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Abstract: The complex unsteady flow in cavities leads to the formation of large-scale disturbances in
the shear layer. Natural closed-loop mechanisms provoke a dramatic increase in pressure pulsations
and aerodynamic noise. This paper presents the experimental study of pressure fluctuations in
closed-loop control in rectangular cavities using plasma dielectric barrier discharge. The flow velocity
was 37 m/s, and the Reynolds number based on a cavity depth was approximately 120,000. The
discharge ignition near the leading edge of the cavity provoked the shear layer restructuring. It was
found that pressure fluctuations with an amplitude of 120 dB occur at frequencies 480 and 820 Hz.
Frequency modulation of the discharge at resonant peaks was carried out by changing the phase shift
of the power supply. The peak amplitude was reduced or increased by phase shifts from natural
disturbances to forced ones. The optimum energy input was 50 W/m. This was three times less
than the power consumption of the open-loop mode. The PIV visualization was organized in the
phase-locked mode. The pressure spectrum corresponds to the magnitude of coherent structures in
the shear layer of the cavity.

Keywords: plasma actuator; DBD; plasma aerodynamics; cavity; active control; boundary layer;
shear layer; closed-loop control

1. Introduction

Cavity separation flow control has a significant impact on various scientific [1], mil-
itary [2,3], gas transport [4], vehicle [5], environmental [6] and other tasks. The natural
feedback present in this flow initiates self-oscillations at a set of frequencies called Rossiter
modes [7]. As one moves, the interaction of coherent vortices present in the shear layer with
the cavity trailing edge leads to the generation of acoustic waves that propagate upstream
in the cavity recirculation region. Excitation of the instability wave at the leading edge by
the acoustic waves closes a natural feedback loop. Active control of the cavity flow is based
on the control of these main stages of tone generation.

The principal model developed by Rossister was improved in [8,9]. Improvements
included accounting for the growing thickness of the shear layer and the finite depth of the
cavity when determining the resonant frequencies. However, these models do not predict
the amplitudes of the resonant modes. The earliest analysis of linear stability was carried
out in [10]. The model also included an integral gain perturbation in the longitudinal
direction. This made it possible to predict the dominant mode (n = 1, 2, or 3) of oscillations.
In [11], the gains from the linear stability of the shear layer were used to predict the
relative intensities of perturbations. These models have provided some guidelines for the
development of active control systems. Modeling of large eddies in [12] demonstrated that
the flow structure of two-dimensional caverns is strictly three-dimensional. The oscillation
frequency can be predicted by the two-dimensional models quite well. On the other
hand, the three-dimensionality needs to be taken into account for the estimation of the
oscillation amplitudes.
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A number of actuator types were used for cavity flow control. The influence of the flow
structure of one cavity on another when they are located in tandem is considered in [13].
The dual-cavity structure is adaptable and effective in reducing losses under all operating
conditions in the study. Among them are stationary [14] and non-stationary jets [15], piezo
valves [16,17], liquid generators [18], synthetic jets [19], and plasma actuators.

Over the past decades, DBD discharges have become widespread in solving scientific
and engineering problems. The high response time and the ability to be used on curved
surfaces allowed this type of actuator to conquer its field. The most important DBD fea-
ture is the ability to sustain a large-volume discharge at atmospheric pressure without
collapsing into a constricted arc. The low generated thrust [20] and efficiency [21] of such
actuators generally limit the introduction of additional impulse into the flow. However,
significant local heat generation made it possible to use DBD actuators in a wide range of
tasks [22,23], including boundary layer flow control [24]. Dielectric barrier discharge was
used to alter the shear layer geometry by introducing longitudinal vortices at low veloci-
ties [25]. Mode excitation was demonstrated by localized plasma filaments subsonic [26]
and supersonic [27] conditions in terms of initiating nonlinear inter-mode interactions in
the resonator.

The purpose of this work is to study the possibility of closed-loop control of a flow
in a shallow cavity flow with a DBD plasma actuator. The real-time closed-loop system
was designed to perform a stationary one-dimensional control of the zero azimuthal
modes. It seemed important to introduce forced perturbations in the boundary layer in
antiphase to natural stochastic perturbations, so that the sum of the amplitudes of both
perturbations vanishes.

2. Materials and Methods

The experimental studies were carried out in the subsonic wind tunnel in JIHT RAS.
The aerodynamic setup is shown in Figure 1a. The maximum flow velocity in the test
section was up to 70 m/s. The test section had a cross section of 0.1 × 0.1 m and a length of
0.8 m, so the cavity width was W = 100 mm. It provided optical access to the cavity and
general control of the experiment. The cavity was formed in the middle of a bump, formed
by two wall inserts. The cavity depth was D = 50 mm, and the length was regulated in
a wide range (L = 0–240 mm) by shifting the trailing part of the bump. A ceramic insert
of 1 mm thickness with aluminum electrodes was installed flush with the streamlined
surface of the leading edge of the cavity. The high-voltage electrode was 85 mm long and
0.05 mm thick. The distance between the electrode and the cavity leading edge was 5 mm.
The ground electrode was installed under the ceramic layer and covered by a dielectric
compound to avoid undesirable breakdown. The experiment was carried out under room
air conditions.
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The oncoming flow velocity was measured using a Pitot tube with static ports on the
side. The tube was mounted in the upper stream side of the test section at two calibers from
the confuser. The pitot tube flow measurements were compared to the flow rate estimation
of the fan power and channel hydrodynamic resistance. In addition, PIV data made it
possible to obtain more accurate measurements using an independent method, as shown in
Figure 1b.

Pressure fluctuations were measured using a miniature pressure sensor, Kulite XT-
140 (M), with a pressure range of 1.7 bar and a self-resonant frequency of 240 KHz. The
diameter of the sensor was 3 mm. The pressure sensor was installed at the trailing cavity
wall 2 mm below the trailing edge. The signal from the sensor was filtered at 50 kHz and
recorded by 12-bit ADC. The isolated power supply, shielded signal cables, and electronics
were used to prevent electromagnetic interference between the DBD and the sensor.

The flow velocity was measured using the PIV LaVision FlowMaster system. The
flow was seeded with ~1 µm oil particles. The dynamic relaxation time was 1–2 µs. The
particles were illuminated by two successive laser pulses. The images were recorded using
a 4 Mpix camera. Image processing was carried out using the cross-correlation method
with a 32 × 32 pix window size and 50% overlap. The resulting resolution of the vector
fields was 0.5 mm in the plane of the laser knife. The resulting velocity field was obtained
by averaging 150 instantaneous frames.

Control feedback was implemented on the LCard E440ADC-DSP-DAC module. Signal
processing in DSP included FIR filtering of the pressure sensor signal. Bandpass filters
with a typical bandwidth of 125 Hz were used. The filter was centered on a desired
Rossiter mode, and then an adjustable delay was introduced with respect to the pressure
sensor readings. For the independent control of pressure pulsation amplitudes at different
frequencies, it was possible to turn on the bins corresponding to their bandwidth. The
output signal was used to modulate the switching frequency at the resonant power supply
of the DBD actuator. Thus, the device had sufficient bandwidth that was capable of
producing a control input at any instant in time consisting of several frequencies, each at
its own amplitude and phase. The actuator had a time response commensurate with the
time scales of the cavity flow dynamics. It also triggered the PIV system, which makes it
possible to carry out a phase-locked measurement of the perturbation development under
resonant conditions, Figure 2. The flow field visualization resolution was 1 mm.
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An AWG-4082 generator was used to form the master pulses. Frequency modulation
of the signal was implemented to control the power actuator. Discharge was operated at
approximate frequency fgen = 127 kHz, and typical voltage amplitude less than 8 kV. The
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flow control in an open loop system was held in [25]. In the current paper, the closed-loop
control was organized (see Appendix A).

The method of volt–coulomb cycloramas was used to measure and control the dis-
charge power. It consists of analyzing the DBD charge transferred cyclic dependency on
the instantaneous value of the electrode voltage [28,29]. The measurement diagram is
shown in Figure 2. The buried electrode was connected to the measuring capacitance Cm
with a nominal value of 1 nF. According to the current continuity equation, the charge
flowing through the discharge cell is equal to the charge of the capacitance Cm. An analog
compensation circuit in the form of a capacitor bridge was used in order to exclude parasitic
capacitive current through the electrode system from measurements. A tunable vacuum
capacitor Cc = 3–50 pF was installed in its upper arm. The capacity of this capacitor was
set equal to the capacity of the electrode system in the absence of a discharge. With this
scheme, the power dissipated in the discharge can be calculated as

P = f ET = f Cm

∮
Uc(t)dU(t) , (1)

f —applied voltage carrier frequency, ET—energy input into the discharge during the
period of supply voltage, and Uc(t)—voltage difference across measuring capacitors Cm.
Uc(t) was measured using a Pintek DP-150 differential voltage probe (5% accuracy, 150 MHz
bandwidth). ET remained virtually unchanged in the frequency range corresponding to the
depth of discharge modulation. The power measuring error was estimated at 10% [30].

3. Results and Discussion

The real flow was highly unsteady and complex, so the mean flow parameters do not
necessarily correspond to the instantaneous values at any instant time. The transition from
one dominant cavity mode to another can be caused by a change in the geometry L/D and
flow velocity. For certain geometries and velocities, the DBD discharge could initiate a
restructuring of the flow regime from one mode to another. However, such modes were
not interesting for consideration and were deliberately avoided in the study. The main
results were obtained with a two-dimensional cavity length of 61.5 mm. The oncoming
flow velocity was 37 m/s. The Reynolds number based on a cavity depth of 50 mm was
approximately 120,000. The average flow field velocity is shown in Figure 3. One can see
the typical flow structure in a rectangular cavity. The walls of the cavity coincide with the
wall of the test section. Thus, the air cannot be drawn continuously into the eddies from the
external stream and escape in a trailing vortex system shed from the cavity. The thickening
of the shear layer increases from a few mm near the leading edge up to 10 mm near the
trailing edge of the cavity. So, the flow separates from the front edge and does not reattach
along the roof of the cavity.

The general spectrum of pressure fluctuations is shown in Figure 4. The natural
resonance oscillations were found at frequencies 480, 820, and 1325 Hz, which corresponded
to the Strouhal numbers 0.57, 1.1, and 1.8, respectively. The latter frequency dominates in
the cavity flow. At first, the closed-loop filter was selectively tuned on all three detected
tones separately. The filter bandwidth was 127 Hz. The influence of the plasma actuator
could reduce the peak amplitude from 120 to 112 dB with a signal phase shift of 4.2 rad
or increase it to 127 dB if the phase shift is 6 rad. The narrow-band resonant peak at a
frequency of 1300 Hz was changed within the measurement error. It should be noted that
the influence of the plasma actuator on resonances picks at 480 and 820 Hz frequencies
occur independently of each other. All four combinations of influence on resonant peaks
were possible: 1. increase of both resonances, 2. decrease of both resonances, 3. increase of
the first resonance and decrease of the second resonance, and 4. reverse case.
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The maximum resonant peak amplitude due to the plasma phase shift is shown in
Figure 5. It can be seen that the experimental points can be approximated by a harmonic
function as follows:

SPLplasma on = A cos(ϕ) + SPLplasma off (2)
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It should be noted that the change in the pressure amplitude in the buildup and sup-
pression modes was the same (~7 dB), including at other velocities and cavity geometries.
Apparently, this is due to additional nonlinear mechanisms that limit the growth and
suppression of perturbations, respectively. A slight change in the phase shift will result in
a slight change in the amplitude of the resonant peak. Thus, based on the operation of a
plasma actuator with feedback, a good quality of control can be ensured.

Additional studies of the maximum pressure amplitude of the resonant peak at a
frequency of 480 Hz were carried out. The phase shift was 4.2 rad and was optimal for
suppressing resonant oscillations at this frequency. During the experiment, the voltage of
the autotransformer changed, as shown in Figure A1. So, the actuator energy input was
controlled. It was found that with an increase in the energy input from 20 to 50 W/m,
the feedback system operates in a quasi-linear mode, and the resonance peak decreases
Figure 6. However, as the voltage at the high-voltage electrode increases, the decrease
in the resonant peak begins to level out. Moreover, at an energy input of 75 W/m, the
plasma does not reduce pressure fluctuations at this frequency, and with further growth,
the resonance peak builds up. Apparently, at an energy input of 75 W/m, the amplitude
of induced pressure pulsations in the boundary layer is twice as high as the amplitude of
natural pulsations in antiphase. Thus, a further increase in the energy input leads to the
fact that the development of perturbations in the wake of the cavity occurs due to forced
oscillations introduced by the plasma actuator.

Visualization of the shear layer flow structure in the cavity is shown in Figure 7. The
vertical component of the flow velocity is highlighted with a discrete scale. The velocity
fields were obtained by averaging 150 instantaneous frames with the same phase delay
relative to the pressure sensor reference signal. The left picture shows the vortex structure
while the discharge is switched off. The vertical velocity is in the range of −3.6 m/s in the
area, which is marked in a circle (blue color). The center picture shows the DBD plasma
actuator operation in disturbance suppression mode. One can see the decries of flow to
−1.9 m/s as the marked aria colors in «ice blue». The major difference can be seen in the
comparison of the suppression mode and the swing mode. The maximum flow velocity
comes to −3.8 m/s, and the color of the picked aria goes to the navy color. The disturbance
wavelength λ can be measured while observing the evolution of the vortex wave motion. It
is 15 mm near the leading edge. As one moves downstream, the disturbance wavelength
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increases rapidly up to 20 mm, so that time average length is 18 mm. As it is known [10],
during any particular mode of oscillation, the wavelength of the disturbances bears nearly
a constant relationship to the width L of the cavity. The spacing of the periodic vortices,
which are shed from the downstream corner at the frequency of cavity oscillations, further
confirms such an integral relationship between L and λ. The present result suggests
the following:

L = λ (N + 0.5), (3)

where N is an integer. Thus, the N + 1 (second) mode is shown. One can see the flow field
while the actuator is switched off; the actuator operates in the suppressing mode, and when
the actuator operates in the excitation mode. It is clearly seen that the main flow structure
changes lie in the region of the shear layer. The high-velocity region flow structure outside
the cavity and the flow structure inside the cavity changed insignificantly.
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Figure 7. Comparison of flow field patterns without discharge and with phase delays for buildup
and suppression of disturbances. (a) discharge is off, (b) discharge is on ϕ = 240, suppression mode,
and (c) discharge is on ϕ = 340, swing mode.

The average vertical velocity component in the shear layer is shown in Figure 8a.
It can be seen that as the fluid moves downstream, the velocity amplitude increases 1.3,
1.6, and 1.7 times with each period for the suppression, unperturbed, and buildup modes,
respectively. The evolution of the velocity amplitude in the shear layer is shown in Figure 8b.
It can be approximated linearly. However, the rate of increase in the amplitude for all
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three presented cases is different and, accordingly, 1.3 times higher in the excitation mode
compared to the suppression one. It can also be seen that the amplitude pulsation does not
saturate and apparently continues to grow in a certain area downstream of the trailing edge.
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4. Conclusions

The DBD actuator near the leading edge of the cavity was studied at a flow velocity
of 37 m/s, which corresponded to the Reynolds number based on a cavity depth of
approximately 120,000. The closed-loop flow control by means of a pressure sensor signal
was carried out. It was possible to influence the natural feedback circuit and reduce pressure
fluctuations in the cavity. The discharge was ignited in antiphase to natural perturbations.
The selection of the amplitude coefficient suppressed the initial disturbances near the
leading edge of the cavity by 8 dB. The vortex evolution visualization showed that the
growth rate was changed at the discharge ignition. It should be noted that in the antiphase
mode, there is an optimal amplitude coefficient of forced disturbances. A further increase in
the amplitude coefficient only leads to an increase in the pressure fluctuation in the cavity.

The discharge ignition in phase mode revolved around the influence. The buildup
mode was observed. The pressure pulsations resonance pick amplitude was increased by
7 dB. However, the maximum resonance pressure amplitude is limited by other non-linear
mechanisms that prevent the growth of the resonant pressure peak. These mechanisms
need further research. The closed-loop cavity flow control seems to be promising firstly in
order to optimize energy input.

The impact amplitude spectrum analysis shows that more than 70% of disturbances
fall on pressure fluctuations in the range from 0.2 to 0.6 of the maximum amplitude.
Perturbations less than 0.2 and more than 0.6 of the maximum amplitude account for equal
shares of 15%. Operating the actuator at a significantly lower “average” voltage leads
to a significant reduction in power consumption from 130 W/m in an open-loop regime
to 50 W/m in a closed-loop regime. This reduces the heating of structural elements and
increases the reliability of the system since the discharge does not work all the time near
pre-breakdown voltages for ceramics and structural components.
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Appendix A

An AWG-4082 generator was used to form the master pulses. The main discharge
frequency fgen = 127 kHz was set higher than the resonant frequency fres = 122 kHz
Figure A1. The frequency discharge modulation was tuned to the natural frequency of
cavity pressure oscillations. In the first stage, the flow control was carried out in an open
loop system. The internal AWG-4082 generator sinusoidal signal with a fixed voltage
amplitude UCL_off = 5 V was used as a signal of the shift modulation frequency. In this case,
the carrier frequency shift was dfcar = 5 kHz, so that

fcar = fgen − dfcar = fres (A1)

The voltage amplitude Um was correspondingly constant and reached up to 8 kV.
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Figure A1. Dependence of the discharge voltage on the carrier frequency. The input voltage on the
amplifier was set by a variable autotransformer.

In the second stage of the study, the case of the closed-loop mode was realized. The
sinusoidal signal of the generator was replaced by a control signal. The carrier frequency
shift dfcar now was proportional to the amplitude of the pressure sensor signal at the
resonant frequency. If the pressure sensor amplitude was 80% of the maximum, the
modulation signal voltage corresponded to 3 V, and the discharge voltage was 8 kV. Thus,
the DBD discharge was mostly ignited in the generator linear mode. This area is circled
by a purple rectangle. Figure A2 shows the amplitude distribution of pressure pulsation
pulses in the shear layer of the cavity at three different frequencies of resonant peaks, and
99% of the perturbations corresponding to the linear mode of the generator, as well as 1%

https://drive.google.com/file/d/1fj7bb4-j1HzLQh8uKB6Kez3WAoOVp8SV/view?usp=sharing
https://drive.google.com/file/d/1fj7bb4-j1HzLQh8uKB6Kez3WAoOVp8SV/view?usp=sharing
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of rare perturbations, corresponding to the nonlinear mode, lead to conditionally incorrect
operation of the system. The influence of such perturbations was considered insignificant.
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