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Abstract: In the final approach stage of rendezvous and docking of a spacecraft, the pose parameters
of the target spacecraft need to meet docking or berthing capture conditions. Visible light visual
measurement systems are increasingly employed in spacecraft ground tests to extract the geometric
features of spacecraft to calculate and verify the accuracy of pose parameters. Most current feature-
segmentation algorithms are unable to break through the scale transformation problem of spacecraft
movement and the noise interference of multi-layer insulation materials in imaging. To overcome
these challenges, we propose a novel feature segmentation algorithm based on the framework of
deep convolutional neural networks. Firstly, a full convolution model of the encoding-decoding
structure is constructed based on data for the ground test. A feature concatenation module is
applied and combined with a network backbone to improve the segmentation performance. Then, a
comprehensive loss function is presented and optimized by the pose characteristics of the spacecraft
in the approach phase. Furthermore, a specific spacecraft simulation dataset to train and test our
segmentation model is built through data augmentation. The experimental results verify that the
proposed method achieves accurate segmentation of spacecraft of different scales, suppresses the
interference caused by multilayer insulation material, and has strong robustness against motion
ambiguity. The pixel accuracy of our proposed method reaches 96.5%, and the mean intersection over
union is 93.0%.

Keywords: ground test; feature segmentation; convolution network; data augmentation; small
sample learning

1. Introduction

As a comprehensive simulation test for on-orbit services, spacecraft ground testing
ensures stable operation in their designated orbits. In ground tests that simulate close-
range rendezvous operations, the position and pose parameters of the target spacecraft
are critical factors. The accuracy of these parameters aids in determining the feasibility of
capturing the target spacecraft through docking or berthing mechanisms. Typically, the
propulsion system’s drive motor can transmit its motion parameters to the control termi-
nal. However, due to inherent hardware system errors, auxiliary measurement methods
have become increasingly necessary in recent years [1,2] to validate the reliability of
these parameters. Moreover, the technique of multi-sensor data fusion measurement
has emerged as a fundamental technology for autonomous rendezvous and docking in
modern spacecraft. By integrating data from various sensors and employing advanced
fusion algorithms, this technology enhances the accuracy and robustness of the mea-
surements, ultimately ensuring the safe and successful completion of these intricate and
high-stakes missions.

As a direct approach for auxiliary measurement, computer vision-based technology
has been increasingly vital in spacecraft pose estimation. A stereo vision measurement
system [3] is not only suitable for auxiliary measurement tasks, but also possesses the
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advantages of being non-contact, having low power consumption, and operating at low
cost [4,5], making intelligent in-orbit services more feasible and efficient.

During ground testing, the measurement process of visual pose estimation is illustrated
in Figure 1. Initially, the target spacecraft adheres to its on-orbit operational parameters
while situated within the field of view (FOV) of several stationary stereo camera pairs,
which are employed for image data acquisition [6]. Next, feature extraction algorithms [7,8]
obtain the spacecraft’s feature data from the collected images. Simultaneously, camera
calibration [9] calculates the spatial geometric relationship between the pixel plane, image
plane, and stereo cameras, determining their intrinsic and extrinsic parameters. Finally, the
extracted feature information is combined with the calibration parameters to estimate the
spacecraft’s six degrees of freedom (6-DoF) pose relative to the ground, completing the
pose estimation process.

Figure 1. Procession of spacecraft vision pose estimation.

As depicted in Figure 1, the precision of the extracted spacecraft features has a great
impact on the accuracy of subsequent pose calculations. For cooperative spacecraft, their
distinctive markers are easily distinguishable from other regions in the image. Commonly,
these markers can be identified using basic algorithms, such as feature detection opera-
tors [10] and adaptive thresholding methods [11]. However, in most real spacecraft docking
scenarios, there are no cooperative signals at the visual image level. To realistically simulate
the approach process, features must be extracted from non-cooperative targets. In recent
applications, an effective method for feature extraction is identifying inherent geometric
shapes or feature clusters of the spacecraft, such as the regular contours of the spacecraft’s
main body or the solar panel brackets. Miao et al. [12] combined canny detection with
the geometric constraints of the satellite and determined its outer rectangular contour.
Peng et al. [13] applied a 4-adjacency pixel based sliding window method and extracted
the circular features of the docking rings. Zhang et al. [14] merged similar line segments
that were detected by Hough transform, and obtained the true triangle bracket edge using
distance and area constraints. Liu et al. [15] obtained the multi-elliptical features of the
nozzle of a spacecraft using an improved bee colony algorithm. Another feasible method
utilizes the relatively invariant local feature clusters in an image as the target feature.
Longge et al. [16] extracted the feature point clusters of a spacecraft by applying the Otsu
threshold and using an improved FAST corner algorithm. Huang et al. compared SIFT
and its improved algorithm to obtain the feature sets of the target vehicle. Wei et al. [17]
segmented the basic contour of the target satellite by applying a weak gradient elimination
method, but it also weakened the geometric information of the spacecraft and was not able
to distinguish the texture and the edge of the spacecraft.

However, the image data used in the aforementioned algorithms are idealized simula-
tion images generated by modeling software, and the texture information of these images
is very different from real shot images from a ground test. Consequently, these methods
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struggle to be applied in practical engineering applications and to extract the target’s
features directly. Specifically, there are three challenges that need to be addressed:

(1) In order to simulate the rendezvous stage, the spacecraft moves toward or away
from the camera, which, accordingly, changes its scale within the FOV. This variation
between consecutive frames undermines detection algorithms that rely on the target’s
full size and the detection distance condition, causing them to lose their prior con-
straints. The spacecraft’s position in the camera’s FOV and the size of the receptive
field it occupies are constantly changing, which greatly impacts the constraints in
traditional feature extraction methods;

(2) With the advancement of camera manufacturing, industrial cameras have rapidly
improved in performance, particularly in resolution. Higher pixel counts can signif-
icantly enhance image detection accuracy. However, as image resolution increases,
traditional visual algorithms, such as the sliding window method, incur a significant
increase in computational costs and processing time when traversing features;

(3) In the field of contemporary space technology, spacecraft surfaces are frequently coated
with polyimide (PI) multilayer insulation material (MLI), as depicted in Figure 2. This
material enables the spacecraft to withstand extreme temperature variations in space
and ensures the stable operation of its electronic components. The texture of MLI
presents a prominent feature in gray-scale images, which significantly hinders the
extraction of pixel-level feature edges and ultimately affects the detection performance
of traditional feature extraction algorithms.

(a) (b) (c)

Figure 2. Polyimide (PI) multilayer insulation material and its applications in the space industry.
Generally, MLI, as shown in (a), is composed of PI and aluminum foil. (b,c) depict examples of MLI
film applications on the Apollo lunar module and the Mangalyaan Mars probe, respectively.

Fundamentally, the feature extraction task for a non-cooperative target involves clas-
sifying different pixel categories and clarifying their boundaries. Traditional vision algo-
rithms typically associate local pixels and employ specific filtering or clustering operators
to classify pixels and form identifiable features. However, a limitation of these methods is
their reliance on low-level pixel semantic information, which may result in local optimal
solutions when encountering challenges akin to those mentioned in (2).

With advancements in computational power, deep learning methods have demon-
strated their superiority in the field of computer vision. To solve the issues above and
extract the features of spacecraft accurately, a spacecraft feature segmentation network (SF-
SNet) is proposed in this article, which is a deep learning algorithm based on convolutional
neural networks (CNNs). As a hierarchical structure method, two-dimensional convolution
can generate feature maps of different scales, capturing more details and utilizing greater
image information compared to traditional characteristic operators.

The remainder of this paper is structured as follows: Section 2 describes the proposed
spacecraft feature segmentation algorithm. Section 3 analyzes the experimental results and
compares them under various conditions. Section 4 summarizes the main achievements of
this study and presents the outlook for future spacecraft segmentation tasks.
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2. Spacecraft Feature Segmentation Network Model

In this section, the spacecraft feature segmentation model is presented in the context
of ground test applications. Firstly, based on the size of the test image, a fully convolutional
network is employed to construct the encoder–decoder backbone structure, which classifies
pixels belonging to different categories in the image. Moreover, to enhance the transmission
and utilization of information under different receptive fields, a concentrating module is
used to connect the encoding and decoding stages of the backbone. Lastly, considering
the geometric characteristics of spacecraft, a pixel clustering loss function is established to
ensure the classification accuracy and to reduce the training complexity of the model.

2.1. Basic Module and Encoder–Decoder Structure

In order to classify each pixel in the image as accurately as possible and to minimize the
positioning loss of spacecraft features, an encoder–decoder segmentation structure [18,19]
is applied to construct the primary architecture of SFSNet. This type of structure not only
preserves the spatial information of the input data, but also implements pixel-level dense
estimation tasks.

In the encoding stage, image data is transformed into high-dimensional space vectors
via nonlinear mapping. In the decoding stage, the generated vector is utilized to restore
the spatial dimensions and detailed information of the original image. Data dimension
transformation is accomplished through convolution, up-sampling, and pooling operations.

Convolution processing in the image task involves discrete convolution computation.
Spacecraft images are filtered using various convolution kernels to obtain diverse space-
craft features, thereby constructing a feature map rich in information. This advantage is
unparalleled compared to the single-feature filter in divide and conquer algorithms, such
as canny or Laplacian operators [20,21]. The formal convolution operation can be expressed
as the Equation (1):

yic+1,jc+1,d =
H

∑
i=0

W

∑
j=0

Dc

∑
dc=0

f i,j,dc ,d × xc
ic+1+i,jc+1+j,dc (1)

where xc ∈ RHc×Wc×Dc
, yc ∈ RHc×Wc×Dc

are the input and output tensors of the convolu-
tion layer c, respectively. f c ∈ RH×W×Dc

are the convolution kernels of c. It follows that
convolution kernels of the same layer share their weights. H, W, D are the height, width
and channel number of the corresponding tensor. i, j, d is the position of the convolution
result, which is constrained by the Equation (2):{

0 ≤ ic+1 < Hc+1

0 ≤ jc+1 < Wc+1 (2)

Furthermore, to obtain accurate spacecraft features, data from higher receptive fields [22]
are required. Pooling layers are employed in this paper to modify image dimensions
and to acquire feature data under various receptive fields, enabling the acquisition of
high-level semantic information. To achieve rapid and efficient feature extraction, the
maximum pooling method is utilized to reduce the image dimensions in the encoding
stage, as demonstrated in Equations (3) and (4).

yic+1,jc+1,d = max
0≤i≤H,0≤j≤W

xc
ic+1×H+i,jc+1×W+j,dc (3)


0 ≤ ic+1 < Hc+1

0 ≤ jc+1 < Wc+1

0 ≤ d < Dc+1 = Dc
(4)

In the decoding stage, up-sampling layers are deployed as the inverse operation of
pooling layers to reconstruct the dimensions of the segmented image. As demonstrated
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in Equation (5), the nearest neighbor interpolation method is used in the up-sample layer,
offering a fast and efficient approach for restoring the scale of spacecraft images.{

ic = ic+1 × (Wc/Wc+1)
jc = jc+1 × (Hc/Hc+1)

(5)

2.2. Feature Concatenation Module

Within the SFSNet backbone, the input image’s dimensions are reduced during the
encoding phase. While this assists the model in perceiving the image’s semantic informa-
tion, with deepening of the network, the height and width of the feature map gradually
decrease; thus, the resolution of the spacecraft continuously decreases, resulting in the loss
of a large quantity of detailed data of the original feature.

The up-sampling layer in the decoding phase cannot provide additional data for
image restoration. Consequently, the segmentation error in the spacecraft’s edge or corner
areas is significant, or these features may not even be extracted. To address this issue, a
feature concatenation module is implemented between the encoding and decoding stages,
enhancing the ability of the underlying pixel information to propagate backwards, as
illustrated in Equation (6) and Figure 3.

yH×W×(D1+D2)
m = concat{yH×W×D1

1 , yH×W×D2
2 } (6)

First, the feature map for restoration, y2 ∈ RH×W×D2 , is generated through the up-
sampling layer. Next, the feature map, y1 ∈ RH×W×D1 , which has the same width and
height as y2 in the encoding stage, is merged with y2 in the channel direction to form
the merge layer. Finally, the new feature map is up-sampled through channel dimension
reduction, and the subsequent merged layer is recursively constructed.

Figure 3. Structure schematic of the feature concatenation module. In the actual model construction,
a convolution layer is required between the merged layer and the subsequent up-sampling layer to
reduce the channel dimension of the former.

The advantage of constructing the merged layer using the concatenate module is
that this retains more valuable features from the original spacecraft image. These features
can participate in the model training through standalone convolution parameters. By
incorporating the feature concatenation modules into multiple levels of the SFSNet’s
backbone, details of the spacecraft at various scales are added to the restoration stage,
thereby improving the precision of the model’s segmentation results.

2.3. Spacecraft Characteristic Objective Function

After constructing the feed-forward propagation of the SFSNet, an appropriate feature
segmentation objective function is required to determine the spacecraft pixel position-
ing error, thereby establishing the complete error back-propagation route. As a multi-
segmentation task mentioned in Section 1, the exterior contour and the circular feature
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should be segmented separately from the background. Generally, the softmax function
and the cross-entropy loss function are effective for classifying pixels in multi-classification
tasks. As shown in Equations (7) and (8), the softmax function connects to the last layer of
SFSNet, converting the output data into pixel category probabilities and transmitting them
to the cross-entropy function.

pi,j,d = S(yi,j,d) = exp (yi,j,d)/
C

∑
c=0

exp (yc
i,j,d) (7)

L = − 1
N

N

∑
i=1

C

∑
c=1

bc
i log (pc

i ) (8)

where S represents the softmax function, and L represents the cross-entropy loss function.
pi,j,d represents the pixel category probability under the image coordinates (i, j, d), while C
represents the preset number of categories of the image pixel clusters. For the gray-scale
image and the multi-classification task in the ground test, d = 1, C = 3. N represent the
total number of pixels in the output image. bc

i is a Boolean function, which equals 1 if the
pixel category of the ground truth of a pixel is consistent with the pixel category of the
model output, and 0 otherwise.

During the final approach phase of close-range rendezvous operations, the side of the
spacecraft equipped with a docking or berthing mechanism consistently faces the measure-
ment vision system, with the spatial angle between the axes of their roll direction being
extremely small. Given that the spacecraft’s main body and the rendezvous structure are
non-deformable mechanical structures, their relative positions remain constant. Moreover,
the ring-type berthing mechanism is consistently situated within the exterior contour of the
spacecraft. Therefore, the multi-class segmentation task can be conceptualized as a task of
separating the enclosed area, which is constituted by the internal region of the spacecraft’s
exterior contour and the external region of the circular berthing ring, as shown in Figure 4.

pi,j,d = S(yi,j,d) = 1/(1 + exp (yi,j,d)) (9)

L = − 1
N

N

∑
i=1

bi · logpi + (1− bi) · log(1− pi) (10)

Consequently, the spacecraft segmentation task presented in this article can be re-
garded as a binary segmentation problem. In this context, the loss function is repre-
sented by a sigmoid function and a binary cross-entropy function, as delineated in the
Equations (9) and (10). It can be inferred that Equations (9) and (10) are simplifications
derived from Equations (7) and (8), respectively. For binary classification problems, pi
and 1− pi are the only two probability distributions. This simplified objective function
enhances the computational efficiency and expedites the convergence of SFSNet.

Figure 4. The multi-class segmentation task is reformulated into a binary segmentation problem,
segregating pixels within the blue region from those outside. The magnified images on either side
illustrate the stringent demand for pixel-level accuracy in the annotation mask.
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2.4. Overall Network Model of SFSNet

In the overall model construction, the encoder–decoder structure serves as the back-
bone of the proposed model.

LeakyReLU(x) =

{
α · x x < 0

x x ≥ 0
(11)

Table 1 depicts the basic operation layers used in various modular constructions,
where ‘Conv’ denotes a convolution layer. All of the Conv layers are activated by the Leaky-
ReLU [23] function, as directed in Equation (11). The function of α is that, in the process of
back-propagation, where the Leaky-ReLU activation function input is less than zero, the
gradient can also be calculated to avoid the problem of neuron death. According to [23]
and prior testing, the hyper-parameter α is set as 0.1 in this article. ‘Maxpool’ signifies a
maximum pooling layer, and ‘Upsample’ refers to the nearest neighbor interpolation layer.

Table 1. Modular constructions.

Module Type/Stride Filter Param

CPM1
Conv/(1,1) 3× 3
Conv/(1,1) 3× 3

Maxpool/(2,2) 2× 2

CPM2

Conv/(1,1) 3× 3
Conv/(1,1) 3× 3
Dropout/- 0.5

Maxpool/(2,2) 2× 2

UMCM

UpSample 2× 2
Conv/(1,1) 2× 2

Merge/- channel = −1
Conv/(1,1) 3× 3 s
Conv/(1,1) 3× 3 s

In addition, to further increase the nonlinear mapping capability of SFSNet and to
prevent overfitting [24], ‘dropout’ layers are deployed in the encoding stage. ‘Merge’ stands
for the feature concatenation module. Table 2 delineates the entire model’s architecture
and the output parameters associated with each modular component. In total, SFSNet
has 33 convolution layers, 3 dropout layers, 6 pooling layers, 6 up-sampling layers, and
6 feature concatenation modules. The total number of optimized parameters in SFSNet is
10.9× 106.

Table 2. Structure of backbone.

Phase Module or Layer Module or Layer

Encoding

CPM1 (512,512,16)
CPM1 (256,256,32)
CPM1 (128,128,64)
CPM2 (64,64,128)
CPM2 (32,32,256)
CPM2 (16,16,512)

Linkage
Conv
Conv (16,16,1024)

Dropout

Decoding

UMCM (32,32,512)
UMCM (64,64,256)
UMCM (128,128,128)
UMCM (256,256,64)
UMCM (512,512,32)
UMCM (1024,1024,16)

Conv (1024,1024,1)
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3. Experiment Preparation and Performance Analyses

This section begins with an explanation of the dataset construction, which includes
the process of image data collection and the deployment of augmentation strategies. Subse-
quently, to better adapt the model to the dataset and corresponding application scenarios,
the segmentation efficiency under different modular structures and training strategies is
compared and analyzed.

The experiments presented in this paper were conducted on an Intel Core i7 9700
3.0 GHz processor and an NVIDIA 2070s graphics card. To enhance the model’s perfor-
mance, the system memory was upgraded to 48 GB, thereby increasing the efficiency of
the image generator and the size of the mini-batch. The experiments utilized the Windows
10 operating system and were conducted in the PyCharm Integrated Development Envi-
ronment (IDE) with Python 3.6. The supporting frameworks included CUDA 9.0, cuDNN
7.3.0, and Tensorflow 1.8.0.

3.1. Image Data Collection and Augmentation
3.1.1. Dataset and Mask Acquisition

As a data-driven classification model, the parameters and performance of the SFSNet
are largely determined by the image data and corresponding masks. Distinct from image
classification or detection tasks, semantic segmentation masks demand superior labeling
precision for achieving pixel-level accurate segmentation. An accurately labeled image
dataset is crucial for training a segmentation model. To be specific, the ground test issues
referred to in the Introduction are elaborated in the following:

(1) At present, public datasets are frequently employed in the field of computer vision.
Nevertheless, the application scenarios and target objects of these datasets, such as
COCO and KITTI, are quite disparate from the data requirements of spacecraft ground
testing. Hence, it is inefficient to use data from these datasets for enhancing the
segmentation performance of SFSNet through instance-based transfer learning [25].
Thus, considering both the training cost and the segmentation performance, spacecraft
images were captured and used as the primary data for the dataset in this paper. The
ground test scene and experimental process were simulated, with a model spacecraft
used for image data capture. The simulated experimental process can be substituted
with a practical ground test task.

(2) The purpose of the vision-based spacecraft ground test is typically to validate its pose
and motion parameters. When the spacecraft moves along the camera’s depth of
field, this motion manifests as a change in the spacecraft’s scale within the image
sequence. This issue is a significant impediment to the efficiency of conventional
feature extraction algorithms. Therefore, it is necessary to include image data from
various depth-of-field positions of the spacecraft in the dataset to equip SFSNet for
this measurement requirement.

(3) Due to the spacecraft’s motion and focusing sensitivity constraints, the collected video
data occasionally exhibited blurring during the experiment. Given the spacecraft’s
slow motion, the distortion commonly manifests as a defocus blur, as illustrated in
Figure 5c. Defocus blur can impact the model’s segmentation performance within
this image sequence. Therefore, to enhance the model’s robustness, it is necessary to
incorporate data exhibiting different levels of defocus blur into the training set. This
operation also serves to prevent model overfitting. Consequently, the mask of a clear
image taken under the same conditions is used as the label for the distorted image.

3.1.2. Single Sample Data Augmentation

As mentioned above, the precision of spacecraft feature semantic segmentation should
attain pixel-level accuracy, necessitating stringent requirements for label masks. As a
supervised learning model based on a brand new dataset, the data mask of SFSNet requires
manual annotation. It is evident from Figure 4 that the manual annotation method demands
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significant effort to ensure pixel-level accuracy in the mask, and this workload sharply
escalates as the image resolution increases.

(a) (b) (c)

Figure 5. Clear image sample (b) and corresponding distortion scenarios. During the target’s
movement, data distortion mainly comprises of motion blur (a) and defocus blur (c). Typically, in
ground tests, the target spacecraft does not undergo abrupt tangential motion; hence, the primary
source of noise is the defocus blur.

To reduce the time and effort invested in annotating, a data augmentation technique,
which is tailored to the specificities of the spacecraft, is employed in this paper. Specifically,
considering the spacecraft as a non-deformable rigid body, its motion does not alter the
relative positional relationships within its structure. Similarly, operations like rigid trans-
formations of image data do not disturb the correlation among the pixels of the spacecraft
body within the field of view. However, these preprocessed images are brand new to the
segmentation network, and they can exert varied influences on the network parameters
compared to the original data [26]. This approach enhances the robustness of the SFSNet
model, particularly in contexts where the original data is scarce.

Considering the unique conditions of the ground test environment and the specific
characteristics of the captured photos, single sample data augmentation is adopted in this
paper. This method augments data through operations such as flipping, translating, and
defocus, etc. For example, when performing rotation augmentation, a rotation angle is
randomly generated according to the rotation range in Table 3. Rotating the image to
be trained and its ground truth mask at the same angle brings them into the network
training as new training data. Single-sample augmentation not only effectively generates
potential spacecraft imaging scenarios, but also boasts the advantages of low complexity
and straightforward implementation.

Moreover, given the low brightness of background pixels in gray-scale images from
the tests, which are easily identifiable, the augmented image’s missing pixels are filled with
constant-value ones in this paper. This ensures that the enhanced data retain a resemblance
to the original image.

Additionally, semi-supervised or unsupervised learning augmentation methods, which
can automatically generate label masks (such as generative adversarial networks [27]), offer
greater strength than simple single-sample augmentation. However, considering these
algorithms are typically designed for models with extensive original data volumes and
require high-end computing hardware, they are currently not feasible for the SFSNet.

In conclusion, considering our GPU’s computational capacity and the pixel count
of recent satellite cameras [28,29], the original simulation spacecraft dataset comprised
75 images with a resolution of 1024 × 1024. Among them, 50 images were regarded as the
original image set for data augmentation, 15 were used as the verification set to observe
the model trend, and 10 were applied as the test set to evaluate the final model. Initially, all
images were annotated with ground truth masks. Subsequently, based on the described
augmentation method, the parameters range for the image generator were set as illustrated
in Table 3, and the training set images and their masks were fed into the generator for
random transformation.
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Table 3. Data augmentation parameters.

Augment Type Param Range

Rotation 0 ∼ 180◦

Horizontal Translation 0∼0.5 1

Vertical Translation 0∼0.5
Zoom 0∼0.3 2

Horizontal Flip random boolean
Vertical Flip random boolean
Defocus Blur 0∼10 3

1 The ratio of the translation pixels to the total width/height pixels of the image; 2 Image zoom scale is
[1− param, 1 + param]; 3 The radius of the defocus blur filter, in pixels.

3.2. Experiment Condition and Training Strategy

Before using augmented data to train SFSNet, the weight matrix of the model needs
to be initialized. The Kaiming normal distribution initializer [30] was deployed in the
initialization procession of SFSNet, in order to prevent the data gradient from exploding
or disappearing in the forward propagation process. In addition, at the start of training,
L2-normalization was added in the convolution kernel regularization procession to avoid
overfitting of the network, which is given by Equation (12):

L2 =
1
2
· λ‖ω‖2

2 = λ ∑
j

ω2
j (12)

where ω are the parameters of the weight matrix, λ is the L2-norm parameter, which is a
regularized hyper-parameter that needs to be adjusted according to the training results of
the model.

In terms of the evaluation metrics, pixel accuracy(PA) and mean intersection over
union (mIoU) are the popular metrics used in evaluating the performance of the binary
segmentation model.

PA can be represented by Equation (13).

PA =
∑K

i=0 pii

∑K
i=0 ∑K

i=0 pij
=

TP + TN
TP + TN + FP + FN

(13)

where K represents the foreground classes, and pij is the number of pixels of class i predicted
as belonging to class j. In binary classification problems, they can be simplified as a true
prediction fraction, divided by the total number of pixels. where TP and TN represent the
true positive fraction and the true negative fraction, and FP, FN represent the false positive
fraction and the false negative fraction, respectively.

mIoU is defined as the average IoU over all classes. IoU is defined as the area of
intersection between the predicted segmentation result and the ground truth, divided by
the area of union between the predicted segmentation result and the ground truth:

IoU =
|P⋂G|
|P⋃G| , (14)

where P and G refer to the predicted result and the ground truth. IoU ranges between 0
and 1.

As mentioned in Section 2.3, the spacecraft segmentation is simplified as a binary
segmentation task; thus, mIoU in this paper can be expressed as:

mIoU =
1
2
(IoUP + IoUN) =

1
2
(

TP
TP + FP + FN

+
TN

TN + FN + FP
), (15)

where IoUP and IoUN are the intersection over union of the positive pixels and the negative
pixels, respectively.
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3.3. Segmentation Performance of SFSNet

In this section, the performance of SFSNet is analyzed and discussed under different
experimental parameters and conditions. After SFSNet is initialized and regularized, the
augmented image data is continuously generated by the image generator and brought into
the model for training.

Figure 6 shows the partial spacecraft segmentation performance of the SFSNet. It
can be seen from Table 4 that the loss of SFSNet is as low as 0.062, and the segmentation
accuracy reaches 0.965. These data show that SFSNet can precisely segment the spacecraft
feature under various scales at current resolution, which solves the issue of spacecraft
receptive field variation discussed in Section 1.

Figure 6. Segmentation performance of SFSNet. Image data in the top row are from parts of the test
set, and their corresponding segmentation results are laid out in the bottom row.

Furthermore, SFSNet achieves pixel-level segmentation accuracy and has excellent
robustness. It can precisely extract the correct edge information from the image regions
containing MLI, as shown in Figure 7.

Figure 7. Local details of the segmented image data. SFSNet can accurately extract the edges of the
spacecraft and the docking rings from interference caused by the multilayer insulation material.

In terms of SFSNet training procession, we considered the limitations of the device
in the field experiment. Due to memory size limitations, the training loss and accuracy of
SFSNet under different batchsize condition were compared, as shown in Figure 8.

The results indicated that employing a larger batchsize when training SFSNet led to a
decrease in the final loss of the model, while having a minimal impact on its final accuracy.
Table 4 also shows that the change in batchsize had little influence on the segmentation
performance of SFSNet. The role of batchsize was reflected more in the training process of
the model. Due to the limitations of memory and video memory, the training model with
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batchsize = 4 is selected as the optimal experimental model in this article. The size of the
optimal model is 121.6 Mb.

Figure 8. Training loss and accuracy of the SFSNet under various batchsizes. The abscissa represents
the training steps, and the ordinate represents the relative value of the loss and accuracy, respectively.

Table 4. SFSNet performance for different batchsizes.

Batchsize PA mIoU

2 0.963 0.927
4 0.965 0.930

As mentioned in Section 3.1, image data captured during spacecraft motion can
occasionally exhibit defocus blur due to inherent focus sensitivity constraints. To evaluate
the generalization performance of SFSNet in this context, we employed various degrees of
defocus blur data for testing, as depicted in Figure 9 and Table 5.

In the data augmentation stage, image data with a defocus radius under 10 pixels
are randomly generated by the data generator and brought into the model for training, as
described in Table 3. As indicated from Figure 9a–c and Table 5, although the segmentation
accuracy decreases slightly with increase in the defocus radius, SFSNet can still correctly
segment the target region.

(a) r = 0 (b) r = 5 (c) r = 10 (d) r = 15 (e) r = 40

Figure 9. Segmentation performance of defocus blur image of SFSNet. The defocus radius increases
gradually from left to right.

With further increase in the defocus radius, Figure 9d and the data presented in
Table 5 indicate that several tiny false segmentation areas appeared in the segmentation
images, with the PA and mIoU indicators in this group declining accordingly. However,
these individual NP samples do not influence the subsequent edge-fitting process as
their interference to the expected edge data can be eliminated by the Euclidean distance
parameter of the fitting constraints.

Ultimately, when the defocus radius is too large relative to the resolution, the pixel-
level information of the spacecraft is almost destroyed, as shown in Figure 9e. In this case,
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there is too much missing valid input information of the model, which makes it unable
to generate a complete segmentation region, and the evaluation indexes drop sharply. In
practical experiments, this degree of defocus blur is rarely seen.

Table 5. SFSNet performance under various degrees of defocus blur.

Defocus Radius (px) 0 5 10 15 40

PA 0.965 0.962 0.956 0.944 0.563
mIoU 0.930 0.923 0.912 0.891 0.380

Table 6 shows the SFSNet performances compared to other well-known algorithms. It
can be observed that the segmentation accuracy of the FCN network based on VGGNet
is lower than that of our method. Although the segmentation results of the Deeplab
framework based on ResNet-101 are slightly better than those of SFSNet, its model size
reaches 255.4 Mb, which is more than twice the size of SFSNet. The large computational
model is not conducive to model pruning and optimization in the subsequent migration
process to embedded devices. Therefore, combining segmentation accuracy and model
size, SFSNet has an advantage over these mainstream models.

Table 6. Comparison of segmentation performances of different models.

Method PA mIoU Model Size (Mb)

VGGNet 0.830 0.701 103.1
ResNet-101 0.970 0.942 255.4

ours 0.965 0.930 121.6

In summary, the corresponding segmentation results show that SFSNet has strong
robustness and generalization ability during spacecraft motion.

4. Conclusions

This paper has proposed an end-to-end spacecraft image segmentation model based on
a convolutional neural network, named SFSNet. SFSNet is not only effective for implement-
ing the precise segmentation of a spacecraft in different imaging scales at a cost of small
computation complexity, but it also has strong robustness when processing motion-blurred
images. Specifically, the contributions of SFSNet are as follows:

(1) The segmentation method in this article involves constructing an encoding–decoding
structure by a full convolutional network, which replaces the traditional divide and
conquer segmentation algorithm. This deep learning model effectively addresses the
geometric constraint uncertainty of the spacecraft when it moves within the depth of
the field of view, and no additional prior conditions are required. Moreover, compared
with the divide and conquer algorithm, SFSNet can effectively suppress the severe
influence of the texture of MLI material and segment the spacecraft features with a
small error in the ground test.

(2) A concatenate module is utilized between the encoding and decoding stages of the
backbone. The concatenate module combines feature map layers containing pixel-level
and higher semantic information, enabling SFSNet to learn finer image details, thus
ensuring accurate segmentation accuracy even at high image resolution.

(3) The multi-objective segmentation task (spacecraft outer contour, spacecraft docking
ring, and background) is transformed into a binary segmentation task by leveraging
the characteristics of spacecraft motion in the rendezvous stage. This binary task
focuses on the internal region of the spacecraft’s exterior contour and the external
region of the circular berthing ring, simplifying the loss function and the calculation
process of SFSNet.

In the experiment, data augmentation was used to enhance the dataset by basic rigidity
transformation and defocus blur according to the possible situation of the spacecraft motion
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in the ground test. For the high-resolution images in this paper, the capacity of the dataset
was able to be greatly expanded by the data augmentation without increasing the workload
of manual annotation.

The experimental results show that the proposed method can accurately segment
spacecraft features at different scales under the imaging interference effects of multilayer
insulation material. During training with batch sizes of two and four, the mIoU of SFSNet
reached 0.927 and 0.930, respectively. When training with batchsize = 4, the model exhibited
a slower convergence rate compared to batchsize = 2, while maintaining a slightly lower
loss. Furthermore, SFSNet trained with the proposed dataset demonstrated competence in
segmentation tasks with a defocus radius below 15, achieving a PA of 0.944 and an mIoU
of 0.891.

Finally, we compared the segmentation performance of SFSNet with the current
mainstream methods. The results showed that, although the model size of SFSNet was
slightly larger than that of VGGNet, its segmentation accuracy was much higher than
that of the latter. Compared with ResetNet-101, SFSNet’s segmentation accuracy was
slightly lower, but its model size was only half that of ResetNet-101. These advantages of
simple structure and small memory consumption are more conducive to subsequent model
pruning and optimization when porting to embedded devices. Therefore, SFSNet is more
suitable for ground test applications than the two methods mentioned above.

In future work, we will carry out further research on data expansion and reinforce-
ment learning for specific scenarios to increase the types of spacecraft that can be seg-
mented. In addition, We will also optimize the modular structure of the network in
order to simplify the model parameters and improve the training efficiency without losing
segmentation accuracy.
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