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Abstract: Shock wave/turbulent boundary layer interaction (SBLI) is one of the most common
physical phenomena in transonic wing and supersonic aircraft. In this study, the compression ramp
SBLI (CR-SBLI) was simulated at a 24◦ corner at Mach 2.84 using the open-source OpenFOAM
improved delayed detached eddy simulation (IDDES) turbulence model and the “Rescaling and
Recycling” method at high Reynolds number 1.57× 106. The results of the control effect of the
jet vortex generator on CR-SBLI showed that the jet array can effectively reduce the length of the
separation zone. The simulation results of different jet parameters are obtained. With the increasing
jet angle, the reduction in the length of the separation zone first increased and then decreased. In
this work, when the jet angle was 60◦, the location of the separation point was x/δ = −1.48, which
was smaller than other jet angles. The different distances of the jet array also had a great influence.
When the distance between the jet and the corner djet = 70 mm, the location of the separation point
x/δ = −1.48 was smaller than that when djet = 65/60 mm. A closer distance between the jet hole
and the corner caused the vortex structures to squeeze each other, preventing the formation of a
complete vortex structure. On the other hand, when the jet was farther away, the vortex structures
could separate effectively before reaching the shock wave, resulting in a better inhibition of SBLI. The
simulation primarily focused on exploring the effects of the jet angle and distance, and we obtained
the jet parameters that provided the best control effect, effectively reducing the length of the CR-SBLI
separation zone.

Keywords: CR-SBLI; rescaling and recycling; hybrid LES/RANS; jet control

1. Introduction

Shock wave boundary layer interactions (SBLIs) are flow phenomena that occur when
shock waves interact with the turbulent boundary layer on a wall, causing changes in
the flow field and wave system. SBLI is present in all practical transonic, supersonic,
and hypersonic vehicles and engines, affecting their aerodynamic drag, heat transfer, and
stability. By controlling these interactions, it is possible to improve performance and reduce
risks associated with hypersonic flight. For example, on transonic wings, SBLI can lead
to increased drag and instability, while in gas turbine engines, it can disrupt the flow of
air into the compressor, reducing inlet efficiency. In supersonic flows, SBLI can cause
the separation of internal flow and external flow, high wall heat flux, and pressure loss
and deformation. In the rotary detonation engine (RDE), SBLI in the narrow channel can
fundamentally affect its operation and lead to accidental ignition, resulting in the collapse of
the rotational mode [1–5]. Therefore, it is imperative to use a boundary layer control system
to mitigate the harm of SBLI by manipulating or modifying the flow field characteristics
before or during the interaction to prevent or reduce separation caused by SBLI and flow
unsteadiness, improving the aircraft and engine performance.
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Initially, SBLI was studied via experimental methods such as schlieren visualization,
oil flow, and sensors, which were later supplemented by Particle Image Velocimetry (PIV)
and Non-intrusive Pressure and Temperature Sensitive Paints (NPLS), among others [6–9].
With the advent of computer technology, Computational Fluid Dynamics (CFD) became a
popular tool in SBLI research, with simulations categorized into Reynolds-Averaged Navier–
Stokes (RANS), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS).
The RANS method, based on traditional turbulence models, can accurately predict time-
averaged wall pressure but falls short in predicting the flow field’s topological structure
and unsteady characteristics of the wave system and separation region. In contrast, LES
and DNS can better reflect the flow field’s physical characteristics, but they are limited to
medium and low Reynolds number conditions due to the Reynolds number barrier, and
their computational cost is high. Therefore, there has been a developing trend towards
employing hybrid LES/RANS turbulence models that offer high efficiency and accuracy
for high Reynolds number cases [10].

The most widely used method for SBLI control was distributed suction and bleed-
ing [11–13]. The suction method drained the boundary layer out of the flow by slotting or
trepanning on the wall so that the freestream high-momentum fluid reoccupied the wall,
thereby improving the fluid momentum and adverse pressure gradient resistance of the
wall. Vortex-generating devices have also been studied. By generating flow vortexes in
front of the interacting region, momentum exchange was carried out between the main flow
and the near-wall flow region, forming a fuller and more stable boundary layer [14–18].
Both passive and active vortex-generating devices have been studied in the past. The two
methods were suitable for different application scenarios. The passive method used a fixed
mechanical vortex generator to achieve this effect [19,20]. The cost of a mechanical vortex
generator was lower. But, the problem with passive control was that the performance of
aircraft was affected in off-design operating conditions. The steady air jet vortex gener-
ator [21–25] was an active method to produce the same effect. The steady air jet vortex
generator can be switched on or off according to the application scenario [21]. Control
can also be used in combination with transpiration cooling [22]. However, active control
required additional energy, such as additional air paths for air jets. This increased the
design difficulty and the cost of its manufacture and maintenance.

When the vortex generator has a height-to-boundary-layer thickness ratio (h/δ) greater
than or equal to one, its presence can increase drag and reduce its control
effectiveness [26,27]. To mitigate this effect, the size of the vortex generator can be reduced
to be within the boundary layer. Micromechanical vortex generators or sub-boundary layer
vortex generators with h/δ ≤ 0.6 incurred much smaller drag penalties [28–30], δ is the
boundary layer thickness.

Various active control methods have been summarized in reviews by Lin [17], Lu
et al. [18], Panaras and Lu [26], and Verma and Abdellah [31] have summarized various
active control methods, including air jets, pulsed microjets [32,33], steady microjets [30,34,35],
plasma jets [36], and synthetic jets [37]. The control effect of pulsed resonance-enhanced
microjets has been demonstrated successfully [38], while other pulsed microjets based on
piezoelectric [33] and microelectromechanical systems have also shown the same control
effect [39]. The plasma jet has also shown good control ability in studies [36,40,41]. Further-
more, the jet can reduce the surface friction and the overall thickness of the boundary layer
downstream of SBLI.

The simulation of CR-SBLI mainly focuses on the high-precision simulation of low
Reynolds numbers, such as DNS and LES. However, at high Reynolds numbers, due to the
Reynolds number barrier, hybrid LES/RANS is mainly used for simulation. Experimental
methods are mainly used to verify the control effect of jet flow at compression corners.
The experimental cost is high, and only one parameter can be studied in each experiment,
there are few results from experiments. In this study, the control of the jet for CR-SBLI
was simulated at a 24◦ corner at Mach 2.84 using the open source OpenFOAM IDDES
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turbulence model and the “Rescaling and Recycling” method. By setting different jet angles
and jet distances, the best control effect can be obtained.

2. Numerical Method

In this paper, the IDDES (Improved Delayed Detached Eddy Simulation) and “Rescal-
ing and Recycling” methods are utilized as simulation methods. The IDDES method
combines the advantages of RANS (Reynolds-Averaged Navier–Stokes) and LES (Large
Eddy Simulation) by resolving the large-scale turbulent structures while modeling the
small-scale turbulence. It provides a good balance between accuracy and computational
cost. The “Rescaling and Recycling” method, on the other hand, is a technique used to
simulate turbulent boundary layers. These two methods are briefly described in this paper
to provide an understanding of the simulation techniques employed in the study.

The DES model can adopt RANS model in the boundary layer and LES model in the
mainstream region, which can effectively reduce the amount of mesh used in the boundary
layer and effectively avoid high Reynolds number barriers at high Reynolds number. The
dissipation of turbulent kinetic energy via turbulent flow serves as a bridge between
Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES). This ensures
the return of the original model in the RANS region and allows for the Smagorinsky sub
grid scale stress model to be obtained under the assumption of turbulent equilibrium in
the LES region [42].
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The core of the “Rescaling and Recycling” method is to estimate the velocity at the inlet
plane based on the downstream fluid velocity. A velocity field is extracted from a plane
near the outlet of the computational domain, and it is scaled using the theory proposed by
Spalart and Leonard. Then, these data are reintroduced at the inlet as boundary conditions.

By defining the inner coordinates z+inlt and outer coordinates ηinlt of a point on the
entrance plane, as well as corresponding points z+recy and ηrecy on the recovery plane, the
average and pulsating quantities of the flow velocity for the inner and outer layers can be
recovered separately. This is achieved by combining Lund’s weight coefficients to obtain
the instantaneous flow velocity on the entire entrance plane [43].
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The “Rescaling and Recycling” method is extended to compressible flow based on
Van Driest velocity transformation and temperature recovery adjustment.
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3. Model and Grid in Numerical Simulation

The physical model is divided into two parts: the front “rescaling and recycling” plate
domain and the compression corner of the main domain. The size of the front “rescaling and re-
cycling” plate domain is Lx× Ly× Lz = 4.342δ× 2.61δ× 2.17δ (100 mm × 50 mm × 60 mm),
and x, y, and z corresponded to the flow direction, normal direction and spanwise direction,
respectively. The number of grids is 100 × 150 × 50. The mesh of the “rescaling and
recycling” plate domain is evenly distributed in the flow direction (x) and the spanwise
direction (z), and the mesh is refined along the normal direction (y) close to the wall so
that y+ ≤ 1. The compression corner of the main domain consists of an 80 mm plate and a
60 mm ramp with a spanwise length of 50 mm and a height of 50 mm. The number of grids
is 188 × 150 × 50. The mesh of the compression corner of the main domain is different for
the x direction, the mesh around the corner is refined along the flow direction, and the mesh
around the jet hole is refined along the x and y directions. This mesh refinement ensures
that the jet and the flow structure around the corner are captured. The grid diagram is
shown in Figure 1a.
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Figure 1. (a) Mesh and (b) boundary condition schematic layout of simulation.

In the plate domain, a “rescaling and recycling” inlet (including velocity and tempera-
ture “rescaling and recycling” inlets) is adopted at the entrance. The recycling and rescaling
method is based on the turbulence boundary layer scaling principle. It involves defining
a recycling plane downstream in the flow field, extracting the average and instantaneous
parameters from this plane, adjusting them using the rescaling principle, and then recycling
the adjusted parameters back onto the turbulence boundary layer generation plane. This
process generates the parameters for the next time step on the recycling and rescaling
computational domain, allowing for the rapid generation of the turbulence boundary layer.
And the periodic boundary condition is adopted at the exit to recycle parameters to the inlet
and pass the parameters down to the main domain. For the boundary conditions of the
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main domain, the periodic boundary condition is used for the inlet boundary conditions to
receive turbulence information obtained from the upstream. The outlet boundary adopts
the non-reflective boundary pressure outlet condition to ensure that the outlet boundary
type has no influence on the flow. The upper boundary conditions for both domains use the
supersonic far-field boundary condition. The parameters are the same as the flow param-
eters, thus ensuring that the mainstream was consistent with the reference experimental
conditions. The non-slip condition is adopted for the lower boundaries. The periodic
boundary condition in the z-direction is also used for the lateral boundaries to ensure that
the flow is not affected by the lateral boundaries. The jet inlet adopts a velocity boundary
inlet because the direction of the jet needs to be changed. Here, the relevant jet velocity can
be obtained via an equivalent calculation of jet pressure to realize jet flow. The two parts
of the simulation domain are the same, the reason for the separation of planes is to input
the parameters of the exit of the rescaling and recycling domain to the entrance, in the
OpenFOAM the rescaling and recycling method must use periodic boundary conditions,
the entrance of the main calculation domain is directly input from the recovery control
calculation domain exit.

Referring to Settles’ classic 24◦ CR-SBLI experiment [6] to set the physical parameters
of the forward incoming flow at the entrance, the Mach number is Ma = 2.85 (velocity
Ure f = 585 m/s), the far-field pressure is Pre f = 23900 Pa, and the far-field static temper-
ature is Tre f = 100 K, the Reynolds number is 1.57× 106. The solver uses the supersonic
unsteady solver sonicFoam based on pressure solution. The turbulence model is the IDDES
k−ω SST hybrid LES/RANS turbulence model.

In this study, the diameter of the jet holes is 2 mm, the parameters here refer to the
values of the relevant experiments [34]. Through the velocity equivalent of the experimental
pressure, the velocity inlet is taken as the boundary condition of the jet inlet, and the jet
velocity is 400 m/s. The number of jet holes is 5.

4. Results and Discussion

Firstly, the simulation of CR-SBLI without a jet is verified.

4.1. Plate Boundary Layer Simulation

The simulation of CR-SBLI via the hybrid LES/RANS method requires reasonable
turbulence ahead. Figures 2 and 3 show the results of the front “rescaling and recycling”
plate boundary layer at the outlet of the “rescaling and recycling” domain.
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Figure 2 shows the velocity profile distribution after the Van Direst transformation in
the turbulent boundary layer. The black dots represent the simulation data, and the red and
blue dashed lines represent the empirical formulas of the boundary layer velocity profile [6].
Morkovin’s [44] hypothesis mentioned that when Mach number Ma ≤ 5, the parameter
distribution of the turbulent boundary layer of compressible flow can be associated with
the parameters of the turbulent boundary layer of incompressible flow via Van Direst
velocity transformation. The transformed velocity distribution satisfies well with the linear
rate and logarithmic rate of the boundary layer and the wake region, as shown in Figure 2.

In addition to verifying the velocity profiles, this study also demonstrates, as shown
in Figure 3, that the vertical distributions of other scalar fields, such as density (ρ) in green,
pressure (p) in red, and temperature (T) in black, are consistent with the corresponding
experimental data. The curves represent simulation data, and the dots represent the other
simulation results [10]. The figure shows that the distribution of the three scalar fields
was consistent with the experimental data, and the maximum error was less than 15%.
The pressure distribution curve proves that there is almost no pressure gradient along the
normal direction of the boundary layer. Therefore, the closer the wall, the lower the density
and the higher the temperature of the fluid.

The “rescaling and recycling” method adopted in this study simulates the turbulent
boundary layer structure well.

4.2. Grid Independence Analysis

Figure 4 presents a grid independence analysis of the model, where three types of
grids (coarse, medium, and fine) with grid sizes of 1.23 million, 2.4 million, and 4 million
cells, respectively, are used to simulate the same operating conditions. The coarse grid has
a distribution of 164 × 150 × 50, the medium grid has a distribution of 205 × 187 × 65, and
the fine grid has a distribution of 250 × 200 × 80. The curves of the wall-averaged pressure
for the 2.4 million and 4 million cell grids are almost identical at the separation point and
pressure recovery values. This confirms the grid independence when using a grid size of
2.4 million cells, with a grid scale of 0.6 mm. For the simulation with the jet, except for
the mesh refinement near the jet, the grid of this scale is used. Subsequent simulations
are conducted using grids of a similar magnitude for grid partitioning. The time step is
set to a variable step size to ensure that the Courant number is less than 0.3. After about
10,000 steps, the average velocity profile is consistent with the experimental data.
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4.3. Simulation of CR-SBLI

Figure 5 shows the three-dimensional turbulent structure of the compression corner
identified using the Q criterion. Q criterion is a commonly used method for vortex identifi-
cation. The vorticity structure of the turbulent boundary layer and SBLI can be observed
by analyzing the Q criterion.
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Figure 5. The vorticity field identified using the Q criterion for CR-STBLI.

Among them, the turbulent coherent structures of the turbulent boundary layer en-
abled the use of the Q criterion for identification, and the display is colored by velocity to
show more details. The generated turbulence has an obvious three-dimensional structure.
A typical horseshoe vortex structure, one of the typical structures of the turbulent boundary
layer, is generated in the plate domain. The turbulent structure also continues to flow into
the front of the corner in the main domain, and the identified turbulent coherent structure
can be observed before the separating shock waves. However, when the three-dimensional
vortex structure reaches the separation shock wave, it is obviously observed in the figure
that the turbulent coherent structure identified by the Q criterion decreases. Here, the
vortex structure is broken after the collision with the shock wave, and a smaller turbulent
coherent structure is generated after the breakup. After entering the slope through the
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corner, the turbulent coherent structure after the attached shock wave increases. However,
the turbulence does not dissipate when leaving the interaction area, and there is still a
turbulent coherent structure. According to the analysis of the Q criterion, the simulation
results of this study obtained a clear vortex structure of CR-SBLI.

The wall pressure is extracted, and the boundary layer thickness at the outlet of
“rescaling and recycling” δ and far-field pressure pre f are taken as reference values to obtain
the following curve of the wall pressure changing with the flow direction (x). Figure 6
shows the distribution of the average wall pressure along the flow direction in the main
domain of the compression corner. At the same time, the simulation data are compared
with the simulation data from Daniel et al. [10] and the experimental data from Settles [6].
The parameter xsep is defined as the distance from the corner to the point of separation. The
zero point of the x-coordinate is located at the corner, and the x-coordinate is dimensionless
by taking the boundary layer thickness δ at the outlet of “the rescaling and recycling”
domain as the reference length. It can be observed from the pressure distribution data
that the position of separating shock waves in the experiment was xsep = −2.01, while
the position of separating shock waves in the simulation of the “rescaling and recycling”
method in this study is xsep = −2.05. The position of the DES simulation from Daniel
et al. is xsep = −1.85. Here, the position of the separating point of shock waves in this
study is basically consistent with the experiment, with an error of 2%, and was closer to the
experimental value than the simulation of the DES model.
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4.4. Simulation of Jet Control

Figures 7 and 8 show the flow line slice diagram and the vorticity field identified using
the Q criterion for CR-SBLI around the jet. The two figures are chosen for the condition
that the jet hole is 60 mm away from the corner, where djet = 60 mm, and the jet angle is
60◦ as the flow field structure analysis. The distance between the jet holes is 7.2 mm. This
value is based on the conclusions obtained in Verma’s experiments [45]. The jet directly
interacts with the separation area along the main stream from the jet hole. In Figure 7, the
effect of the jet on CR-SBLI is concentrated on the upper part of the separation zone, and
the separation zone is reduced by squeezing the recirculation region. The black dotted line
shows the case without any jet control. In Figure 8, the vortices generated by the jets from
the jet array reach the separating shock waves without dissipating, thus interacting with
the shock waves to control CR-SBLI.
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4.5. The Effect of Jet Angle

Different jet angles have different influences on CR-SBLI. In this study, jet angles are
set as 15◦, 30◦, 45◦, 60◦, and 75◦ to explore the influence of jet angle. Figures 9 and 10 show
the pressure and velocity images near the jet under different jet angles, respectively. And
Figure 11 shows the vorticity field identified using the Q criterion for different jet angles
(Q = 109). From Figure 11, the vortex structure formed via the jet array becomes more
obvious with increasing jet angle. In Figure 9, the larger the jet angle is, the larger the
pressure change area near the jet holes, and the larger the jet action area.
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Figure 11. The vorticity field identified using the Q criterion for different jet angles.

The curve presents an up-and-down discontinuity at the position of the jet. The wall
pressure distribution is shown in Figure 12, allowing us to better observe flow separation
from CR-SBLI. The black curve shows the pressure distribution without jet flow. The
position of separating shock waves without the jet in the simulation is xsep = −2.05. Under
the interaction of the jet, before 60◦, the separation point gradually moves to the corner
with increasing jet angle. After reaching 60◦, the separation point position moves forward
with the increasing angle. With increasing jet angle, the reduction in the length of the
separation zone first increases and then decreases. In this work, when the jet angle is 60◦,
the jet has the best control effect on CR-SBLI separation.
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This phenomenon may be caused by the fact that when the jet angle is small, the jet
flows close to the wall, and the vortex structure formed is not complete due to the existence
of the wall. As the jet angle increases, the vortex structure is no longer affected by the wall
surface, thus forming a complete vortex structure to flow to the CR-SBLI region, achieving
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the best control effect. However, when the angle reaches a certain degree, the angle between
the jet stream and the mainstream is too large, and the mainstream restrains the jet stream
to a certain extent; thus, the effect becomes worse.

4.6. The Effect of Jet Distance

Figure 13 shows the instantaneous pressure images of the main domain of the com-
pression corner under the action of jet arrays at three different distances. The parameter djet
is defined as the distance from the jet holes to the corner. In Figure 13, under the interaction
of jet flow, when djet = 70 mm, the separation area is smaller. When the jet is far enough
away, the jet can further compress the separation zone so that the separation point of the
separation zone is closer to the corner.
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Similar to Section 4.5 the wall pressure distribution is shown in Figure 14. Black
represents the simulation condition without jet flow; red, blue, and green represent wall
pressure curves with jet flow distance djet = 70/65/60 mm. Under the interaction of jet
flow, the pressure separation point in the separation zone presented by three different jet
flow distances is smaller than the separation point distance in the condition without jet
flow. When djet = 70 mm, the location of the separation point xsep/δ = 1.48 is smaller than
that when djet = 65/60 mm, and the inhibition effect on the separation zone is the best.
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Taking 70 mm and 60 mm jet distances as examples, the effects of different jet distances
are analyzed. According to the Q criterion diagram in Figure 15, when the jet distance
is 70 mm, the vortex structure is dispersed when it reaches the shock wave. When the
jet distance is 60 mm, the vortex structures push against each other in the shock wave.
This phenomenon causes shock waves to squeeze and break each other, thus reducing the
control effect of the vortex. When the jet distance is far away, it can be found that near
the separation point, the vorticity identified using the Q criterion is far away from each
other, and the interaction between vortices is not so strong. For jets with a relatively close
distance, the vorticity identified using the Q criterion near the separation point is very close,
which will cause the interaction between vortices. Therefore, the position of the jet should
be maintained at a certain location upstream of the separation point. On the one hand, this
avoids the dissipation of the vortex structure due to the jet position being too far away. On
the other hand, it prevents the reduction of vortex structure intensity caused by the mutual
compression at the initial stage of vortex formation, thus achieving a better control effect.
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5. Conclusions

In this work, the CR-SBLI phenomenon is simulated via the IDDES turbulence model
and inlet turbulence generation technique of the compressible “rescaling and recycling”
method at high Reynolds number 1.57× 106. The main conclusions are as follows:

Different jet angles of the jet array are simulated and compared, and five different jet
angles of 15◦, 30◦, 45◦, 60◦ and 75◦ are set. The jet flow at a 60◦ angle showed the best effect
in reducing the length of the separation zone, as indicated by the wall pressure curve. As
the jet angle increased, the reduction in the length of the separation zone initially increased
and then decreased.
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The simulations also compared different jet distances of the jet array, specifically
70 mm, 65 mm, and 60 mm from the entrance of the main domain. Among the three
simulations, the jet array with a distance of 70 mm had the most significant effect in
reducing the separation area. It is important to find a balance between the dissipation of
vortices and the mutual compression of vortex structures by placing the jet at an optimal
distance from the separation point.
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