a system. However, for ob-
ject detection tasks, we observed that many software errors could corrupt the detection
results, but with a negligible effect (a very tiny shift of the target bounding box for instance).
Taking the Faster R-CNN detector as an example, the fault injection result showed 97.6% the
SDCs end up with a small shift of the target bounding box, with the intersection over union
(IoU) still being larger than 0.9 compared to the golden output. In this case, the SDC rate
would be misleading as it might overestimate the impact of a software error. We extended
the concept of SDC and define a new criterial SDC-0.1 to indicate a severe detection result
corruption caused by software errors.

SDC-0.1: In a failure result, there exists at least one target bounding box that is
inconsistent with the one in the golden result, and the IoU between those two bounding
boxes is less than 0.1.

Aerospace 2023, 10, 88 6 of 19

3.4. Detection Framework and Network Structure

We first explored the impact of the detection frameworks and network structures
on the fault tolerance. Some of the most-influential DL-based detectors were selected
for the fault injection tests, with the most widely used backbone networks. The data
type was FLOAT for all detectors. Table 1 lists the detailed information of the selected
object detectors.

Table 1. Object detectors with various backbone networks selected for fault injection test.

Detector Type Backbone Network

YOLOv3 Regression-based Darknet53
SSD Regression-based VGG16

VGG19
MobileNetV2

Faster R-CNN Region-proposal-based VGG16
VGG19

ResNet34
ResNet50

For each detector, we repeatedly performed 3000 feature map error injection tests and
3000 weight error injection tests and calculated the SDC rate and SDC-0.1 rate, respectively.
The layer, the position in the feature map/kernel, and the bit position of each injected error
were randomly selected. The result is shown in Figure 3.

Version January 12, 2023 submitted to Aerospace 6 of 19

Table 1. Object detectors with various backbone networks selected for fault injection test.

Detector Type Backbone Network

YOLOv3 Regression based Darknet53
SSD Regression based VGG16

VGG19
MobileNetV2

Faster R-CNN Region proposal based VGG16
VGG19

ResNet34
ResNet50

For each detector, we repeatedly perform 3000 feature map errors injection tests and 202

3000 weights errors injection tests, calculate the SDC rate and SDC-0.1 rate respectively. The 203

layer, position in feature map/kernel and bit position of each injected error are randomly 204

selected. The result is shown in Figure 3. 205

YOLOV3 SSD VGG16 SSD VGG19 MobileNetV2 FasterRCNN
VGG16

FasterRCNN
VGG19

FasterRCNN
ResNet34

FasterRCNN
ResNet50

0%

20%

40%

60%

80%

SD
C

Ra
te

feature map error
weight error

(a) SDC rates

YOLOV3 MobileNetV2 FasterRCNN
VGG16

FasterRCNN
VGG19

FasterRCNN
ResNet34

FasterRCNN
ResNet50

0%

1%

2%

3%

4%

5%

SD
C-

0.
1

Ra
te

feature map error
weight error

SSD VGG16 SSD VGG19
0%

20%

40%

60%

80%

(b) SDC-0.1 rates
Figure 3. Feature map error and weight error injection test results for various detectors: (a) shows
SDC rates for detectors under test; (b) shows SDC-0.1 rates for detectors under test. SSD detectors
report extremely high SDC-0.1 rates for weight errors so the results are shown with a different scale.

The test results show that SDC rates vary across different detection frameworks and 206

network architectures. The second observation is that a weight error can cause SDC with a 207

much higher probability compared to feature map error. The feature map error caused SDC 208

rates of various detectors range from 9% to 31%, while the weight errors caused SDC rates 209

of all detectors are higher than 50%. Though the SDC rates of detectors seem relatively 210

high, the SDC-0.1 rates are at low level, normally less than 5%, which indicates serious 211

detection result corruption is still very rare. The exception cases are SSD detectors, we 212

notice that SSD detectors are extremely vulnerable to weight errors, with SDC-0.1 rates 213

higher than 88%. 214

Figure 3. Feature map error and weight error injection test results for various detectors: (a) shows
the SDC rates for the detectors under test; (b) shows the SDC-0.1 rates for the detectors under test.
The SSD detectors report extremely high SDC-0.1 rates for weight errors, so the results are shown
with a different scale.

The test results showed that the SDC rates varied across different detection frameworks
and network architectures. The second observation was that a weight error can cause SDC

Aerospace 2023, 10, 88 7 of 19

with a much higher probability compared to the feature map error. The feature map error
caused the SDC rates of various detectors to range from 9% to 31%, while the weight errors
caused the SDC rates of all detectors were higher than 50%. Though the SDC rates of the
detectors seem relatively high, the SDC-0.1 rates were at a low level, normally less than 5%,
which indicates serious detection result corruption is still very rare. The exception cases
were the SSD detectors: we noticed that the SSD detectors were extremely vulnerable to
weight errors, with SDC-0.1 rates higher than 88%.

3.5. Network Layer

The positions of the software errors in a CNN have a huge impact on the overall SDC
probability. It is commonly believed that the outputs of some neurons will not contribute
much to the final result due to the redundancy of a CNN model itself. As a result, the error
sensitivities of the kernels in different network layers may vary significantly. We calculated
the SDC rates of different convolutional layers in a CNN to evaluate the error sensitivities
of different positions. VGG16 was taken as the experimental network model, as it is one
of the most-representative CNNs. We divided the 13 convolutional layers of VGG16 into
5 blocks [28] and report the SDC and SDC-0.1 rates of each block for 3000 repeated fault
injections, as we did in previous experiments.

The experimental result is shown in Figure 4. For feature map errors, both the SDC
and SDC-0.1 probabilities showed a clear declining trend from the bottom to the top layers.
The SDC and SDC-0.1 rates were 22.47% and 3.97%, respectively, for the errors in the bottom
layers (Layers 1–2), while for the top layers (Layers 11–13), the corresponding probabilities
were 7.3% and 1.47%. This indicates a higher error sensitivity for the bottom layers in the
CNN. For the weight errors, this declining trend from the bottom to the top still held, but it
was not that significant.

Version January 12, 2023 submitted to Aerospace 7 of 19

3.5. Network layer 215

The positions of software errors in a CNN have huge impact on the overall SDC 216

probability. It’s commonly believed the outputs of some neurons won’t contribute much 217

to the final result due to the redundancy of a CNN model itself. As a result, the error 218

sensitivities of kernels in different network layers may vary significantly. We calculate the 219

SDC rates of different convolutional layers in a CNN to evaluate the error sensitivities of 220

different positions. The VGG16 is taken as the experiment network model, as it’s one of the 221

most representative CNNs. We divide the 13 convolutional layers of VGG16 into 5 blocks 222

[29], and report the SDC and SDC-0.1 rates of each block by 3000 repeated fault injections 223

as we did in previous experiments. 224

The experiment result is shown in Figure 4. For feature map errors, both SDC and 225

SDC-0.1 probabilities show a clear declining trend from bottom to top layers. The SDC 226

and SDC-0.1 rates are 22.47% and 3.97% respectively for errors in bottom layers (layer 1-2), 227

while for the top layers (layer 11-13) the corresponding probabilities are 7.3% and 1.47%. 228

This indicates higher error sensitivity for bottom layers in CNN. For the weight errors, this 229

declining trend from bottom to top still holds but it’s not that significant. 230

Layer 1-2 Layer 3-4 Layer 5-7 Layer 8-10 Layer 11-13
0%

20%

40%

60%

80%

100%

SD
C

Ra
te

feature map error
weight error

(a) SDC rates

Layer 1-2 Layer 3-4 Layer 5-7 Layer 8-10 Layer 11-13
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

SD
C-

0.
1

Ra
te

feature map error
weight error

(b) SDC-0.1 rates
Figure 4. Feature map error and weight error injected in different convolutional layers in a VGG16
network: (a) shows SDC rates for errors injected in different layers; (b) shows SDC-0.1 rates for errors
injected in different layers.

3.6. The data type and bit position 231

Data type could have significant impact on model’s fault tolerance [8]. The study in 232

[42] shows quantization could be an effective method to increase the fault tolerance of 233

a model. In this section we evaluate the feature map errors tolerance of SSD detectors 234

implemented with 3 different data types: FLOAT, INT16 and INT8. 235

It’s obvious the significance of each bit position varies based on the data type, so 236

the errors in different bit positions would naturally have various SDC rates. We evaluate 237

the SDC and SDC-0.1 rates of different bit positions for FLOAT, INT16 and INT8 models 238

respectively. Figure 5 shows the experiment result of an SSD-VGG16 FLOAT model. 239

Figure 4. Feature map error and weight error injected into different convolutional layers in a VGG16
network: (a) shows the SDC rates for errors injected into different layers; (b) shows the SDC-0.1 rates
for errors injected into different layers.

Aerospace 2023, 10, 88 8 of 19

3.6. The Data Type and Bit Position

The data type could have a significant impact on the model’s fault tolerance [8].
The study in [41] showed that quantization could be an effective method to increase the
fault tolerance of a model. In this section, we evaluate the feature map error tolerance of
the SSD detectors implemented with three different data types: FLOAT, INT16, and INT8.

It is obvious that the significance of each bit position varies based on the data type, so
the errors in different bit positions would naturally have various SDC rates. We evaluated
the SDC and SDC-0.1 rates of different bit positions for the FLOAT, INT16, and INT8
models, respectively. Figure 5 shows the experimental result of the SSD-VGG16 FLOAT
model. Based on the definition of the FLOAT data type, we analyzed the feature map
errors in the sign bit (31), exponent bits (30-23), and high data bits of significand precision
(22-19). The first observation was that there was a declining trend of the SDC rates with
the data bits from high to low. For SDC-0.1, we observed that the high data bits of the
exponent bits, namely bits 30-27, were extremely vulnerable compared to the other data
bits. The probabilities of the SDC-0.1 rates could be as high as 22.8% for those vulnerable
bits. Errors in the sign bits or significand precision were negligible with an SDC-0.1 rate
less than 0.1%.

Version January 12, 2023 submitted to Aerospace 8 of 19

Based on the definition of FLOAT data type, we analyze feature map errors in sign bit 240

(31), exponent bits (30-23) and high data bits of significand precision (22-19). The first 241

observation is that there is a declining trend of SDC rates from with data bits from high to 242

low. For SDC-0.1, we observe that high data bits of exponent bits, namely bits 30-27 are 243

extremely vulnerable compared to other data bits. The probabilities of SDC-0.1 rates could 244

be as high as 22.8% for those vulnerable bits. Errors in sign bit or significand precision are 245

negligible with SDC-0.1 rate less than 0.1%. 246

31 30 29 28 27 26 25 24 23 22 21 20 19
Bits

0%

5%

10%

15%

20%

25%

30%

SD
C

Ra
te

(a) SDC rates

31 30 29 28 27 26 25 24 23 22 21 20 19
Bits

0%

5%

10%

15%

20%

SD
C-

0.
1

Ra
te

0.37% 0.07% 0.10% 0.17% 0.07% 0.07% 0.10% 0.00%0.07%

(b) SDC-0.1 rates
Figure 5. Feature map error injected in different bit positions in a SSD-VGG16 FLOAT model; sign bit
(31), exponent bits (30-23) and high data bits of significand precision (22-19) are considered. (a) shows
SDC rates for errors injected in various bit positions; (b) shows SDC-0.1 rates for errors injected in d
various bit positions.

The experiment results of fault-injections in INT16 and INT8 models are shown in 247

Figure 6. We analyze the high 8 data bits in INT16 model and all bits in INT8 model. The 248

results show better fault-tolerance for quantized models, with SDC-0.1 rates of all bits less 249

than 0.7%. This is in line with the conclusion in [8]. The MSBs of both INT16 and INT8 250

models report relatively high SDC-0.1 rate around 0.6%, for all the other bits the SDC-0.1 251

rates are lower than 0.2%. 252

Figure 5. Feature map error injected into different bit positions in an SSD-VGG16 FLOAT model; the
sign bit (31), exponent bits (30-23), and high data bits of significand precision (22-19) are considered.
(a) shows the SDC rates for the errors injected into various bit positions; (b) shows the SDC-0.1 rates
for errors injected into d various bit positions.

The experimental results of the fault injections into the INT16 and INT8 models are
shown in Figure 6. We analyzed the high 8 data bits in the INT16 model and all bits
in the INT8 model. The results showed better fault tolerance for the quantized models,
with the SDC-0.1 rates of all bits being less than 0.7%. This is in line with the conclusion

Aerospace 2023, 10, 88 9 of 19

in [8]. The MSBs of both the INT16 and INT8 models reported relatively high SDC-0.1 rates
around 0.6%; for all the other bits, the SDC-0.1 rates were lower than 0.2%.

Version January 12, 2023 submitted to Aerospace 9 of 19

15 14 13 12 11 10 9 8
Bits

0%

5%

10%

15%

20%

25%

30%

IN
T1

6
SD

C
Ra

te

(a) INT16 SDC rates

7 6 5 4 3 2 1 0
Bits

0%

5%

10%

15%

20%

25%

30%

IN
T8

 S
DC

 R
at

e

(b) INT8 SDC rates

15 14 13 12 11 10 9 8
Bits

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

IN
T1

6
SD

C-
0.

1
Ra

te

(c) INT16 SDC-0.1 rates

7 6 5 4 3 2 1 0
Bits

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

IN
T8

 S
DC

-0
.1

 R
at

e

(d) INT8 SDC-0.1 rates
Figure 6. Feature map error injected in different bit positions for SSD-VGG16 quantized models. (a)
shows SDC rate for errors injected in higher 8 bits in the INT16 model; (b) shows SDC rate for errors
injected different bits in the INT8 model; (c) shows SDC-0.1 rate for errors injected in higher 8 bits in
the INT16 model; (d) shows SDC-0.1 rate for errors injected different bits in the INT8 model.

3.7. Multiple errors 253

We also evaluate the impact of multiple errors to detectors by multiple bit-flip injec- 254

tions. Though multiple SEUs seem unlikely as the inference time of a detector is very short, 255

still we would like to push the detectors to limit and check their fault tolerance under 256

extreme conditions. We gradually increase the number of injected feature map errors and 257

compare the performance losses of SSD and Faster R-CNN detectors in NWPU VHR-10 258

test set. Both detectors use VGG16 as the backbone network. 259

Figure 6. Feature map error injected into different bit positions for SSD-VGG16 quantized models.
(a) shows the SDC rate for errors injected into the higher 8 bits in the INT16 model; (b) shows the
SDC rate for errors injected into different bits in the INT8 model; (c) shows the SDC-0.1 rate for errors
injected into the higher 8 bits in the INT16 model; (d) shows the SDC-0.1 rate for errors injected into
different bits in the INT8 model.

3.7. Multiple Errors

We also evaluated the impact of multiple errors on the detectors by multiple bit-flip
injections. Though multiple SEUs seem unlikely as the inference time of a detector is very
short, still, we wanted to push the detectors to their limits and check their fault tolerance
under extreme conditions. We gradually increased the number of injected feature map
errors and compared the performance losses of the SSD and Faster R-CNN detectors on the
NWPU VHR-10 test set. Both detectors used VGG16 as the backbone network.

Figure 7 shows the performance losses caused by multiple errors. The SSD detector
suffered huge performance losses when confronted with multiple errors. With 1200 feature
map errors injected, the resulting mAP of SSD drastically dropped from 87.5 to 9.1. The
Faster R-CNN maintained an acceptable detection accuracy when confronted with multiple
errors, with the result mAP dropping from 90.4 to 71.9. This may indicate the robustness of

Aerospace 2023, 10, 88 10 of 19

region-proposal-based two-step detectors. The experimental result showed that multiple
software errors were fatal for some detectors, and this would cause a complete failure
under extreme conditions.

0 200 400 600 800 1000 1200
Software Error Numbers

20

40

60

80
m

AP
 (%

) ssd with no error
ssd with feature map errors
faster rcnn with no error
faster rcnn with feature map errors

Figure 7. SSD and Faster R-CNN detectors’ performance losses caused by multiple feature map errors.

4. Methodology
4.1. Problem Description

According to the fault injection experimental results in Section 3, the algorithm frame-
works, the architectures of the CNNs, and the positions of the software errors all played
import roles in the SDC probability. This indicates the different distributions of the error-
sensitive kernels among various detection frameworks and CNNs. The major challenge for
the model selective hardening is to propose a general searching method for error-sensitive
kernels in detectors with various frameworks and network architectures. This problem
can be further described as follows: given a detector with the backbone CNN M0 and fault
tolerance test environment Et and given the target redundancy ratio α, our goal was to
search for a set of kernels K in model M0 and perform the TMR backup for each kernel
k ∈ K, such that the fault tolerance performance of redundant model Mh is optimized in
the test environment, and the selected set K meets constraint ∑k∈K FLOPs(k)≤ α ·Wall ,
where Wall is the FLOPs of the original model.

4.2. AMHR Framework

A typical CNN consists of numerous convolutional kernels, and the search space
for error-sensitive kernels is quite large. Searching for sensitive kernels through repeated
fault injection tests would be quite time consuming, which is infeasible for large-scale
CNN models. According to the fault injection experimental results, the SDC rates varied
from the bottom to the top layers in the network. This observation inspired us to first
explore the distribution of sensitive kernels among layers to increase the searching efficiency.
The problem now is how to estimate the distribution among the layers. We propose AMHR
and utilized a DDPG agent to solve this problem, the framework of which is shown in
Figure 8. For each layer, the agent first performs a layerwise search to predict the ratio of
sensitive kernels in the current layer, then the inner layer search is performed using the
weight-sum method [12] to pinpoint the exact positions of the sensitive kernels. After all
the layers are traversed, we made the TMR for all the selected kernels and sent the model to
the test environment. The result of the fault tolerance test was taken as the reward, which
motivated the agent to update the policy and further perform the TMR backup for the
most-important kernels to optimize the fault tolerance of the model. The main advantages

Aerospace 2023, 10, 88 11 of 19

of our AMHR framework are two-fold. First, instead of directly searching for sensitive
kernels, AMHR first tries to find the distribution of the sensitive kernels layerwise. This
two-stage searching pattern extremely compresses the search space. Second, a DDPG agent
is utilized to predict the ratio of sensitive kernels in each layer through trial and error,
which further increases the searching efficiency.

Reward: evaluation of redundant model fault-tolerance

Inner Layer Search

select sensitive kernels

using weight sum

Critics

Actor

Embedding

Layer-wise Search

predict sensitive kernel

ratio for each layer Layer Lt

Layer Lt-1

Layer Lt+1

Embedding St

50%

25%

???

DDPG Agent

Model Fault Tolerance Test Environment

normal kernels

TMR kernels

Random Fault Injection

Figure 8. Demonstration of the AMHR framework. The DDPG agent first performs a layerwise
search to predict the ratio of error-sensitive kernels for each layer, and the inner layer search then
follows to pinpoint the exact positions of the kernels with the weight-sum method. The fault tolerance
of the hardened model is evaluated in a fault injection test environment.

Reinforcement learning is fundamental in the AMHR framework. Reinforcement
learning is a branch of machine learning. The algorithm learns the action policies by
interacting with the environment to maximize the obtained reward. A common model for
reinforcement learning is the standard Markov decision process, which can be represented
using the following quintuple: (S, A, Pa, Ra, γ). Here, S is the state space, which represents
the feedback from the environment that the agent can perceive. A is the action space,
and it is a finite set of actions that the agent can perform. Pa represents a state transition
probability matrix. Ra is the reward function, which defines the goal for the agent to learn.
γ ∈ [0, 1] represents the discount factor of the reward function.

The essence of AMHR is applying the reinforcement learning framework to solve
the error-sensitive kernel search problem. The detailed information of each component in
reinforcement learning is explained in the following sections.

4.3. State Space

For each network layer Lt, we define the following state space st, referring to [42]:
(t, n, c, h, w, stride, k, Wt, Wused, Wrest, at−1)

where t is the index of the current layer and n× c× k× k is the dimensions of the convolutional
kernels. The dimensions of the input feature maps are n× h× w. Wt represents the FLOPs
of layer Lt. Wused represents the total FLOPs of the kernels selected in the previous layers.
Wrest represents the rest of the FLOPs allowed in the following layers, according to the total
computation budget. at−1 is the action taken for layer Lt−1. Before being passed to the agent,
they are scaled within [0, 1].

Aerospace 2023, 10, 88 12 of 19

4.4. Action Space

The action of the agent is to predict the ratio of sensitive kernels to perform the TMR
backup in each layer. We define a continuous action space at ∈ [0 , 1] to enable fine-grained
adjustment of redundant kernels. To ensure the action sequence meets the constraint of the
target redundancy ratio α, we further limited the action in each step. We define a minimum
redundancy ratio amin for each layer. When we expect the action sequence would still
exceed the computation budget even with the minimum ratio amin applied for all the rest
layers, the action at for the current layer will be clipped. This strategy can be described
using the following equations:

Wallow ← α ·Wall − amin ·W f ollow −Wused
at ← max(at, amin)
at ← min(at, Wallow/Wt)

(2)

Here, Wallow represents the allowed FLOPs for the current layer and W f ollow is the total
FLOPs for all the remaining layers.

4.5. Reward Function

The reward function should accurately reflect the fault tolerance of a model. Based on
the space-environment-induced fault model, we propose two evaluation methods for the
models’ fault tolerance.

SDC fault tolerance: We repeatedly performed T-times random bit-flip error injection
tests and used the SDC-0.1 probability to measure the SEU-induced fault tolerance of a
model. We also set the injected errors in exponent bits to check the fault tolerance of a
model in the worst cases. To motivate the agent to minimize the SDC-0.1 rate, we define
the following reward function Rsdc:

Rsdc = −1× (SDC–0.1 rate) (3)

Multiple error fault tolerance: We injected M random bit-flip errors into the model.
The performance of the detector was then evaluated in the test set. We tested the detector
with K different sets of errors to calculate the average value mAPaverage and minimum
value mAPmin. We define the following reward function Rmerr to comprehensively consider
both the average and worst performances.

Rmerr = θ ·mAPaverage + (1− θ) ·mAPmin, 0 ≤ θ ≤ 1 (4)

4.6. Training of a DDPG Agent

DDPG is an actor–critic, model-free algorithm based on a deterministic policy gradi-
ent, which can operate over a continuous action [11]. In AMHR, we adopted multilayer
perceptron (MLP) as the actor network and critic network.

The search for the error-sensitive kernels was achieved through the training procedure
of a DDPG agent, and the action sequence obtaining the best reward is taken as the
final output to harden the model. The training procedure of DDPG is fully explained
in the pseudo code in Algorithm 1. First, the actor network µ(s|θµ) and critic network
Q
(
s, a|θQ) are initialized, together with their corresponding target networks. We initialized

the replay buffer R as well. The agent receives embedding st from layer Lt and outputs
action at. As DDPG takes a deterministic policy, the output action cannot fully explore the
environment, and random noise is therefore needed to enhance the exploration capability
of the agent. We utilized the truncated normal distribution µ′(st) ∼ TN

(
µ
(

st|θµ
t

)
, σ2, 0, 1

)
as the output action with random noise.

The agent then moves to the next layer Lt+1, receives the state from the environment,
and outputs action at+1. This procedure repeats until all layers in the model have been
traversed. We executed the model hardening based on the action sequence in this epoch

Aerospace 2023, 10, 88 13 of 19

and evaluated its fault tolerance performance to obtain reward r f . Following the Block-

QNN [43], the transitions
(

st, at, r f , st+1

)
obtained in this epoch are stored in the replay

buffer R. A minibatch of N transitions is sampled to update the policy of the agent.
In the policy update stage, the target critic network Q′ is used to calculate yi, then

the critic network updates its parameters by minimizing the mean-squared error (MSE)
loss between yi and Q. During the update, the baseline reward b is subtracted to reduce
the variance of the gradient estimation, which is an exponential moving average of the
previous rewards [44]. The actor is updated by applying the chain rule to the expected
return from the start distribution J with respect to the actor parameters. Finally, the target
networks are updated by having them slowly track the trained networks.

Algorithm 1: DDPG training procedure.

1 Initialize critic network Q
(
s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ;

2 Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ ;
3 Initialize replay buffer R;
4 for episode = 1, M do
5 Receive initial state s1;
6 for t = 1, T do
7 Select redundancy ratio at = µ

(
st|θµ

t

)
for layer t according to the current

policy;
8 Add random noise for action exploration:

µ′(st) ∼ TN
(

µ
(

st|θµ
t

)
, σ2, 0, 1

)
;

9 Clip the action if it exceeds the total budget of model redundancy;
10 The agent moves to the next layer and receives st+1;
11 Store (st, at, st+1,) in set P;

12 Execute model hardening based on the actions and test fault tolerance to
obtain reward r f ;

13 for t = 1, T do
14 Add the final reward to P(k) and store transition

(
sk, ak, r f , sk+1

)
into R;

15 Sample a random minibatch N of transitions (si, ai, ri, si+1,) from R;

16 Set yi = ri − b + γQ′
(

si+1, µ′
(

si+1|θµ′
)
|θQ′

)
, ;

17 where b is the exponential moving average of the previous rewards;

18 Update the critic by minimizing the loss: L = 1
N ∑i

(
yi −Q

(
si, ai|θQ))2;

19 Update the actor policy using the sampled policy gradient:
20 ∇θµ J ≈ 1

N ∑i∇aQ
(
s, a|θQ)|s=si , a=µ(si)

∇θµ µ(s|θµ)|si ;
21 Update the target networks:

22 θQ′ ← τθQ + (1− τ)θQ′ ;

23 θµ′ ← τθµ + (1− τ)θµ′ ;

5. Experimental Results
5.1. Experiment Setup

We applied AMHR for the model hardening of several pre-trained detectors. Then,
the effectiveness of AMHR was evaluated by testing the fault tolerance of the hardened
models. The key hyperparameters of the model hardening process were set as follows:
The total number of training epochs for the DDPG agent was set to 800, with the first
100 epochs using random strategies to fill in the replay buffer. The learning rate of critic
network lrc was set to 0.001, and for the actor network, the learning rate lra was 0.0001.
For the random noise, the initial value of σ was set to 0.5, and after each epoch, σ would
decay exponentially with a rate of 0.99. The size of minibatch N was set to 64. We set the

Aerospace 2023, 10, 88 14 of 19

discount factor of reward function γ to 1 to avoid over-prioritizing short-term rewards [45].
For the target networks’ updating, τ was set to 0.01.

Based on the hardware resources of spaceborne devices, we can set the target redun-
dancy ratio α to a proper level to obtain the hardened model that meets the computational
constraints. For each layer, we set the minimum redundancy ratio amin to 1%, and the
maximum redundancy ratio amax was set to 95%.

To demonstrate the effectiveness of our AMHR method, we compared the fault tol-
erance performance of the AMHR-hardened models to the models hardened with the
following selective hardening methods:

• uniform: Assume error-sensitive kernels are uniformly distributed among layers, and
use the weight-sum method to select kernels made redundant in each layer. This
uniform assumption is in line with the weight-sum ranking method in [34];

• handcrafted: We manually set the redundancy ratio of each layer based on our
knowledge of the network model. For instance, based on the experimental results
in Section 3.5, we argue that the bottom few layers in a VGG16 network would have
higher importance, and we set higher ratios for those layers accordingly.

Take the model hardening of a VGG16 network in the SSD detector as an example.
Figure 9 shows the redundant kernels ratio of each layer in models hardened with uniform,
handcrafted, and AMHR. The target redundancy ratio α was set to 0.5. We noticed that the
policy given by AMHR made a fine-grained adjustment of the redundant kernels ratio in
each layer and resembled the bottleneck of the VGG16 network.

0 2 4 6 8 10 12 14
layer

0.0

0.2

0.4

0.6

0.8

Re
du

nd
an

t K
er

ne
ls

Ra
tio

 (%
)

uniform
handcraft
AMHR

Figure 9. Redundant kernels ratio among layers in SSD-VGG16 using different hardening methods.

5.2. Single Bit-Flip Error Tolerance Analysis

We first examined the fault tolerance of detectors’ hardening with different methods.
Repeated feature map error injection tests were performed to evaluate the single bit-flip
error tolerance of the hardened models. To meet the requirements of diverse application
scenarios, we considered slightly hardened models and deeply hardened models, with tar-
get redundancy ratios α set to 0.2 and 0.5, respectively. For AMHR, we used Rsdc as the
reward function, and we practically set error injection test repeat time T to 500 to obtain a
statistically meaningful result. The SDC and SDC-0.1 rates of the original model and the
hardened models are shown in Figure 10.

Aerospace 2023, 10, 88 15 of 19

Version January 12, 2023 submitted to Aerospace 15 of 19

tolerance of hardening models. To meet the requirements of diverse application scenarios, 406

we consider slight hardening models and deep hardening models, with target redundant 407

ratios α set to 0.2 and 0.5, respectively. For AMHR we use Rsdc as the reward function and 408

we practically set error injection test repeated time T to 500 to get statistically meaningful 409

result. The SDC and SDC-0.1 rates of original model and hardening models are shown in 410

Figure 10. 411

original uniform handcraft AMHR uniform handcraft AMHR
0%

2%

5%

8%

10%

12%

15%

18%

20%

Da
ta

 C
or

ru
pt

io
n

Ra
te

original model SDC
slight harden models SDC
deep harden models SDC
original model SDC-0.1
slight harden models SDC-0.1
deep harden models SDC-0.1

(a) SSD-VGG16

original uniform handcraft AMHR uniform handcraft AMHR
0%

5%

10%

15%

20%

25%

Da
ta

 C
or

ru
pt

io
n

Ra
te

original model SDC
slight harden models SDC
deep harden models SDC
original model SDC-0.1
slight harden models SDC-0.1
deep harden models SDC-0.1

(b) SSD-VGG19
Figure 10. Fault tolerance analysis for detectors with different hardening methods: (a) shows SDC and
SDC-0.1 rates for SSD-VGG16 hardening models; (b) shows SDC and SDC-0.1 rates for SSD-VGG19
hardening models.

In this experiment we set the data flipping in exponent bits to evaluate the fault 412

tolerance of a model in worst case, so the SDC-0.1 rate is relatively high at this time. Results 413

show our AMHR method can significantly mitigate the impact of a flip-bit error. Taking 414

SSD-VGG19 as an example, the original model reports SDC-0.1 rate 14.97%, while the 415

model hardening using AMHR achieves SDC-0.1 rates 8.47% for slight hardening model 416

and 4.43% for deep hardening model, which is over 3.3x reduction compared to original 417

model. Also, the experiment results show AMHR achieves lower SDC-0.1 rate compared to 418

uniform and handcraft hardening methods for VGG16 and VGG19 networks, in both slight 419

hardening and deep hardening settings. This shows the effectiveness of AMHR for various 420

CNN networks. 421

To further illustrate the effectiveness of AMHR, we take an in-depth study of bit-flip 422

errors masked by TMR backup in each hardening model. Table 2 shows the detailed 423

information of masked errors in VGG16 hardening models. 424

From the data we notice AMHR has highest masked SDC-0.1 ratio in both slight 425

hardening model and deep hardening model. This indicates models hardening by AMHR 426

protect more error sensitive kernels compared to others. AMHR fully explores the dis- 427

tribution of sensitive kernels among layers through DDPG learning process, and make 428

Figure 10. Fault tolerance analysis for detectors with different hardening methods: (a) shows SDC
and SDC-0.1 rates for hardened SSD-VGG16 models; (b) shows SDC and SDC-0.1 rates for hardened
SSD-VGG19 models.

In this experiment, we set the data flipping in the exponent bits to evaluate the fault
tolerance of a model in the worst case, so the SDC-0.1 rate was relatively high at this time.
The resulted showed that our AMHR method could significantly mitigate the impact of
a flip-bit error. Taking SSD-VGG19 as an example, the original model reported an SDC-
0.1 rate of 14.97%, while the model hardening using AMHR achieved SDC-0.1 rates of
8.47% for the slightly hardened model and 4.43% for the deeply hardened model, which
is over a 3.3× reduction compared to the original model. Furthermore, the experimental
results showed that AMHR achieved a lower SDC-0.1 rate compared to the uniform and
handcrafted hardening methods for the VGG16 and VGG19 networks, in both the slightly
hardened and deeply hardened settings. This shows the effectiveness of AMHR for various
CNN networks.

To further illustrate the effectiveness of AMHR, we made an in-depth study of bit-flip
errors masked by the TMR backup in each hardened model. Table 2 shows the detailed
information of the masked errors in the hardened VGG16 models.

From the data, we noticed AMHR had the highest masked SDC-0.1 ratio in both the
slightly hardened model and the deeply hardened model. This indicates models hardened
by AMHR protect more error-sensitive kernels compared to the others. AMHR fully
explores the distribution of sensitive kernels among layers through the DDPG learning
process and makes the TMR backup for sensitive kernels as good as possible to optimize
the fault tolerance of the hardened models.

Aerospace 2023, 10, 88 16 of 19

Table 2. Detailed information of masked errors.

Model Hardening Method
Masked
Software

Error Counts

Masked
SDC

Counts

Masked
SDC-0.1
Counts

Masked
SDC

Ratio (%)

Masked
SDC-0.1
Ratio (%)

slightly hardened model uniform 515 137 100 26.6 19.42
handcraft 605 226 118 37.36 17.2

AMHR 564 204 132 36.17 23.4
deeply hardened model uniform 1293 326 232 25.21 17.94

handcrafted 1288 381 239 29.58 18.56
AMHR 1311 412 258 31.43 19.68

5.3. Multiple-Error Tolerance Analysis

We also evaluated the multiple-error tolerance of the AMHR-hardened models. The
SSD and Faster R-CNN detectors were selected to perform this test, both taking the hard-
ened VGG16 as the backbone network. The target redundancy ratio α was set to 0.5 for all
hardening methods. For AMHR, we injected 2000 random bit-flip errors into the model
and test detector with 5 different sets of errors in each training epoch. We used Rmbu as the
reward function, and θ was set to 0.8. We gradually increased the number of feature map
errors and observed the detection accuracy loss of each model. For Faster R-CNN, we set
all software errors in the exponent bits. The tests were run multiple times for each model,
and the results are shown in Figure 11. Each curve in the figure represents the average of
the mAPs from multiple tests, with the corresponding shadow showing the variation of
the mAPs.

0 200 400 600 800
Software Error Numbers

20

40

60

80

m
AP

 (%
)

original model
uniform
handcraft
AMHR

0 100 200 300 400 500
Software Error Numbers

50

60

70

80

90

m
AP

 (%
)

original model
uniform
handcraft
AMHR

(a) (b)

Figure 11. Performance losses of hardening detectors with multiple errors: (a) shows the mAP
drops with increased feature map errors for hardened SSD detectors; (b) shows the mAP drops with
increased feature map errors for hardened Faster R-CNN detectors.

From the results, we noticed that AMHR can greatly improve the fault tolerance for
multiple-error cases. For the SSD detector with 950 software errors, the average mAP of
the original model was only 11.1, while the average mAP of the AMHR-hardened model
was 64.5, which was tremendously increased by 53.4. Furthermore, it is easy to see that
models hardened by AMHR showed superiority over other selective hardening methods
in terms of performance with multiple errors. The AMHR-hardened model showed an
over 28.8 mAP increase compared to the uniformly hardened model, and it improved the
detection performance by a large margin.

For the Faster R-CNN with 500 exponent bit-flip errors, the results were quite similar.
The average mAP of the original model was 48.9, and for the AMHR-hardened model,
the value was 81.8, which was increased by 32.9. AMHR also reported an over 6.3 mAP

Aerospace 2023, 10, 88 17 of 19

improvement compared to the handcrafted method. This proves the general validity of
AMHR for both regression-based and region-proposal-based detectors.

6. Conclusions

Transient effects such as SEUs caused by the space environment severely restrict the
reliability of EOSs’ on-orbit object detection missions. In this paper, we introduced a new
criterial SDC-0.1 and performed large-scale fault injection tests to quantify the effect of
transient faults on CNN-based object detectors. The results showed that SEU-induced
bit-flip errors could result in output corruption or even the complete failure of object
detectors. A novel AMHR framework was further proposed to harden the most-sensitive
kernels in a CNN, which effectively increased the fault tolerance of the detectors. The
experimental results showed that AMHR reduced the SDC-0.1 rate of SSD-VGG19 by
3.3× and tremendously improved the mAP of SSD-VGG16 by 53.4 in the presence of
multiple errors, with a computational overhead less than 2×. AMHR also showed better
fault tolerance performance over other selective hardening methods, and it achieved the
lowest SDC-0.1 rates for both the VGG16 and VGG19 networks and reported an over
28.8 mAP increase for the SSD detector with multiple errors. We believe the effectiveness
of the AMHR framework could be further improved by combining other neuron sensitivity
estimation methods such as the second-order derivative or the entropy-based approach.
Furthermore, with appropriate modification, AMHR has the potential to be applied to other
types of network layers such as fully connected layers. These are left as our future works.

Author Contributions: Conceptualization, Q.S. and L.L.; methodology, Q.S. and L.L.; software, Q.S.;
validation, Q.S.; writing—original draft preparation, Q.S.; writing—review and editing, J.F., L.L. and
J.Y.; visualization, Q.S.; supervision, W.C. and J.Y.; project administration, J.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Furano, G.; Meoni, G.; Dunne, A.; Moloney, D.; Ferlet-Cavrois, V.; Tavoularis, A.; Byrne, J.; Buckley, L.; Psarakis, M.; Voss,

K.O.; et al. Towards the use of artificial intelligence on the edge in space systems: Challenges and opportunities. IEEE Aerosp.
Electron. Syst. Mag. 2020, 35, 44–56. [CrossRef]

2. Wimmers, A.; Velden, C.; Cossuth, J.H. Using deep learning to estimate tropical cyclone intensity from satellite passive microwave
imagery. Mon. Weather Rev. 2019, 147, 2261–2282. [CrossRef]

3. Manning, J.; Langerman, D.; Ramesh, B.; Gretok, E.; Wilson, C.; George, A.; MacKinnon, J.; Crum, G. Machine-Learning Space
Applications on Smallsat Platforms with Tensorflow. 2018 . Available online: https://digitalcommons.usu.edu/cgi/viewcontent.
cgi?article=4270&context=smallsat (accessed on 1 January 2023).

4. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

5. Guirado, E.; Tabik, S.; Rivas, M.L.; Alcaraz-Segura, D.; Herrera, F. Whale counting in satellite and aerial images with deep
learning. Sci. Rep. 2019, 9, 1–12. [CrossRef]

6. Khoshavi, N.; Broyles, C.; Bi, Y. A survey on impact of transient faults on bnn inference accelerators. arXiv 2020, arXiv:2004.05915.
7. Sterpone, L.; Azimi, S.; Du, B. A selective mapper for the mitigation of SETs on rad-hard RTG4 flash-based FPGAs. In Proceedings

of the 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany,
19–23 September 2016 ; pp. 1–4.

8. Libano, F.; Wilson, B.; Wirthlin, M.; Rech, P.; Brunhaver, J. Understanding the impact of quantization, accuracy, and radiation on
the reliability of convolutional neural networks on FPGAs. IEEE Trans. Nucl. Sci. 2020, 67, 1478–1484. [CrossRef]

9. Libano, F.; Wilson, B.; Anderson, J.; Wirthlin, M.J.; Cazzaniga, C.; Frost, C.; Rech, P. Selective hardening for neural networks in
FPGAs. IEEE Trans. Nucl. Sci. 2018, 66, 216–222. [CrossRef]

http://doi.org/10.1109/MAES.2020.3008468
http://dx.doi.org/10.1175/MWR-D-18-0391.1
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4270&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4270&context=smallsat
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.006
http://dx.doi.org/10.1038/s41598-019-50795-9
http://dx.doi.org/10.1109/TNS.2020.2983662
http://dx.doi.org/10.1109/TNS.2018.2884460

Aerospace 2023, 10, 88 18 of 19

10. Schorn, C.; Guntoro, A.; Ascheid, G. Accurate neuron resilience prediction for a flexible reliability management in neural network
accelerators. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 19–23 March 2018; pp. 979–984.

11. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

12. Li, Y.; Liu, Y.; Li, M.; Tian, Y.; Luo, B.; Xu, Q. D2nn: A fine-grained dual modular redundancy framework for deep neural
networks. In Proceedings of the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9–13 December
2019; pp. 138–147.

13. Wagstaff, K.L.; Altinok, A.; Chien, S.A.; Rebbapragada, U.; Schaffer, S.R.; Thompson, D.R.; Tran, D.Q. Cloud filtering and
novelty detection using onboard machine learning for the EO-1 spacecraft. In Proceedings of the IJCAI Workshop AI in the
Oceans and Space, Melbourne, Australia, 19–25 August 2017. Available online: https://www.semanticscholar.org/paper/Cloud-
Filtering-and-Novelty-Detection-using-Onboard-Schaffer-Thompson/4a76832603f0a585bfd85278b34e0ec6d5732cad (accessed on
1 January 2023).

14. Gillette, A.; Wilson, C.; George, A.D. Efficient and autonomous processing and classification of images on small spacecraft. In
Proceedings of the 2017 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 27–30 June 2017;
pp. 135–141.

15. Giuffrida, G.; Diana, L.; de Gioia, F.; Benelli, G.; Meoni, G.; Donati, M.; Fanucci, L. CloudScout: A Deep Neural Network for
On-Board Cloud Detection on Hyperspectral Images. Remote Sens. 2020, 12, 2205. [CrossRef]

16. Xu, P.; Li, Q.; Zhang, B.; Wu, F.; Zhao, K.; Du, X.; Yang, C.; Zhong, R. On-board real-time ship detection in HISEA-1 SAR images
based on CFAR and lightweight deep learning. Remote Sens. 2021, 13, 1995. [CrossRef]

17. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23 June 2014;
pp. 580–587.

18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28. [CrossRef] [PubMed]

19. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

20. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

21. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

22. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

23. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

24. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
25. Zhong, Y.; Han, X.; Zhang, L. Multi-class geospatial object detection based on a position-sensitive balancing framework for high

spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2018, 138, 281–294. [CrossRef]
26. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. Scrdet: Towards more robust detection for small, cluttered

and rotated objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 8232–8241.

27. Xu, Z.; Xu, X.; Wang, L.; Yang, R.; Pu, F. Deformable convnet with aspect ratio constrained nms for object detection in remote
sensing imagery. Remote Sens. 2017, 9, 1312. [CrossRef]

28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
30. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
31. Liu, C.; Gao, Z.; Liu, S.; Ning, X.; Li, H.; Li, X. Fault-Tolerant Deep Learning: A Hierarchical Perspective. arXiv 2022,

arXiv:2204.01942.
32. Li, G.; Hari, S.K.S.; Sullivan, M.; Tsai, T.; Pattabiraman, K.; Emer, J.; Keckler, S.W. Understanding error propagation in

deep learning neural network (DNN) accelerators and applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2017; pp. 1–12.

33. Gao, Z.; Zhang, H.; Yao, Y.; Xiao, J.; Zeng, S.; Ge, G.; Wang, Y.; Ullah, A.; Reviriego, P. Soft Error Tolerant Convolutional Neural
Networks on FPGAs with Ensemble Learning. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 291–302. [CrossRef]

34. Baek, I.; Chen, W.; Zhu, Z.; Samii, S.; Rajkumar, R. FT-DeepNets: Fault-Tolerant Convolutional Neural Networks with Kernel-
based Duplication. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA,
3–8 January 2022; pp. 975–984.

https://www.semanticscholar.org/paper/Cloud-Filtering-and-Novelty-Detection-using-Onboard-Schaffer-Thompson/4a76832603f0a585bfd85278b34e0ec6d5732cad
https://www.semanticscholar.org/paper/Cloud-Filtering-and-Novelty-Detection-using-Onboard-Schaffer-Thompson/4a76832603f0a585bfd85278b34e0ec6d5732cad
http://dx.doi.org/10.3390/rs12142205
http://dx.doi.org/10.3390/rs13101995
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/j.isprsjprs.2018.02.014
http://dx.doi.org/10.3390/rs9121312
http://dx.doi.org/10.1109/TVLSI.2021.3138491

Aerospace 2023, 10, 88 19 of 19

35. Gaitonde, T.; Wen, S.J.; Wong, R.; Warriner, M. Component failure analysis using neutron beam test. In Proceedings of the 2010
17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, 5–9 July 2010; pp. 1–5.

36. Johnston, A.H. Scaling and Technology Issues for Soft Error Rates. 2000. Available online: (accessed on 1 January 2023).
[CrossRef]

37. Li, S.; Farooqui, N.; Yalamanchili, S. Software Reliability Enhancements for GPU Applications. In Proceedings of the Sixth
Workshop on Programmability Issues for Heterogeneous Multicores, Berlin, Germany, 21–23 January 2013.

38. Su, H.; Wei, S.; Yan, M.; Wang, C.; Shi, J.; Zhang, X. Object detection and instance segmentation in remote sensing imagery
based on precise mask R-CNN. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing
Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1454–1457.

39. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open mmlab detection
toolbox and benchmark. arXiv 2019, arXiv:1906.07155.

40. Mahmoud, A.; Aggarwal, N.; Nobbe, A.; Vicarte, J.R.S.; Adve, S.V.; Fletcher, C.W.; Frosio, I.; Hari, S.K.S. Pytorchfi: A runtime
perturbation tool for dnns. In Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), Valencia, Spain, 29 June–2 July 2020; pp. 25–31.

41. Goldstein, B.F.; Srinivasan, S.; Das, D.; Banerjee, K.; Santiago, L.; Ferreira, V.C.; Nery, A.S.; Kundu, S.; França, F.M. Reliability
evaluation of compressed deep learning models. In Proceedings of the 2020 IEEE 11th Latin American Symposium on Circuits &
Systems (LASCAS), San Jose, Costa Rica, 25–28 February 2020; pp. 1–5.

42. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.J.; Han, S. Amc: Automl for model compression and acceleration on mobile devices. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–800.

43. Zhong, Z.; Yan, J.; Liu, C.L. Practical Network Blocks Design with Q-Learning. arXiv 2017, arXiv:1708.05552.
44. Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; Wang, J. Reinforcement Learning for Architecture Search by Network Transformation. arXiv

2017, arXiv:1707.04873.
45. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement learning. arXiv 2016,

arXiv:1611.02167.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/2014/16240 (accessed on 1 January 2023).

	Introduction
	Related Works
	Space AI Applications in EOS
	Object Detection with CNN
	Model-Layer Fault Tolerance for Deep Learning System

	Fault Tolerance Analysis of CNN-Based Object Detectors
	Exploration of Design Space
	Fault Model
	Experiment Setup
	Detection Framework and Network Structure
	Network Layer
	The Data Type and Bit Position
	Multiple Errors

	Methodology
	Problem Description
	AMHR Framework
	State Space
	Action Space
	Reward Function
	Training of a DDPG Agent

	Experimental Results
	Experiment Setup
	Single Bit-Flip Error Tolerance Analysis
	Multiple-Error Tolerance Analysis

	Conclusions
	References

