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Abstract: This study investigates the thermophysical and combustion characteristics of ethanol-based
nanofuels incorporating aluminum (Al) and nickel-coated aluminum (Ni-Al). The nanofuels are
prepared with varying concentrations of Al and Ni-Al nanoparticles. The results reveal that, despite
the non-uniform deposition of nickel on Al particles, a sintering reaction occurs between the two
materials. Nanofuels containing Al exhibit unburned Al residues after combustion, while nanofuels
containing Ni-Al show intense AlO radical emission during combustion termination, indicating
enhanced combustion. However, nanofuels containing Ni-Al demonstrate a lower burning rate
compared to Al nanofuels, attributed to the lower thermal conductivity of nickel. Overall, the
findings suggest that nanofuels containing Ni-Al possess higher energy potential but extended
combustion duration.
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1. Introduction

Ever since the inception of the first internal combustion engine, research has been
dedicated to exploring diverse propulsion systems in vehicles, aircraft, and ships that rely
on hydrocarbon-based fuels. Consequently, the aviation sector has witnessed a remarkable
enhancement in the efficiency of propulsion systems over time. Conversely, investigations
into hydrocarbon-based fuels have remained relatively unexplored. However, recent
technological strides in nanomaterial fabrication and measurement have invigorated the
pursuit of studies involving high density energy, high specific impulse fuels that harness
these nano materials.

The definition of nanofuel is a fuel to which nanomaterials are added, suspended in
the form of a colloid within the base fuel. This addition of nanomaterials enhances thermal
conductivity and heating value in comparison to conventional fuels [1]. When nanofuel is
employed within a heat engine in the form of a spray, it possesses the potential to augment
overall efficiency and performance by amplifying the heat release from the fuel. As a
result, numerous researchers have devoted their efforts to the study of nanofuel droplet
combustion. Their focus revolves around several factors, including the base fuel type, the
variety of nanoparticles integrated, and their concentration for optimizing combustion
performance [2–5].

Tyagi et al. [1] aimed to augment the ignition properties of diesel fuel by investigating
the impact of introducing aluminum (Al) and aluminum oxide (Al2O3) nanoparticles.
They executed droplet ignition experiments on a heated hot plate, employing diverse fuel
mixtures characterized by different particle sizes and volume fractions of nanoparticles.
Droplets were deposited onto the hot plate, and the probability of ignition was quantified
based on the number of ignited droplets. The outcomes underscored that fuel mixtures
containing nanoparticles exhibited markedly higher ignition probabilities in contrast to
pure diesel.
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Gan et al. [6] delved into the combustion characteristics of fuel droplets containing
both nano and micron-sized Al particles. Various parameters like particle size, surfac-
tant concentration, and base fluid type were systematically altered. This study revealed
that micron suspensions displayed delayed but more intense micro-explosion behavior,
subsequently leading to extensive particle combustion. Conversely, nanosuspensions en-
countered delayed and incomplete combustion due to the formation of oxide shells on
larger agglomerates. This disparity originated from distinct particle agglomerate structures
that manifested during early stages, influenced by Brownian motion for nanosuspensions
and fluid motion for micron suspensions.

Wang et al. [2] explored the influence of adding cerium oxide (CeO2) nanoparticles
to diesel fuel on the evaporation and micro-explosion characteristics of droplets under
high temperature and pressure conditions. Leveraging high-speed imaging, the study un-
veiled those nanoparticles initiated distinct micro-explosion processes, resulting in an initial
increase in evaporation rates followed by a subsequent decrease due to shell formation.
Micro-explosion delays exhibited a significant reduction with rising nanoparticle concen-
trations. The study introduced two novel parameters, expansion and micro-explosion
intensity, to quantitatively measure these effects. The intensity notably amplified with
escalating nanoparticle content.

Nevertheless, several researchers have reported that many of the Al nano particles
in the nanofuel droplets were unburnt and remained as a residue even after the combus-
tion completed. This phenomenon emerges from the inhibitive effect of the oxide layer
present on Al particles with a high melting point, which impedes ignition characteris-
tics. The failure of ignition during aluminum combustion results in unburnt residue after
droplet combustion [7]. In addition, this leads to a decrease in the heat released from the
droplet combustion which worsens the utilization of aluminum nanofuel. To surmount
this challenge, studies have been carried out to enhance the reactivity of Al particles in the
nanofuel.

Chen et al. [8] coated Al nanoparticles with ammonium perchlorate (AP) at varying
levels, resulting in uniform coatings. These coated nanoparticles were integrated with JP-10
to produce a nanofuel. The testing affirmed that the AP coating substantially enhanced
ignition combustion by boosting Al nanoparticle oxidation and reducing incomplete JP-10
combustion. Nevertheless, the study noted that while combustion intensity and tem-
perature initially ascended with greater AP content, they subsequently declined. This
observation indicates that an excessive amount of AP, with its lower calorific value, is
counterproductive in achieving optimal combustion enhancement.

A study led by Ao et al. [9] investigated a novel nanofluid fuel formulated by blending
kerosene with nano-aluminum (n-Al) particles coated with polydopamine (PDA). The re-
search probed the influence of varying PDA coating durations on combustion stability. The
ignition behavior of n-Al/kerosene droplets exhibited limited sensitivity to the PDA layer.
The n-Al@PDA (2 h)/kerosene demonstrated superior ignition and combustion attributes
when contrasted with uncoated n-Al/kerosene and other PDA-coated nanofluid fuels.

In the solid propellants research, diverse studies were conducted on the ignition behav-
ior of micro-sized Al particles coated with various organic [10,11] or inorganic materials,
such as copper [12], carbon [13], iron [14–16], lithium [17], and nickel [14,18]. Among
these, nickel coating has been recognized for significantly reducing ignition delay time and
ignition temperature through nickel-aluminum intermetallic reactions [18,19].

In this study, n-Al particles underwent nickel coating followed by an examination of
the image and composition of the nickel-coated aluminum (Ni-Al) particles using scanning
electron microscope/energy dispersive spectrometer (SEM/EDS) analysis. Additionally,
the sintering reaction between nickel and Al was scrutinized through thermogravimetric
analysis/differential scanning calorimetry (TGA/DSC) analysis. Two variants of nanofuel
were created: one containing Al and the other containing Ni-Al. Experimental research
on combustion characteristics was carried out using photo multiplier tube (PMT) and
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high-speed imaging measurements. Furthermore, SEM/EDS composition analysis of the
residue post-combustion provided insights into the combustion status of the nanofuel.

2. Experimental Setup

The experimental setup employed in this study is depicted in Figure 1 and comprises
three primary components: the test bed for droplet combustion, the optical measurement
system for quantifying droplet combustion characteristics, and the control unit responsible
for ignition sequencing and synchronized data collection.
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Figure 1. Illustration of experimental apparatus.

2.1. Test Bed

The bed consists of an airborne droplet suspension unit and an electric heater for
initiating droplet ignition. The droplet is securely placed at the tip of a tungsten wire,
which has an approximate diameter of 100 µm. Tungsten was chosen due to its high
melting point, low thermal expansion rate, and strong resistance to corrosion, making it
the ideal material for immobilizing burning droplets. To effectively secure the droplet, a
ceramic glue bead is affixed to the end of the wire.

Prior to the ignition of the nanofuel droplet, the electric heater must reach a temper-
ature suitable for ignition. However, this process entails a certain time delay that often
results in evaporation before the droplet can ignite. In order to minimize droplet evapo-
ration, the electric heater is positioned away from the droplet. Once the heater reaches
the required temperature, a servo motor is engaged to pivot the electric heater toward the
droplet’s ignition point.

2.2. Optical Measurement System

The measurement apparatus consists of a PMT (H10722-20, Hamamatsu Photonics, Japan),
along with a high-speed camera (Fastcam Mini UX100, Photron, Japan). The use of the high-
speed camera is identical to the study conducted by authors [20]. MATLAB post-processing
code is utilized for image analysis to determine droplet diameter, enabling combustion rate
calculation. PMT used for detecting emission of AlO radicals, exhibits robust intensity in the
B2Σ+-X2Σ+ band within the visible spectrum. Previous studies have extensively measured the
most intense emission at 488 nm in relation to Al combustion [21,22]. In this investigation, the
PMT is employed to measure the emission of AlO radicals from the combustion flame of
nanofuel droplets, which is filtered through a bandpass filter. Further elaboration on this
process is found in Section 3.3.
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2.3. Nanofuel Preparation

Ethanol serves as the base for the nanofuel. Its minimal emission of visible light during
combustion facilitates accurate droplet size measurement and has a negligible impact on
the measurement of AlO radicals. Two types of additives were prepared: commercially
available Al powder with a nominal diameter of 100 nm and Ni-Al powder synthesized
through an electroless plating process [23]. Nanoparticles were added to ethanol and
ultrasonically dispersed. The composition of the nanofuel used in this study is detailed in
Table 1.

Table 1. Composition of the nanofuels used in this study.

Base Fuel Metal Powder Concentration (wt.%)

Ethanol - -
Ethanol Al 2.5%
Ethanol Ni-Al 2.5%
Ethanol Al 5%
Ethanol Ni-Al 5%

The electroless plating method is a coating technique that employs chemical reduction,
eliminating the requirement for an electrical power source to deposit metals. This approach
is known for its simplicity, capacity for thickness regulation, capability to achieve uniform
plating, and extensive application across various industries. Its adaptability to objects of
varying sizes and shapes makes it particularly well-suited for coating Al particles. The
chemical process responsible for nickel coating on Al particles can be depicted using the
following equation.

R + H2O → OX + 2H+ + 2e
M2+ + 2e −→ M0 (1)

Initially, when the reducing agent R comes into contact with water, it undergoes
oxidation, leading to the formation of oxide Ox, while simultaneously releasing hydrogen
and electrons. Within this process, the released electrons combine with metal ions M2+ and
effectively reduce them to their elemental state M0. Specifically, in the context of this study,
the metal being reduced to its elemental state is nickel and reducing agents such as sodium
hypophosphite, borohydride compounds, and hydrazine can be employed.

For this study, sodium hypophosphite (NaH2PO2) served as the designated reducing
agent, while nickel sulfate (NiSO4) was employed as the source of nickel ions. Sodium
citrate (Na3C6H5O7) was selected to act as the complexing agent. Additionally, maleic
acid was introduced to fulfill the role of stabilizer, ensuring consistent conditions. The
subsequent coating process spanned a duration of 2 h and was executed while maintaining
the solution’s temperature at approximately 338 K. Throughout this meticulous procedure,
NH4OH was judiciously incorporated as a pH controller, which is crucial for maintaining
the pH level at around 9.0.

3. Results and Discussion

Prior to conducting the droplet combustion experiment, the quality of the coating
was assessed through SEM analysis. Additionally, the thermophysical characteristics of
the Ni-Al powder were determined using TGA/DSC analysis. In the droplet experiment,
the combustion of the nanofuel, and the impact of nickel coating on the combustion of the
aluminum nanofuel, were quantitatively measured. To facilitate comparison, two types of
nanofuels were prepared: pure Al nanofuel and Ni-Al nanofuel containing 2.5 and 5 wt.%.
The initial droplet size was set to 1 ± 0.1 mm. The experiment was replicated at least
five times under identical conditions to ensure result consistency. All experiments were
conducted in an open atmosphere, with a temperature of approximately 293 K.
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It is important to note that the outcomes of droplet combustion exhibited variability
across each case due to the inherent heterogeneity of the nanofuel. The results presented
capture the representative and overall experimental behavior.

3.1. Thermophysical Characteristics of Ni-Al Powder

The SEM images depicted in Figure 2 display a comparison between Al powder and
Ni-Al powder. Notably, an examination of Figure 2b reveals particles that are relatively
brighter and more opaque. EDS analysis outcomes, as presented in Table 2, corroborate
these observations by confirming the presence of deposited nickel particles. Unlike the
conventional approach in micro-sized aluminum coating, where nickel particles uniformly
cover the aluminum surface [24], this study demonstrates a distinct pattern: nickel particles
sparsely adhere to the aluminum particle surfaces, lacking complete encapsulation.
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Figure 2. SEM images of pure (a) and nickel-coated (b) aluminum powder.

Table 2. EDS composition analysis of pure and nickel-coated aluminum powder.

Point O (wt.%) Al (wt.%) Ni (wt.%)

P1 13.49 86.51 -
P2 15.39 69.37 15.24
P3 15.22 53.23 31.55

This departure from uniformity in the deposition of nickel arises due to multiple
influencing factors within the electroless plating process, including the concentration of the
reductant, complexing agent, stabilizer, pH, and temperature. Consequently, the uneven
distribution of nickel coating underscores the inapplicability of parameter values employed
for micro-sized aluminum coating to the coating of nano-sized aluminum. This accentuates
the imperative nature of determining optimal parameter values for the latter.

The thermophysical characteristic analysis through TGA/DSC analysis, as depicted in
Figure 3, confirms the occurrence of the sintering reaction in the case of nano-sized Ni-Al
powder. When investigating the Al sample, the overall thermophysical characteristics
of conventional aluminum powder, encompassing oxide layer growth, phase transitions,
melting, heat flow, and weight increase, become distinctly evident as the temperature
rises [25]. In contrast, Ni-Al exhibits a distinct behavior compared to Al and micro-sized
Ni-Al. Within the range of amorphous oxide layer transition to the γ-phase, the DSC
curve displays a rightward slope, accompanied by points of inflection in the weight curve.
These phenomena emerge when the sample’s temperature temporarily exceeds the furnace-
applied temperature. Based on these results and the strong heat generation reaction that
could not be observed in the DSC results of Al, it seems that sintering reactions occurred in
the Ni-Al powder.
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Figure 3. TGA/DSC analysis of nickel-coated aluminum (bottom) powder compared with pure (top)
aluminum powder.

Moreover, the more pronounced exothermic reaction in comparison to Al provides
further support for these findings. Analyzing the temporal evolution of TGA/DSC results
in Figure 4 reveals an instantaneous temperature surge at the onset of the exothermic
reaction [26,27]. However, unlike combustion, there is minimal weight increase.
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3.2. Combustion Characteristics of Nanofuel

The high-speed camera captures the combustion process of nanofuel droplets, as
illustrated in Figures 5 and 6. Across all experimental scenarios, the emission of particles
resulting from micro-explosions during combustion was observed. Although differences in
nanofuel concentration throughout the combustion process were hard to discern, a distinct
contrast arose during the extinction phase, particularly influenced by the presence of nickel
coating. In the instance of nanofuel containing Al, the combustion of partial residual Al
during extinction was noticeable, propelling it away from the droplet. Conversely, in
nanofuel containing Ni-Al, most of the residual Al combusted intensely and luminously
during extinction.
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Turning to the depiction in Figure 7, acquired through PMT measurements, a clearer
understanding of the nanofuel combustion process emerges. While the high-speed camera
images verified the ejection of illuminated Al particles due to micro-explosions, these oc-
currences were infrequently captured by the PMT results. This implies that the Al particles
emitted by micro-explosions were either dispersed while heated without undergoing full
combustion, or the quantity of combusting Al particles was too small to be effectively mea-
sured by the PMT. Furthermore, mirroring Figures 5 and 6, the termination of combustion
highlights that nanofuel containing Ni-Al emits AlO radicals more intensely compared to
its Al counterpart, as indicated.
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Based on these observations, it is evident that droplets containing Al powder did not
undergo aluminum combustion upon the completion of the combustion process. However,
in contrast, droplets containing Ni-Al powder exhibited combustion of residual particles
during the final phase of combustion. To substantiate this, the composition of combustion
residues adhering to the tungsten wire was scrutinized utilizing SEM/EDS, as illustrated in
Figure 8 and elaborated in Table 3. The data presented in Table 3 reveals a notable increase
in the weight fraction of oxygen atoms for droplets containing Ni-Al. This enhancement
signifies that the particles within the droplets experienced oxidation as a result of the
combustion process.
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Table 3. EDS composition analysis of combustion residue.

Point O (wt.%) Al (wt.%) Ni (wt.%)

P1 11.72 88.28 -
P2 13.60 86.40 -
P3 39.91 45.27 14.82
P4 46.69 43.49 9.82

3.3. Burning Rate of Droplet

Utilizing a high-speed camera, sequential combustion images of the nanofuel droplet
were captured to facilitate the analysis of temporal changes in droplet diameter. Subsequent
post-processing of these images allowed for the determination of ignition and extinction
timings, in addition to the computation of the burning rate. The combustion rate signifies
the quantity of liquid burned within a consistent time frame.

The concepts of droplet ignition, extinction timings, and burning rate are visually
depicted in Figure 9. Temporal progression is represented along the horizontal axis, while
the squared droplet diameter, suitably normalized by the initial squared droplet diame-
ter, is depicted along the vertical axis. This normalization procedure ensures consistent
comparison across all experimental scenarios. The equation governing the calculation of
the effective burning rate, Kb,eff, is explicated as follows, with comprehensive elaboration
available in the prior work of Kim et al. [28].

Kb,e f f =
d2

i − d2
e

tb
(mm2/s) (2)

where Kb,eff represents the burning rate of the droplet, di indicates the diameter at ignition,
de represents the diameter at extinction, and tb denotes the time from ignition to extinction.

The obtained burning rates are graphically depicted in Figure 10. Initially, a direct correla-
tion is observed between the concentration within the droplets and the burning rate, aligning
with precedent research findings [1,29]. However, diverging from the earlier outcomes related
to thermophysical and combustion characteristics, the burning rate of Ni-Al nanofuel is found
to be comparatively slightly lower than that of nanofuel containing Al. It is because the
burning rate of droplets is notably influenced by thermal conductivity. Given aluminum’s
thermal conductivity of approximately 220 W/m·K at 800 K, and nickel’s thermal conductivity
of around 67.4 W/m·K at 800 K, it can be logically deduced that the thermal conductivity of
Ni-Al is inferior to that of Al. However, the variation in burning rates was found to be less
than 10%. This allows us to conclude that nickel-coated nanofuel is a promising candidate for
addressing the challenge of low ignition in aluminum-based nanofuels.
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By deepening our comprehension of energy density and reactivity within nanofuels,
this study has the potential to advance the field. Moving forward, it is imperative for
forthcoming inquiries to tackle critical aspects such as the optimization of nickel coat-
ing uniformity and the evaluation of combustion characteristics across various coating
durations. This development could contribute to the advancement of nanofuel commer-
cialization in the field of aerospace propulsion systems, such as rocket and supersonic
propulsion.

4. Conclusions

This study presents an investigation into the thermophysical and combustion charac-
teristics, alongside the burning rate, of ethanol-based nanofuels containing Al and Ni-Al
components. The findings are summarized as follows:
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1. The investigation into nickel coating on aluminum powder unveiled a non-uniform
surface deposition of nickel, failing to fully encapsulate aluminum particles. How-
ever, SEM/EDS analysis confirmed the occurrence of a sintering reaction between
aluminum and nickel;

2. For nanofuels containing Al, unburned aluminum residues persisted post-combustion.
Conversely, the introduction of Ni-Al nanofuel exhibited a pronounced AlO signal
during the combustion termination phase, with residue analysis corroborating sub-
stantial aluminum combustion;

3. Comparatively, nanofuel containing Ni-Al demonstrated a diminished burning rate in
contrast to its Al counterpart. This phenomenon can be ascribed to the lower thermal
conductivity of nickel in comparison to aluminum, resulting in reduced thermal
conductivity of the Ni-Al nanofuel;

4. Considering the overall results, the outcomes suggest that nanofuels containing Ni-Al
possess elevated energy potential relative to those with Al, albeit with an expected
increase in total combustion duration.
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