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Abstract: This work introduces the instrument design of the medium-energy proton detector (MEPD,
detection range: 30 keV–5 MeV) mounted on the Chinese Fengyun-4B (FY-4B) satellite. Compared
to a similar detector on the Fengyun-3E (FY-3E) satellite, this instrument has undergone significant
changes due to the different orbital radiation environment and solar lighting conditions. Based on
the calculation of the radiation model AP8, the geometrical factor is reduced to 0.002 cm2sr, while
that of the MEPD on the FY-3E satellite is 0.005 cm2sr. Another difference is that the sensors in
some directions are exposed to direct sunlight for 80 min every day on this orbit, depending on the
attitude angle of the satellite, which is much worse than that on the FY-3E satellite. According to
the calculation results of transmittance of photons through different materials, a 100 nm thickness
nickel film is added in front of the sensors to eliminate light pollution completely. The test using
a solar simulator shows that the measure is effective and the detector has no error count when
the solar irradiance coefficient is 1.0. In addition, the Geant4 software is applied to simulate the
particle transportation process under complete machine condition to check the contamination of
electrons in the sensors in all directions after magnetic deflection. The data obtained in orbit show
that the instrument works properly, and the data are in good agreement with the AP8 model. The
observations of the MEPD on board the FY-4B satellite can provide important support for the safety
of spacecraft and theoretical research related to space weather.

Keywords: medium-energy proton; space environment; light pollution; magnetic deflection; Geant4

1. Introduction

Located at the geostationary orbit, the Fengyun-4 series of satellites is the second
generation of meteorological satellite of China. The observation data from FY-4 are real-
time and continuous, so it is an ideal platform for space environment monitoring and alarm
service, including numerical weather prediction, disaster weather warning, ecological
environment monitoring, communication and navigation safety, and other fields. Launched
on 3 June 2021, the FY-4B satellite is the first operational satellite of this series, on which
many payloads in the space environment monitoring instrument package are newly added
or optimized compared to the FY-4A satellite, such as medium-energy proton detectors
(MEPDs), medium-energy electron detectors (MEEDs), high-energy particle detectors
(HEPDs), plasma analyzer, fluxgate magnetometer and radiation dosimeter. Together with
the FY-4A satellite, the double-star network [1] will further meet the service needs of China
and countries and regions along the Belt and Road [2] for meteorological monitoring and
forecasting, as well as emergency disaster prevention and mitigation. Figure 1 shows all
the detectors in the space environment instrument package.
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Figure 1. Detectors onboard FY-4B satellite.

The FY-4B satellite is located in a stationary orbit over the equator at 133◦ east lon-
gitude, with an orbital altitude of 36,000 km. This orbit lies at the edge of the outer
radiation belt and it has a strong electron radiation background (Figure 2), which disturbs
frequently [3]. The particle sources in this orbit include radiation belt particles, solar
energetic charged particles and galactic cosmic ray particles [4–6].
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Figure 2. Space environment on FY-4 satellite orbit.

Joint observation of medium- and high-energy particles on this orbit can realize seam-
less and precise measurement of the full spectrum with a high resolution so as to monitor
the transport and distribution of particles, which is extremely meaningful for studying
the energy transport from the magnetotail to the Earth and global radiation environment
modeling [7]. The MEPD on FY-4B satellite is equipped with two components, detector A
and detector B, both of which are installed on the top panel of the satellite. The field of view
(FOV) of each detector is a 180◦ × 20◦ sector (composed of nine 20◦ × 20◦ FOVs), which is
parallel to the equatorial plane for detector A and parallel to the meridian plane for detector
B. Figure 3 shows the overall layout of the satellite (left) and the partial enlarged view of
the installation diagram of the two detectors (right).

This article is organized as follows: Section 2 introduces the mission requirements,
mainly scientific indicators of the MEPD. Section 3 briefly describes the detector design
as a whole and focuses on the geometrical factor design and light-blocking layer design.
Section 4 discusses the calibration and the testing results on the ground. Section 5 provides
some results of in-orbit detection during the initial launch phase to verify the performance
of the instrument.

The ground calibration results indicate that these two detectors exhibit excellent
performance, and the design of the detector meets the requirements of detection tasks.
Preliminary on-orbit observations show that the proton spectra measured are in good
agreement with the results obtained from the radiation belt model AP8.
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Figure 3. The MEPD installation on FY-4B satellite.

2. Mission Requirements

The task of the MEPD on the FY-4B satellite is to achieve a wide energy spectrum
detection of 30 keV–1 MeV particles in 18 directions, including 9 directions divided along
the meridian plane and another 9 directions divided along the equatorial plane, and to
divide them into 12 energy channels in each direction. The actual measurement range is
consistent with the detector on the FY-3E satellite [8,9], which is 30 keV–5 MeV. Detailed
scientific indicators are shown in Table 1.

Table 1. Scientific indicators of MEPD.

No. Parameter MEPD on FY-4B Remarks

1 Energy range

30 keV–5 MeV
12 channels:

Low energy section:
P1: 30 keV–48 keV;
P2: 48 keV–80 keV;

P3: 80 keV–120 keV;
P4: 120 keV–170 keV;
P5: 170 keV–240 keV;
P6: 240 keV–350 keV.
High energy section:
P7: 240 keV–350 keV;
P8: 350 keV–500 keV;
P9: 500 keV–800 keV;

P10: 800 keV–1500 keV;
P11: 1500 keV–3000 keV;
P12: 3000 keV–5000 keV.

Channel P6 and channel P7 are
overlapping in order to verify
the long-term consistency of

the two energy sections

2 Detection directions
and field of view

18
(20◦ × 20◦ for each direction)

Detector A: directions 1–9
Detector B: directions 10–18

3. Instrument Design
3.1. System Composition

Similar to the MEPD on the FY-3E satellite, this instrument consists of two parts, and
the connection relationship is shown in Figure 4, in which detector A includes a digital
circuit for data acquisition and data processing besides the three measurement units and
their matching front-end circuit, and detector B only includes three measurement units and
their matching front-end circuit. The data packet including data of the two detectors is
transmitted to an RTU (Remote Terminal Unit, responsible for communication between
detectors and satellite platform) via the communication interface of detector A.
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Figure 4. Connection diagram of the MEPD.

Each component is composed of three measurement units, and each measurement unit
has three groups of sensors organized in a fan-shaped arrangement. The internal structure
of a measurement unit is shown in Figure 5. Each measurement unit has three groups of
sensors (two sensors in each group, namely D1 and D2), and the field of view of each group
of sensors is 20◦ × 20◦, so the field of view of each measurement unit is 20◦ × 60◦.
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3.2. Electronic Design

Two sensors form a group, which realizes the proton detection of one direction, and
each sensor is connected to an independent front-end signal processing circuit. Thus, the
whole instrument has a total of 36 front-end electronics circuits, which include pre-amplifier
circuits, main amplifier circuits and peak-holding circuits. Besides the front-end circuits,
the electronic system also includes AD (analog-to-digital) acquisition circuits, FPGA data
processing module, communication circuits and a power module. The working principle
block diagram of detector A is shown in Figure 6.

An FPGA (Field-Programmable Gate Array) device AX1000-1CQ352M is used to
realize logical control. In the software design, five function modules are included: reset
module, science data and engineering parameter acquisition module, data processing
module, 422 bus receiving module and 422 bus sending module [10,11]. Figure 7 shows the
relationship of the function modules, in which the CSCI is the abbreviation of the computer
software configuration item.



Aerospace 2023, 10, 889 5 of 18

Aerospace 2023, 10, x FOR PEER REVIEW 7 of 27 
 

 

 

 

Figure 6. Schematic diagram of detector A. 

An FPGA (Field-Programmable Gate Array) device AX1000-1CQ352M is used to re-

alize logical control. In the software design, five function modules are included: reset 

module, science data and engineering parameter acquisition module, data processing 

module, 422 bus receiving module and 422 bus sending module [10,11]. Figure 7 shows 

the relationship of the function modules, in which the CSCI is the abbreviation of the com-

puter software configuration item. 

  

Figure 6. Schematic diagram of detector A.

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 27 
 

 

 

 

Figure 7. FPGA modules and their function relationship. 

The software workflow is as follows: 422 bus receives the data acquisition command, 

which marks the beginning of a 1 s cycle, then the six analog-to-digital converters 

(ADC128S, eight channels in each device) start to work in a trigger mode under the time-

sharing strategy (Figure 8), which means that 18 sensor signals from detector A are ac-

quired in the first 0.45 s and 18 sensor signals of detector B are acquired in another 0.45 s, 

so time factor should be considered when normalizing the data. After that, in the follow-

ing 0.1 s, the engineering parameters, such as sensor noise monitoring signals and power 

supply voltages’ monitoring signals of 5 V and ±12 V, are collected and stored into an 

SRAM. Then, the FPGA waits for the “data sending” command and clears the SRAM after 

sending the data. Every two ADs are responsible for a measurement unit (three direc-

tions), and the priority for each direction depends on the sequence of the incoming trigger 

signals. 

  

Figure 7. FPGA modules and their function relationship.

The software workflow is as follows: 422 bus receives the data acquisition command,
which marks the beginning of a 1 s cycle, then the six analog-to-digital converters (ADC128S,
eight channels in each device) start to work in a trigger mode under the time-sharing
strategy (Figure 8), which means that 18 sensor signals from detector A are acquired in
the first 0.45 s and 18 sensor signals of detector B are acquired in another 0.45 s, so time
factor should be considered when normalizing the data. After that, in the following 0.1 s,
the engineering parameters, such as sensor noise monitoring signals and power supply
voltages’ monitoring signals of 5 V and ±12 V, are collected and stored into an SRAM. Then,
the FPGA waits for the “data sending” command and clears the SRAM after sending the
data. Every two ADs are responsible for a measurement unit (three directions), and the
priority for each direction depends on the sequence of the incoming trigger signals.
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3.3. Sensor System
3.3.1. Light-Blocking Layer

The commonly used light-blocking layer is not applicable here because it can greatly
reduce the energy of incoming protons, especially when the energy of incident protons
is low; thus, the MEPD on the FY-3E satellite uses a layer of aluminum coating with a
thickness of 100 nm on the surface of the sensor to shield from the interference of visible
light. When sunlight does not directly enter the sensors (like the MEPD on the FY-3E
satellite, on which the two detectors are installed in the −X direction and +Y direction,
respectively. Note that in the satellite coordinate system, “+X” points to the heading
direction of the satellite, “+Z” points to the center of Earth, and “+Y” is determined by
the right-hand rule), the thickness of the aluminum plate is enough to prevent stray light
from entering the sensors, and the influence of sunlight on the detection results can be
ignored. But in the FY-4 orbit, according to the satellite trajectory simulation, sensors in
certain directions are exposed to direct sunlight for 80 min every day. A scenario of the
sensors being illuminated by sunlight is shown in Figure 9, in which the red arrow points
to the forward direction of the FY-4B satellite and the green arrow points to the Sun. As
the satellite moves in orbit, there must be a sensor’s field of view sweeping over the Sun.
Figure 10 shows that on the FY-3E satellite, neither detector of the MEPD has a chance to be
exposed to sunlight directly. Both arrows point from Earth to the Sun in Figure 10.
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Figure 9. Simulation of the exposure of MEPD sensors to the Sun on the FY-4B orbit.

From the simulation, it can be seen that the time of the sensors being exposed to direct
sunlight is not negligible. According to the experimental results of a detector on a solar
simulator in a vacuum tank, there is interference counting output in channel P1 and channel
P2, and this may be caused by uneven coating thickness of the super thin aluminum film.
The lighting interference counting greatly affects the use of scientific data on the one hand,
and on the other hand, lighting will reduce the lifespan of the sensors, so extra measures
must be taken to shield them from sunlight.
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Compared to other materials, nickel film has superior shading performance. Figure 11
shows a comparison of the light-blocking ability of four materials: Al, Au, Cu and Ni (the
data were obtained from https://refractiveindex.info/ (accessed on 8 March 2020). As can
be seen from the figure, when the wavelength of light is less than 100 nm, Cu and Ni have
a lower light penetration rate, and at a wavelength greater than 100 nm, Al and Ni perform
better. Considering the blocking effect of these materials on protons, nickel is the best light
barrier material, so besides the aluminum coating, another 100 nm nickel film light barrier
is added in front of the sensors in each direction.
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Figure 11. Comparison of photon transmittance of four 100 nm metal films.

After adding the nickel film in front of the sensors, a lighting test of the MEPD was
carried out under the illumination of the solar simulator, which is provided by Beijing
Institute of Spacecraft Environment Engineering. Adjusting the angle between the parallel
light beam and the normal direction of the sensor sensitive surface to 0◦, 30◦, 60◦ and 90◦,
there is no counting output in all the energy channels of the detector. Figure 12 shows the
lighting test scenario of the MEPD.

However, using the 100 nm thickness nickel film in front of the sensors to block
sunlight reduces the detection efficiency greatly, especially for channel P1 and channel P2.
Figure 13 shows the transmittance of protons with or without the addition of another 100
nm nickel film.

https://refractiveindex.info/
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Figure 13. Transmittance of protons with (black line) or without (red line) the addition of the 100 nm
nickel film.

As shown in Figure 13, when a 100 nm nickel film is added, the detection efficiency
significantly decreases in channel P1 and channel P2, so it is necessary to make corrections
when using data of these two channels.

3.3.2. Proton Transportation Simulation

Similar to the MEPD on the FY-3E satellite, ion-implantation-type semiconductor
sensors are used in the detectors. The sensors are 300 um thick and the sensitive area
is 8 mm × 8 mm, with a 100 nm thickness aluminum coating. In each direction, sensor
D1 is used as a pulse amplitude analyzer for energy division, and D2 is used as an anti-
coincidence detector to exclude the interference of high-energy protons and high-energy
electrons. Due to the wide dynamic range, the output signal of D1 is amplified in two
stages to output to the energy channels P1-P6 and P7-P12, respectively.

In front of the sensors in each direction, there are a 100 nm thick nickel film and
100 nm thick aluminum coating. Using the Geant4 software [12–14], Figure 14 presents
the simulation results of the energy deposit of 30 keV protons in the silicon sensors after
passing through the above-mentioned materials.

We can see that with these light-blocking materials, the mean energy left for 30 keV
protons is only about 7.8 keV, almost half of the deposited energy when a 30 keV proton is
incident on the MEPD sensor of the FY-3E satellite, which is 14.2 keV.
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3.3.3. Deflecting Magnet

The function of a deflecting magnet is to exclude the interference of medium- and
low-energy electrons [15]. For medium-energy protons and electrons of the same energy,
their energy loss in the silicon semiconductor sensor is almost the same, and they cannot
be identified by the circuit. Therefore, a deflecting magnet is used inside the collimator
to deflect these electrons so that they cannot come into the silicon sensor. The deflecting
magnet used here is a permanent annular magnet structure, which can exclude electronic
interference below 1.5 MeV. Due to the elastic scattering of electrons, deflected electrons may
enter the sensors in other directions, causing interference with the measurements in other
directions. The Geant4 software was used to establish a model of the entire machine and
simulate the trajectory of electrons to obtain the proportion of deflected electrons entering
the sensors from other directions. The simulation results show that the interference ratio is
far less than 1% within the full energy range; thus, the influence of deflected electrons on
other sensors can be ignored. The deflection scenario of 1.5 MeV electrons passing through
the magnetic field is shown in Figure 15, in which the red lines represent the trajectory
of electron and the green lines represent the trajectory of photons generated by electron
bremsstrahlung.
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Figure 15. Deflection scenario of 1.5 MeV electrons passing through the magnetic field.

Electrons with higher energy (>1.5 MeV) still have a certain probability to enter the
detector after being deflected by the magnetic field. The interference ratio of electrons to
medium-energy protons can be effectively reduced to be within 2% by the anti-coincidence
sensor. This is why two sensors are used in each direction.
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3.4. Geometrical Factor

The geometrical factor is decided by the structure of the sensor system. The field
of view (FOV), which mainly depends on the collimator, is a key factor to determine
the geometrical factor. A good collimator can provide shielding conditions to prevent the
interference of particles being obliquely incident from the side to a sensor [16,17]. According
to the radiation model AP8-MAX, the omni-directional integrated flux of protons above
100 keV is up to 2 × 106 cm−2s−1 (equals to 1.6 × 105 cm−2 sr−1s−1) in the FY-4B satellite
orbit, as shown in Figure 16. At present, there is no available model or measured data
for reference for medium-energy protons with energy lower than 100 keV. Extrapolation
was carried out according to the model, and within a certain margin, the integral proton
flux greater than 30 keV is approximately 107 cm−2 sr−1s−1. Since the maximum suitable
counting rate of the electronics is 5 × 104/s, the geometrical factor can theoretically be set
to 0.005 cm2sr at most. Considering the counting error of electronics at high counting rates,
we set the geometrical factor to 0.002 cm2sr in order to ensure that these electronics have
an appropriate counting rate.

Aerospace 2023, 10, x FOR PEER REVIEW 17 of 27 
 

 

 

 

Figure 16. The integral/differential proton flux on the FY-4 orbit calculated by the AP8 model. 

4. Ground Calibration 

4.1. Calibration Method 

The calibration method is the same as that of similar particle detectors [18–22]. The 

calibration items include the energy spectral range, energy linearity, energy resolution, 

particle flux accuracy and a test of sensor thickness, size, field of view and particle identi-

fication capability. A detailed introduction of the calibration method and test contents can 

be found in ref. [9]. The calibration was carried out on the 200 keV and 2 MeV accelerators 

of the “Space Payload Test and Calibration Platform” in Huairou District, Beijing, China. 

The block diagram and calibration scenario of the calibration testing system are shown in 

Figures 17 and 18. The main calibration results are given here in this article. 

  

Figure 16. The integral/differential proton flux on the FY-4 orbit calculated by the AP8 model.

4. Ground Calibration
4.1. Calibration Method

The calibration method is the same as that of similar particle detectors [18–22]. The
calibration items include the energy spectral range, energy linearity, energy resolution,
particle flux accuracy and a test of sensor thickness, size, field of view and particle identifi-
cation capability. A detailed introduction of the calibration method and test contents can
be found in ref. [9]. The calibration was carried out on the 200 keV and 2 MeV accelerators
of the “Space Payload Test and Calibration Platform” in Huairou District, Beijing, China.
The block diagram and calibration scenario of the calibration testing system are shown in
Figures 17 and 18. The main calibration results are given here in this article.
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4.2. Calibration Results

Since the calibration results of the 18 directions of the MEPD are highly consistent
in terms of the energy spectral range, linearity and energy resolution, the ground testing
results of the MEPD in direction one are given here to verify its performance.

4.2.1. Energy Linearity and Energy Resolution

The energy linearity is obtained according to the following steps. Firstly, an electron
beam with determined energy Ei for incident electrons is selected, and the energy deposition
spectrum of electrons in the silicon sensor is recorded via a multi-channel system. Then,
using the multi-channel measurement results, Gaussian fitting is adopted to obtain the
center value λi. Meanwhile, through Geant4 simulation, the energy loss (∆Ei) of incident
electrons with the energy of Ei is obtained. After that, a series of ∆Ei and λi results (n points,
n > 5) is used for linear fitting based on the formula y = kx + b. Finally, energy linearity χ
for each direction can be calculated as follows:

χ =
1
n∑i=n

i=1

∣∣∣∣∆Ei − yi
∆Ei

∣∣∣∣ (1)

Energy resolution refers to the energy broadening measured by the detector for parti-
cles with fixed energy, and it is equal to the ratio of the full width at half maximum (FHWM)
to the center value, as shown in Equation (2):

η =
∆λ

λ0 × 100% (2)

In Equation (2), λ0 is the abscissa of the Gaussian peak position and ∆λ is the FHWM
of the Gaussian fitting curve.
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Part of the Gaussian fitting results of the measured data of the low-energy sections
(30 keV, 190 keV, 337 keV) in the multi-channel analysis mode in direction one is shown
in Figure 19, where the ordinates of the black points are the multi-channel counting data
corresponding to the fixed incident electron energy, the abscissa is the channel number, and
the blue curve is the fitting result.
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Figure 19. The Gaussian fitting results of the accelerator test data.

The linear fitting results for the energy bands with incident particle energy <350 keV
and energy bands with energy >350 keV are shown in Figure 20, respectively. The linear
fitting formula for the low-energy section (high gain) is y = 0.5827x + 16.07 and for the
high-energy section (low gain) is y = 6.651x + 81.86, where x is the channel position and y
is the energy loss in keV. Table 2 lists the calibration results of energy resolution and energy
linearity in all directions.
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Table 2. Calibration results of energy resolution and energy linearity.

Detector Direction Energy Linearity Energy Resolution

A

1 1.69% 4.55% (@280 keV)

2 1.57% 4.62% (@280 keV)

3 1.54% 4.27% (@280 keV)

4 2.43% 4.19% (@280 keV)

5 3.57% 8.16% (@280 keV)

6 2.19% 5.08% (@280 keV)

7 1.67% 4.11% (@280 keV)

8 3.94% 7.42% (@280 keV)

9 1.74% 4.2% (@280 keV)
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Table 2. Cont.

Detector Direction Energy Linearity Energy Resolution

B

10 1.10% 4.86% (@280 keV)

11 0.79% 6.50% (@280 keV)

12 1.11% 6.27% (@280 keV)

13 2.78% 10.56% (@280 keV)

14 1.84% 6.44% (@280 keV)

15 0.94% 6.72% (@280 keV)

16 1.20% 5.98% (@280 keV)

17 0.40% 4.77% (@280 keV)

18 0.76% 4.86% (@280 keV)

4.2.2. Energy Channel Division

The actual demarcation points of the energy channels are determined by the count
change between two adjacent energy channels. By normalizing the counts of two energy
channels to obtain the proportion of counts in each energy channel, the central intersection
point can be found according to the changing trend of the counting ratio. The actual
obtained boundary values are shown in Table 3. The error range of energy channel division
is calculated based on Equation (3):

δ = |Ca − Cd|/Cd. (3)

Table 3. Energy demarcation points and error range.

Energy
Channel

Designed Boundary
(keV)

Actual Boundary
(keV) Error Range (%)

P1 30–48 48.2 0.42%

P2 48–80 48.2–79.9 0.42%/0.12%

P3 80–120 79.9–120.9 0.21%/0.75%

P4 120–170 120.9–171.8 0.75%/1.06%

P5 170–240 171.8–243.6 1.06%/1.50%

P6 240–350 243.6–355.8 1.50%/1.66%

P7 240–350 244.2–356.3 1.75%/1.80%

P8 350–500 356.3–502.3 1.80%/0.46%

P9 500–800 502.3–790.7 0.46%/1.16%

P10 800–1500 790.7–1495.8 1.16%/0.28%

P11 1500–3000 1495.8–2997.5 0.28%/0.08%

P12 3000–5000 2997.5–4996.3 0.08%/0.03%

In the formula, Ca is the actual energy boundary position, Cd is the designed energy
boundary position, and δ is the error range.

According to the results of energy channel division in Table 3, we set the threshold
voltage corresponding to the actual energy boundary in the software. Then, we removed
the deflecting magnet of measurement unit 1 and selected electrons at the energy demarca-
tion points on the accelerator to test the detector (no medium-energy proton accelerators
available for detector calibration during the development phase). The response of each
energy channel of the detector accords with the design, especially the energy channels P6
and P7, which almost completely overlap (see Table 1), as shown in Figure 21. This test
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verified the detector’s energy response performance. In Figure 21, the curve of each color
represents the response of certain energy particles in all energy channels.
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4.2.3. Flux Calibration

Flux calibration was used to correct the in-orbit counting rate measurement results and
verify the instrument response under high flux conditions. Figure 22 shows the composition
of the flux error.
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According to the system error transfer function,

σ2
y = ∑i

(
∂y
∂x

)2
σ2

xi (4)

The total flux error is calculated as follows:

σ2
F = σ2

s + σ2
E + σ2

G (5)

where σF is the flux error, σs is the sensor response error, σE is the electronic counting error,
and σG is the geometrical factor error.

The calculation method of the geometrical factor can be found in reference [16]. Be-
cause this process is a calculation method based on random numbers, there will inevitably
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be computational errors. The specific calculation method is to obtain a series of geometrical
factor values Gi through multiple identical calculations and calculate the average to obtain
the final geometrical factor. The variance in the geometrical factor sample is the accuracy of
the geometrical factor. Due to the use of large-sample sampling simulation, the simulation
shows that the calculation accuracy of the geometrical factor is better than 3%.

The detector counting error consists of the sensor response error and electronic count-
ing error, based on which the counting error can be calculated according to formula 4. The
electronic counting error mainly depends on the time required for the detector to process a
single particle. The time resolution of the detector is 6µs. When the time interval between
incident particles is less than 6µs, the detector will not be able to distinguish between two
particle signals, which will result in count loss. The relationship between the number of
incident particles and the output count is simulated, as shown in Figure 23.
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By fitting the simulation results, the relationship between the output counts and the
number of incident particles can be obtained as follows:

y = −2.17 × 10−6x2 + 0.9644x + 380 (6)

in which x is the incident particle number and y is the fitting result of the average out-
put counts.

The true value of the incident particle number can be obtained by inferring from the
fitted curve, with a maximum electronic counting error of 1.57%.

When calculating the sensor response error, we used 207Bi radiation source to irradiate
the sensor multiple times and recorded the total count ni per unit time. The counting
response error of the sensors is obtained by calculating the standard deviation:

σs =

√√√√ 1
n − 1

n

∑
i=1

(ni − n)
2

(7)

The sensor response error is 4.8% in this case.
According to Formula (4), the total flux error of the MEPD is 9.37%.
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5. Observation Results in Orbit

After the launch of the FY-4B satellite in June 2021, the first-hand data obtained show
that the distribution of medium-energy protons is consistent with the AP8 model [23].
Electron mixing and light pollution have been well suppressed.

Figure 24 shows the proton flux observation results for each channel in direction 5.
As shown in the figure, the flux of each energy channel in this direction shows temporal
changes at different time scales, indicating that the detector can continuously observe
the flux of energetic protons in space, and fully realize the function of medium-energy
proton detection.
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Figure 24. Observations of medium-energy proton flux in direction 5.

Combined with the results of high-energy proton detection by the satellite, data of
protons with a wide energy spectrum spanning 4 orders of magnitude (30 keV~300 MeV)
were obtained for the first time in China (shown in Figure 25 left).
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are consistent in order of magnitude. 
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This paper discusses the design and development of the electronic system and sensor 

system of the MEPD on the FY-4B satellite in detail. Compared to the MEPD on the FY-3E 

satellite, the ability to eliminate light pollution is further improved by using a 100 nm 

nickel film. The experiment under the lighting of a solar simulator shows that all proton 

channels are not contaminated by photons. The geometrical factor is redesigned according 

to the characteristics of the orbital radiation environment. The data obtained in orbit show 

that this instrument works properly and the data are in good agreement with the results 

calculated using the AP8 model. 
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Figure 25. Observational results of medium-to-high-energy protons (30 keV–300 MeV) on FY-4B
satellite (left) and calculation result of medium-energy protons (100 keV–2 MeV) using AP8MAX
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As a comparison, we normalized the differential data in Figure 16 (noting that the
differential data in the figure needs to be divided by 4π for normalization) and redrew the
data on the right part of Figure 25. It can be seen that there are delicate differences between
the differential flux obtained from actual observations and the AP8 model results, but they
are consistent in order of magnitude.

6. Conclusions

This paper discusses the design and development of the electronic system and sensor
system of the MEPD on the FY-4B satellite in detail. Compared to the MEPD on the FY-3E
satellite, the ability to eliminate light pollution is further improved by using a 100 nm
nickel film. The experiment under the lighting of a solar simulator shows that all proton
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channels are not contaminated by photons. The geometrical factor is redesigned according
to the characteristics of the orbital radiation environment. The data obtained in orbit show
that this instrument works properly and the data are in good agreement with the results
calculated using the AP8 model.
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