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Abstract: To enhance system reliability and mitigate the vulnerabilities of the Global Navigation
Satellite Systems (GNSS), it is common to fuse the Inertial Measurement Unit (IMU) and visual
sensors with the GNSS receiver in the navigation system design, effectively enabling compensations
with absolute positions and reducing data gaps. To address the shortcomings of a traditional Kalman
Filter (KF), such as sensor errors, an imperfect non-linear system model, and KF estimation errors,
a GRU-aided ESKF architecture is proposed to enhance the positioning performance. This study
conducts Failure Mode and Effect Analysis (FMEA) to prioritize and identify the potential faults in
the urban environment, facilitating the design of improved fault-tolerant system architecture. The
identified primary fault events are data association errors and navigation environment errors during
fault conditions of feature mismatch, especially in the presence of multiple failure modes. A hybrid
federated navigation system architecture is employed using a Gated Recurrent Unit (GRU) to predict
state increments for updating the state vector in the Error Estate Kalman Filter (ESKF) measurement
step. The proposed algorithm’s performance is evaluated in a simulation environment in MATLAB
under multiple visually degraded conditions. Comparative results provide evidence that the GRU-
aided ESKF outperforms standard ESKF and state-of-the-art solutions like VINS-Mono, End-to-End
VIO, and Self-Supervised VIO, exhibiting accuracy improvement in complex environments in terms
of root mean square errors (RMSEs) and maximum errors.

Keywords: GNSS; Visual Inertial Odometry; failure modes; GRU-aided ESKF; complex environments

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have gained attraction with the
evolution of technologies such as artificial intelligence and computer vision, which have
effectively broadened pathways for diverse applications and services. UAVs have been
utilized in many civil applications, such as aerial surveillance, package delivery, precision
agriculture, search and rescue operations, traffic monitoring, remote sensing, and post-
disaster operations [1]. The increasing demand for commercial UAVs for such applications
has highlighted the need for robust, secure, and accurate navigation solutions. However,
achieving accurate and reliable UAV positioning in complex environments, including
overpasses, urban canyons, illumination variability, etc., has become more challenging.

Although Global Navigation Satellite Systems (GNSS) have become one of the most
popular navigation systems in recent decades, the utilization of GNSS remains suspicious
due to its vulnerability to satellite visibility, interference of jamming and spoofing, as well
as environmental effects such as multipath, building mask, ionospheric and tropospheric
delays. Furthermore, the effects will lead to sharp deteriorations in the positioning precision
and GNSS availability [2]. The inertial navigation system (INS) facilitates the provision
of high-frequency and continuous position, velocity, and attitude information, which
makes the integration of INS with GNSS prevalent in most navigation architecture designs.
However, the drift error generated from INS accumulates over time, which will result in
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divergent positioning output. The impact of INS drifting on GNSS/INS fusion performance
in the case of long-term GNSS outages has been explored widely [3–5]. Nevertheless,
more sensor types are still in demand to provide more resilient and accurate positioning
resolutions under complex operation scenarios.

The vision-based navigation system is a promising alternative for providing reliable
positioning information without radio frequency interference effects during GNSS outages.
Visual odometry (VO) is frequently employed as a critical component in the vision-based
navigation system due to its efficient deployment with low computational complexity in
contrast to Visual Simultaneous Localization and Mapping (VSLAM). The Visual Inertial
Navigation Systems (VINS) have been fully explored by researchers, encompassing notable
examples like VINS-Mono [6], MSCKF [7], ORB-SLAM3 [8], and open-VINS [9]. As a com-
mon solution for improving navigation performance in terms of accuracy, integrity, update
rate, and robustness through adding sensor types with GNSS, the VINS navigation system
with multiple integrated sensors presents a higher possibility of existing multiple faults,
noise, and sensor failures within the system. It was discovered that purely VO-enabled
navigation presents performance degradation caused by factors such as illumination, mo-
tion blur, field of view, moving objects, and texture environment [10]. As a result, there is a
need to explore fault-tolerant designs in the VINS navigation systems to mitigate the fault
impact on the visual systems.

For achieving the fault tolerance capability in integrated multi-sensor systems, the
decentralized filtering design, especially using federated architecture, has become popular
in recent years. Dan et al. [11] proposed an adaptive positioning algorithm based on a
federated Kalman filter combined with a robust Error Estate Kalman Filter (ESKF) with
adaptive filtering for the UAV-based GNSS/IMU/VO navigation system to eliminate
issues of GNSS signal interruption and lack of sufficient feature points while navigating
in indoor and outdoor environments. However, most papers using ESKF only measure
VO faults by adding position errors, whilst faults coming from visual cues like scarcity of
features caused by environment complexity and motion dynamics or high non-linearity
characteristics have not been fully taken into account. Therefore, there is a gap in detecting
and identifying faults and threats with consideration of visual cues in the GNSS/IMU/VO
navigation system.

Current state-of-the-art fault-tolerant GNSS/IMU/VO navigation systems encounter
more difficulties when operating in complex scenarios due to the challenges of identifying
visual failure modes and correcting VO errors. As a structured and systematic fault
identification method, Failure Mode and Effect Analysis (FMEA) is capable of identifying
various fault types, defects, and sensor failures based on predicted and measured values as
they occur instantly or shortly after they occur. FMEA is commonly used to assess risks to
improve the reliability of complex systems by identifying and evaluating potential failures
with the provision of occurrence likelihood, severity of impact, and detectability, as well
as prioritizing high-risk failure modes. However, researchers working on VIO discussed
several faults caused by navigation environment or sensor error individually [10,12,13],
but identifying failure modes is a gap. Moreover, despite their extracted failure modes,
systematic faults have not been discovered with only the consideration of single or specific
combined faults like motion blur, rapid motion, and illumination variation.

To resolve the inherent non-linearity in the visual navigation system, AI has been
employed with a Kalman filter to enhance the ability to model temporal changes in sen-
sor data. Nevertheless, AI has the disadvantages of training time and predicted value
inevitability containing errors that can be partially resolved by simplifying the neural
network, for example, with a Gradient Recurrent Unit (GRU) suppressed with ESKF fusion,
thus enabling ESKF to better handle scenarios with verifying level of uncertainty and
dynamic sensor conditions.

To implement a fault tolerance navigation system against the visually degraded envi-
ronment, this paper proposes a GRU-aided ESKF VIO algorithm that conducts FMEA on
the VINS system to identify failure modes and then assists the architecture of fault-tolerant
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multi-sensor system where the AI-aided ESKF VIO integration is used as one of the sub-
filters to correct identified visual failure modes. The major contributions of this paper are
highlighted as follows:

1. The proposition of an FMEA-supported fault-tolerant federated GNSS/IMU/VO
integrated navigation system. The FMEA execution on an integrated VINS system
contributes to enhancing the system’s design, with a focus on accurate navigation
during GNSS outages.

2. The proposition of a GRU-based enhancement of ESKF for predicting increments of
positions to update measurements of ESKF, aiming to correct visual positioning errors,
leading to more accurate and robust navigation in challenging conditions.

3. Performance evaluation of GRU-aided ESKF-based VIO within the fault-tolerant
GNSS/IMU/VO multi-sensor navigation system. Training datasets for the GRU
model are selected to replicate the failure modes extracted with fault conditions from
FMEA. The verification is simulated and benchmarked on the Unreal engine, where
the environment includes complex scenes of sunlight, shadow, motion blur, lens blur,
no-texture, light variation, and motion variation. The validation dataset is grouped
into multiple zone categories in accordance with single or multiple fault types due to
environmental sensitivity and dynamic motion transitions.

4. The performance of the proposed algorithm is compared with the state-of-the-art
End-to-End VIO and Self-supervised VIO by testing similar datasets on the proposed
algorithm.

The remaining part of the paper is organized as follows. Section 2 discusses the
existing systems designed based on a hybrid approach; Section 3 introduces the proposed
GRU-aided KF-based federated GNSS/INS/VO navigation System; Section 4 discusses the
experimental setup; Section 5 discusses the roast test, and result analysis comparison with
state-of-the-art systems, and the conclusion is presented in Section 6.

2. Related Works
2.1. Kalman Filter for VIO

A Kalman Filter (KF), along with its variations, is a traditional method that can
efficiently fuse VO and IMU information. Despite its effectiveness, the KF faces certain
challenges that can impact its performance. One of the main challenges in navigation
applications arising from VO vulnerability is the interruption in updating KF observation,
leading to a gradual decline in system performance over time. Moreover, if the error
characteristics are non-Gaussian and cannot be fully described within the model, the KF
may struggle to provide an accurate estimation.

Some studies aim to improve the fusion robustness against non-linear natures from
high system dynamics and complex environments, variants of Kalman filter such as the Ex-
tended Kalman Filter (EKF) [14–17], Multi-state Constraint Kalman Filter (MSCKF) [18–22],
Unscented Kalman Filter (UKF) [23], Cubature Kalman filter (CKF) [24,25], and Parti-
cle Kalman Filter (PF) [26], have been proposed and evaluated. One challenge in the
EKF-based VIO navigation system is handling significant non-linearity during brightness
variations [15,17] and dynamic motion [15], which will cause feature-matching errors and
degrade the overall performance. When these feature-matching errors occur, the EKF’s
assumption about linear system dynamics and Gaussian noise may no longer hold, leading
to suboptimal states and even filter divergences. To improve VIO performance under
brightness variation and significant non-linearities, MSCKF was proposed and evaluated
in complex environments such as insufficient light [19–22], texture missing [19,21], and
camera jitter [19] specifically characterized by blurry images [22]. However, in the MSCKF
algorithm, the visual features are mostly treated as separate states, so the process is de-
layed until all visual features are obtained. Another approach is proposed to handle
additive noise: VIO uses camera observation to update the filter, allowing for avoiding
over-parameterization and helping to reduce growth caused by UKF [23]. In most studies
like [24,25], researchers have not focused on evaluating their proposed algorithms among
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complex scenarios such as light variation, rapid motion, motion blur, overexposures, and
field of view, which deteriorate the accuracy and robustness of the state estimation.

Nevertheless, in GNSS-denied scenarios, UAV navigation predominantly depends
on VIO, so the challenges remain unresolved using KF variations only for VIO applica-
tions. Therefore, the use of ESKF-based VIO for performance improvement is highlighted
through alleviating challenges by managing parameter constraints, mitigating singularity
and gimbal lock concerns, maintaining parameter linearization, and supporting sensor
integration in this paper.

2.2. Hybrid Fusion Enhanced by AI

A number of artificial techniques, such as neural networks, including Deep Neural
Networks (DNN), Artificial Neural Networks (ANN), and Reinforcement Learning (RL),
have been studied for sensor fusion applications to formulate hybrid fusion solutions.
Kim et al. [27] conducted a detailed review of KF with AI techniques to enhance the
capabilities of the KF and address its specific limitations in various applications. The
recent survey [28] summarizes detailed reviews of the GNSS/INS navigation system that
utilizes Artificial Neural Networks (ANN) in combination with the Kalman Filter. This
survey highlights the advantages of hybrid methods that leverage ANNs to mitigate
INS performance degradation during GNSS vulnerability in specific conditions of aerial
underwater vehicles [29–31] and Doppler underwater navigation [32]. It was found that
one advantage of the hybrid fusion scheme is providing the ability to intercorporate a priori
knowledge about the level of change in the timer series, enhancing the systems’ adaptability
to varying environments and conditions. Additionally, the ANN error predictor proves
to be successful in providing extremely precise adjustments to standalone INS when
GNSS signals are unavailable, ensuring continuous and accurate navigation. This survey
motivates further exploration and development of hybrid fusion-based navigation schemes
to maintain robust performance in challenging GNSS-degradation environments.

Figure 1 presents an overview of publications on NN-assisted navigation applications
over the 2018–2023 period and categorizes them into KF performance degradation following
the category rule defined by Kim et al. [27]. It is concluded that most studies focus on
updating the state vector or measurements of KF, ignoring issues arising from imperfect
models. Hereby, estimating pseudo-measurements during GNSS outages to update KF
measurements using AI is suggested by [27]. In certain scenarios, particularly when dealing
with high-non-linear sensors or navigating in complex environments, updating state vectors
directly by predicting sensor increments using NN in measurement steps becomes critical
regarding the sensor’s complexity and the challenging nature of the environment.
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To overcome KF drawbacks in navigation, hybrid methods combining AI approaches,
especially machine learning (ML) algorithms, become promising by accurate prediction of
INS and visual sensor errors from diverse training datasets. As depicted in Figure 1, most
publications belong to the category of ‘State Vector or Measurements of KF’, meaning most
studies apply ML to predict and compensate for state vector error or measurements in KF.
For instance, Zhang et al. [33] used RBFN to predict states in the prediction step. However,
studies like [33] predict absolute state vectors instead of vector increments using NN,
which increases model complexity and requires a more extensive training process. Studies
from [29,32–45] adopted vector increments of the sensor observations and predictions
during KF prediction, whilst most of the work only works on GNSS/INS navigation
during GNSS outages, aiming for improving INS efficiency INS in urban settings and
situations [31,38,39,41,42,46].

Other studies [47,48] corresponding to the error compensation category employ ML to
compensate for the navigation performance error with KF, but sensor errors such as the
non-linear error model of INS are excluded.

The category called pseudo measurement input applies NN for predicting pseudo-
range errors when the occurrence of a shortage of satellite numbers to update measurement
steps in CKF [49] and the adaptive EKF [46,50].

The category of parameter tuning of KF aims to enhance the performance using RL by
predicting the covariance matrix, such as using AKF in [50]. However, the prediction of the
covariance matrix relies on changeable factors like temperature, which is difficult to predict
and model. Therefore, using NN for parameter tuning in KF is not considered in this paper.

Regarding the selection of NN types, Radial Basis Factor Neural Networks (RBFNs),
Backpropagation Neural Networks (BPNNs), and Extreme Learning Machines (ELMs) are
powerful learning algorithms and more suitable for static data or non-sequential problems
but neglect the information of historical data. Additionally, navigation applications are
inherently time-dependent and dynamic, making them challenging to model using these
learning algorithms. Other studies [30,38] have proved RBFN has less complexity than
BPNN and multi-layer backpropagation networks, yet haven’t considered any dynamics
change over time. Other studies were presented using simple neural networks on SLAM
applications by predicting state increments in diverse scenarios.

The authors in [35,36] did not account for the temporal variations in features that can
significantly impact the performance, given that basic neural networks are sensitive to such
changes. Kotov et al. [37] compared NNEKF-MPL and NNEKF-ELM, demonstrating that
NNEKF-MPL performs better when the vehicle exhibits a non-constant systematic error.
However, the aforementioned NN methods do not take temporal information contained
within historical data into training, making those methods insufficient for addressing
navigation applications’ dynamic and time-dependent characteristics.

Some studies have proved the advantages of using time-dependent recurrent NN
architectures like Long Short-Term Memory (LSTM) in VIO. VIIONET [51] used LTSM to
process high-rate IMU data that concentrated with feature vectors from images processed
through CNN. Although adopting IMUs can facilitate the mitigation of IMU dynamic errors,
the compensation of visual cues in VIO affected by complex environmental conditions
is more critical. DynaNet [52] was the first to apply LSTM-aided EKF to show hybrid
mechanism benefits in improving motion prediction performance on VO and VIO without
sufficient visual features. Furthermore, this study suggested unresolved challenges of motion
estimation tasks, multi-sensor fusion under data absence, and data prediction in visual
degradation scenarios. Subsequently, researchers aim to learn VO positions from raw image
streams using CNN-LSTM [51,53–55]. With the utilization of CNN-LSTM, some aimed to
reduce IMU errors by predicting IMU dynamics in complex lighting conditions [54,55].

Two recent papers attempted to use CNN-LSTM-based EKF VIO [12,45] to evaluate
visual observation in dynamic conditions. Still, the evaluation of the algorithm performance
is insufficient due to the lack of sufficient datasets for training the CNN model. One of the
common drawbacks of using DL-based visual odometry is the necessity of huge training
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datasets. The DL model requires vast amounts of diverse data to generalize well and
provide reliable results in the real world. Suppose the CNN-LSTM model is not trained
properly due to the insufficient variety of datasets. In that case, it may struggle to capture
the complexity of dynamic scenes, leading to subpar performance and unreliable VIO
results [12,45]. Thus, by leveraging feature-based techniques, we can simplify the VIO
structure where ESKF facilitates the simplification by providing a robust mechanism for
handling uncertainty and noise in the data.

This paper chooses GRU due to its efficiency in processing time-varying sequences,
offering advantages over other recurrent NNs like LTSM. Some literature has used GRU
to predict state increments and update the state vector of KF [41,48] for GNSS/INS sys-
tems during GNSS outages. However, the fusion of GRU with GNSS/INS/VIO remains
unexplored as of yet.

2.3. FMEA in VIO

FMEA can provide a detailed description of potential faults in VIO that can affect
the whole system, leading to positioning errors in complex environments. In 2007, Bhatti
et al. [56] carried out FMEA in INS/GPS integrated systems to categorize potential faults
with their causes, characteristics, impact on users, and mitigation methods. They dis-
cussed how this advanced fault analysis could help to improve positioning performance.
Du et al. [57] reviewed GNSS precise point positioning vulnerability and assisted the re-
searchers in examining failure modes to enhance performance. Current developments in
visual navigation research apply conventional fault analysis, which has given a reason to
adapt the existing GNSS fault analysis approach to solve the crucial problems raised by
specific characteristics of visual sensors. Zhai et al. [13] have investigated visual faults in
visual navigation systems and suggested that identifying potential faults in such systems
could prevent users from being threatened by large visual navigation errors. However, the
proposed analysis could not consider all of the potential threats and faults contributing
to positioning errors in such systems. A recent work by Brandon et al. [12] tested their
proposed Deep VO-aided and EKF-based VIO on four individual faults by corrupting im-
ages of the EUROC dataset [58] with methods like overshot, blur, and image skipping and
showed their proposed algorithm performance compared to other state-of-the-art systems.

However, this study aims to investigate FMEA usage on VIO to give an overview
of the faults that occur while navigating complex environments experiencing disruptions
in system performance. Here, carefully analysing the characteristics of the failure modes
presented in the VIO assists the research in recognizing the essentials of error compensators
while designing fault-tolerant federated architecture that combines GNSS, VO, and IMU.

Nevertheless, current state-of-the-art systems include advanced techniques for fault
detection and mitigation, including Interacting Multiple Models (IMMs) [59,60], hypothesis
tests [61,62] and Mahalanobis distances [63–66]. IMM and hypothesis testing have draw-
backs of utilizing predefined model and assumptions about system behaviour that may not
always hold in complex, realistic scenarios, leading to detection errors when faced with
unexpected faults or change in the system. These can lead to missed detection when work-
ing with noisy sensor data due to manual tuning. The Mahalanobis distance techniques
for system model error and abnormal measurements are sensitive to the distribution and
correlations of multivariate data. When dealing with high-dimensional data, it may lead to
difficulty estimating the covariance matrix accurately.

In contrast, learning-based approaches are used in error correction that learn complex
patterns and representations in the data. These approaches can generalize different fault
types and scenarios, provided they have been trained on a diverse dataset [28], while
classical methods may struggle with new or unforeseen fault patterns. Thus, we have
adopted the learning-based method as the error compensator in our research.

Therefore, to mitigate failure mode arising from diverse, complex scenarios in the
urban environment, this paper proposes a GRU-aided ESKF-based VIO, aiming to enhance
visual positioning. Later, this proposed system contributes to one of the sub-systems in
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fault-tolerant federated multi-sensor navigation systems to mitigate overall position errors
and increase reliability in multiple fault conditions arising from IMU, GNSS, and VO
sensor errors. Ultimately, our proposed fault-tolerant system aims to provide a reliable and
effective solution for navigation in complex conditions where VO and GNSS/INS systems
may face limitations.

3. Proposed Fault Tolerant Navigation System

To correct visual positioning errors that arise from multiple systematic faults when
navigating in urban areas, FMEA is executed at the first step to identify and analyse
systematic failure modes according to the extracted fault tree model. The failure modes are
prioritized based on potential impact and likelihood of occurrence, enabling the anticipation
and mitigation of visual positioning errors. With the FMEA outcome, the hybrid GRU-
aided ESKF VIO algorithm is discussed, as well as the algorithm implementation following
the federated multi-sensor framework. The overall fault-tolerant multi-sensor system aided
with FMEA is shown in Figure 2.
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3.1. Failure Mode and Effect Analysis (FMEA)

The implementation of FMEA on vision-based navigation systems enables the break-
ing down of high-level failure events into lower-level events along with allocating risks.
Referring to error sources in every domain from the literature review [10], the fault tree
model shown in Figure 3 is extracted.

The preliminary conclusion of FMEA is that the error occultation in the camera presents
a higher likelihood of the possibility during feature extraction due to the presence of
multiple faults resulting in position errors in the whole system. Specifically, two major fault
events, i.e., navigation environment errors and data association errors [10], show higher
possibilities of faults in visual systems. Table 1 lists reviews of common error sources over
the navigation environment and data association error events, along with their visual faults
targeted for mitigation in the context of VIO.

• One common fault in the navigation environment fault event is the feature extraction
error that contains deterministic biases that frequently lead to position errors.

• Another common fault in the data association failure event is the feature association
error that occurs during matching 2D feature locations with 3D landmarks.

• The sensor model error/long drift failure events represent errors generated by sensor
dynamics, including VO error and IMU error types.

• User failure events stand for the errors created during user operations that are normally
relevant to the user calibration mistakes.
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Table 1. Common faults in the visual positioning based on a state-of-the-art review.

Error Sources Fault Event References Error Effect

Feature Tracking Error

Navigation environment error

[45] Motion blur

Outlier Error
[52] Overexposure

[12,45] Rapid Motion

Feature Extraction Error
[10,12] Overshoot

Feature Mismatch
Data Association error

Feature Domain Bias [52] Lighting Variation

With the extension of fault events from the state-of-the-art reviews and proposition of
thorough error analysis, i.e., Figure 3, this study aims to mitigate feature extraction errors
occurring in failure modes linked to navigation environment and data association events
through a fault-tolerant GNSS/IMU/VO navigation system. The hybrid integration of
VIO holds great potential for achieving precise and reliable navigation performance in
complex conditions.

3.2. Fault-Tolerant Federated Navigation System Architecture

The utilization of a federated architecture proves advantageous in implementing fault-
tolerant multi-sensor systems, as it is known for its robustness in handling faults. This
paper proposes a federated architecture-based integrated multi-sensor fusion scheme based
on the IMU, VO, and GNSS combination. The overall architecture of our method is shown
in Figure 4.

Two sub-filters exist in the proposed architecture: a hybrid GRU-aided ESKF IMU/VO
sub-filter and an EKF-based traditional GNSS/IMU integration sub-filter. The output of
the two sub-filters is merged together with a global EKF to generate the ultimate position
estimations. The former sub-filter of the hybrid GRU-aided ESKF IMU/VO attempts to
compensate for VO errors, while the latter sub-filter of EKF-based GNSS/IMU integration
aims to correct errors from GNSS and IMU.
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3.2.1. Proposed GRU-aided ESKF VIO Integration (Sub-Filter 1)
ESKF VIO Fusion

In the tightly coupled GRU-aided ESKF VIO integration, pose measurements gen-
erated by VO are fused with the linear acceleration generated by the accelerometer and
angular velocity generated by the gyroscope. The extraction of visual features by VO is
firstly adapted to produce relative pose measurements for ESKF updates [14]. The system
filter uses GRU-predicted VO increments to correct the corresponding VIO states to obtain
the corrected position.

The state vector x of the proposed GRU-aided ESKF VIO selects the following states:

x =
[
Px, Py, Pz, Vx, Vy, Vz, Ax, Ay, Az, ∆αbx, ∆αby, ∆αbz, ∆ωbx, ∆ωby, ∆ωbz

]
(1)

where, Px, Py and Pz denote the position, Vx, Vy and Vz denote velocity, Ax, Ay and Az
denote attitude, ∆αx, ∆αy and ∆αz denote accelerometer bias and , ∆ωx, ∆ωy and , ∆ωz
denote gyroscope bias in the x-axis, y-axis and z-axis.

The widely used, tightly coupled VIO is based on a Kalman filter [14]-[25]. The system
dynamic model and measurement model are:

xk = Σkxk−1 + Qk (2)

zk = Hkxk + Πk (3)

where xk and xk−1 represent the system vector at k and k− 1 epoch; Σk and Qk represent the
state transition matrix and system processing noise; zk and Hk represent the measurement
vector and measurement matrix; and Πk represents the measurement noise.

Differing from conventional KF, ESKF uses an error-state representation, which has
several benefits in terms of computational efficiency, numerical stability and prevention of
singularities or gimbal lock issues. The details of the nominal and error states are included
in the state-of-the-art research [14].

In order to improve positioning in diverse visual conditions, the predicted error
measurements PVO/GRU are added to the error-state in a measurement update of ESKF.
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After the error-state update, the nominal state is updated with corrected error-states using
the appropriate compositions:

xk = xk−1 ⊕ ˆ∂Xk (4)

In addition, the updated estimated state vector by correcting error states are:

P̂k = P̂k|k−1 + ∂̂Pk + ∆PVO|k−1 (5)

V̂k = V̂k|k−1 + ˆ∂Vk (6)

Âk = Âk|k−1 + ˆ∂Ak (7)

α̂k = α̂k|k−1 + ˆ∂αk (8)

ω̂k = ω̂k|k−1 + ˆ∂ωk (9)

where, P̂k and P̂k|k−1 denote the nominal position vector at k and k− 1 epoch; ∂̂Pk denotes
the measured error-state position; ∆PVO|k−1 denotes the VO predicted increments vector
at k− 1 epoch; V̂k and V̂k|k−1 denote the nominal velocity at k and k− 1; ˆ∂Vk denotes the
measured error-state velocity; Âk and Âk|k−1 denote the nominal attitude at k and k− 1;
ˆ∂Ak denotes measured error-state attitude; α̂k and α̂k|k−1 denote nominal acceleration bias

at k and k− 1; ∂̂αk denotes the measured error-state acceleration bias; ω̂k and ω̂k|k−1 denote
the nominal gyroscope bias at k and k− 1; and ˆ∂ωk denotes measured error-state gyroscope
bias. After the error integrates into the updated nominal state, the error-state variables
need to reset, which has been adopted from Zhonghan et al. [67].

The proposed VIO measurement update process is illustrated in the following equations:

Kk = Σ̂k|k−1Hk
T
(

Hk Σ̂k|k−1Hk
T + Π

)−1
(10)

xk = xk|k−1 + Kk

(
zk − Hkxk|k−1

)
(11)

Σk = (1− Kk Hk)Σk|k−1 (12)

where Kk represents Kalman gain, Σkand Σ̂k|k−1 represent the measurement covariance
matrix at k and k− 1 epoch.

GRU-Aided VIO

The VIO sub-filter uses the proposed ESKF-based tightly coupled integration strategy
with a GRU model, which works during GNSS outages. The GRU consists of an update
gate zt that controls the extent of the impact on the current state force by the previous state
and a reset gate to determine the forgetfulness degree of the hidden state information ht.
The details of the GRU propagation formula and architecture are adapted from Geragersian
et al. [68]. The formula for the GRU architecture is presented below:

zt = σ(WzXt + Uzht−1) (13)

rt = σ(WrXt + Urht−1) (14)

here, Wz and Wr are the weight matrix of input for hidden layers and reset gate respectively;
Uz and Ur are the weight matrix of the hidden state for hidden layers and reset gate,
respectively; σ is the activation matrix.

The GRU model is trained with multiple trajectories containing complex scenarios
that facilitate failure modes extracted using FMEA analysis so that it can predict VO error
during flight under diverse conditions.
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The GRU output equation is formulated by:

PVO/GRU = PVO − ∆PVO (15)

where PVO denotes position error from VO, ∆PVO is position error deviations, and PVO/GRU
represents the predicted position increments.

The GRU model is shown in Figure 5.
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Two data sources from IMU and VO are generated and used to gather positioning and
attitude data for training each trajectory. Additionally, the VO position PVO and orientation
ϕVO covering multiple complex environments by UAV and IMU measured angular velocity
αINS and linear acceleration ωINS are used to calculate inputs of GRU. The output of the
GRU model is the positioning error ∆PVO generated by VO. When the GNSS signal is
unavailable, IMU/VO operates to estimate the position of the UAV where the GRU module
operates in predicting mode that predicts the position error ∆PVO, which is to be updated to
the measurements vector in the ESKF module. When VO diverges, the GRU block predicts
visual errors for error correction.

3.2.2. EKF Based GNSS/IMU Integration (Sub-Filter 2)

The tightly coupled architecture is implemented in the GNSS/MU integrated sub-filter
of the proposed fault-tolerant multi-sensor navigation system. The GPS measurement
position and IMU measurement acceleration and angular velocity proceed to estimate the
state vector, including position velocity and attitude, using traditional EKF-based fusion
filtering. Optimal states of the state vector from traditional EKF can be obtained through
prediction and observation update and is discussed in Mitchel et al. [69]. The generic
observation equation for EKF can be written as:

zkGNSS/IMU = HkGNSS/IMUXkGNSS/IMU + ΛGNSS/IMU (16)

where, HkGNSS/IMU represents the observation matrix; zkGNSS/IMU represents the observa-
tion vector; XkGNSS/IMU represents the observation state vector, and ΛGNSS/IMU represents
the observation noise matrix.
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3.2.3. Federated Filter for Multi-Sensor Fusion

The proposed federated GNSS/IMU/VO multi-sensor navigation system uses VIO
and GNSS/IMU integrated systems as the switching criterion. However, the global filter
integration was conducted using the EKF approach to fuse the data generated by sub-filters.
The detailed description and the state equations are the same as in the GNSS/INS sub-filter.
In order to reduce computational complexity, the state equation of the GNSS/IMU sub-filter
is the same as the global filter. The fusion resolution of the federated filter is as follows:

Pk|global =
r

∑
i=1

Pil (17)

Xk|global = Pk|global
−1

(
r

∑
i=1

PilXil

)
(18)

where r is the number of sub-filters; Pk|global and Pil are the covariance vector of the ith
sub-filter and the global filter; and Xk|globaland Xil are the estimated states of ith sub-filter
and the global filter. The global state estimation and the covariance vector are obtained by
fusing the sub-filter estimated position, thus yielding a global solution.

The pseudo-code of the proposed fault-tolerant federated multi-sensor navigation
system algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm of GNSS/IMU/VO Multi-Sensor Navigation System

Input: PVO, αxyz, ωxyz, PGNSS//PVO denotes the VO estimated position; αxyzdenotes the linear acceleration; ωxyzdenotes the
angular velocity; and PGNSS denotes the GNSS estimated position
Output: PVIO, PGNSS/IMU , PGNSS/IMU/VO //PVIO denotes the sub-filter 1 estimated position; PGNSS/IMU denotes the sub-filter 2
estimated position; and PGNSS/IMU/VO denotes the global filter estimated position

Initialize:

1. Initial the values for VIO and GNSS/IMU sub− filters : xk = x0 ;//x0 denotes ground truth from UAV.
2. Initial values for global filter EKF : xk|global = x0;//x0 denotes the ground truth from UAV.

for n = 1,2,3, . . .. do // n denotes number of iterations

Prediction Phase:

3. The sub-filter time update model has been derived in Equation (2), which is similar for both sub-filters and global as using the
EKF variant.

4. Covariance vector is defined as, Σk|k−1 = Fk|k−1Σk−1Fk|k−1
T + Lk|k−1Qk−1Lk|k−1

T .

Measurement Phase for sub-filters:

5. Generate the PVO/GRU predicted increments and updated the following measurement steps of the VIO sub-filter.
6. Estimate the states using the updated Equations (4)–(9).
7. Calculate the Kalman gain, updated VIO states, and the covariance matrix using Equations (10)–(12).

8. Corrected XKVIO = xk|k−1VIO + KkVIO

(
zkVIO − HkVIOxk|k−1VIO

)
.

9. Start from step 7 to estimate the Kalman gain using Equation 10 for the GNSS/MU integration.
10. Update the observation Equation (16).
11. Estimate the updated states and covariance matrix of the GNSS/IMU filter using Equations (11) and (12).
12. The proposed VIO integrated sub-filter and GNSS/INS integration using EKF are running in parallel to estimate the position

for each filter.

Measurement update for Global filter:

13. Calculate the Kalman gain: Kglobal = Σ̂global Hkglobal
T
(

Hkglobal Σ̂k|k−1global Hkglobal
T + Πglobal

)−1

14. Update the states using the traditional EKF Equation (16).
15. Obtain Pk|global and Xk|global using Equations (17) and (18).

End for
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4. Experimental Setup

To verify the proposed fault-tolerant navigation system performance under complex
environments, a GNSS/IMU/VO simulator is built on Unreal Engine with UAV unity dy-
namic models integrated into urban scenarios in MATLAB 2022a. The sensors implemented
in the simulator include an IMU block, GNSS receivers, and a front-facing monocular
camera model generated by the Navigation Toolbox and UAV toolbox. The choice of a
monocular camera is beneficial in our application due to its advantage of being less ex-
pensive, simpler to implement compared to a stereo camera, and lightweight to fit into a
drone. The complex simulated environment is generated using Unreal Engine 5.0.3 and
has a ‘US city’ scenario available in the ‘Simulation 3D Scene Configuration’ block. The
simulated scenario used in the experiments is a bright sunny day with 20% floating clouds.
The dataset is acquired with these sensors mounted on a quadrotor, as shown in Figure 6.
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The simulator consists of four blocks in total. The first block is the 3D simulation
environment block, which aims to simulate the US city environment with a combination of
camera- and UAV-based quadrotor models. The second block is GNSS integration with
a quadrotor consisting of GNSS and the quadrotor dynamics. The third block is the IMU
block interfaced with the quadrotor block. The fourth block is the ground truth from the
quadrotor dynamics to provide true quadrotor trajectories.

The IMU selects the ICM 20649 model with the specifications provided in Table 2. The
experimental data are collected with sampling rates of 10 Hz, 100 Hz, and 100 Hz for the
camera, IMU, and GNSS, respectively. The random walk error [0.001, 0.001, 0.001] m/s2 in
the IMU accelerometer results in a position error growing at a quadratic rate.
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Table 2. Specification of the ICM 20649 IMU model.

Parameter Value

Accelerometer Bias Stability 0.014 m/s2

Gyroscope Bias Stability 0.0025 rad/s

Angle Random Walk 0.00043633 m/s2 ∗ √Hz

Velocity Random Walk 0.0012356 m/s2 ∗ √Hz

The GNSS model is initialized by injecting two common failure modes of random
walk and step error that will most likely occur in an urban environment, leading to a
multipath effect.

The camera model has specifications, including a 1109 focal length, 640 × 360 optical
center, and 720 × 1280 image size. Regarding the calibration of the camera and extraction
of extrinsic and intrinsic parameters of the simulated front-facing camera, the coordinate
conversion matrix from world coordination to pixel coordination is denoted by camera
instincts matrix k:

k =

1109 0 640
0 1109 360
0 0 0


For urban operation scenarios surrounded by buildings, the visual data of tall build-

ings are captured by a camera for VIO to provide positioning information. Meanwhile,
the satellite availability is obstructed by buildings, causing a GNSS outage. The MATLAB
simulator connects to the QGroundControl software to generate real-time flight trajecto-
ries for the data collection and save it into text file format. The QGroundControl uses a
MAVLink communicator to connect the base station of the UAV block in the Simulator [70].
The integration of MAVLink with MATLAB/Simulink is adopted into the UAV package
delivery example.

Regarding the training GRU models, 10 trajectories covering more than 100,000 sam-
ples from each sensor are used for training. The sensor blocks, including IMU, the GPS
provided by the UAV Toolbox, and the Navigation Toolbox, operate in the local frame. To
ensure compatibility and effective data fusion using the proposed algorithm, a crucial step
in the data pre-processing phase involves converting the data from the local frame to the
sensor body frame. This transformation is essential for aligning the sensor data with the
algorithm’s requirements and the system’s operational frame reference.

The general performance evaluation method uses root mean square error (RMSE)
formulated by:

RMSE overall =
i=1

∑
N

√√√√(
(PxPre − PxGT)

2 + (PyPre − PyGT)
2 + (PzPre − PzGT)

2
)2

N
(19)

here, PxPre, PyPre, PzPre, are the predicted position generated by proposed algorithm in x-, y-
and z-axis, respectively; PxGT , PyGT , PzGT are the ground truth generated from UAV in x-,
y- and z-axis, respectively. The number of samples is represented using capital N.

5. Test and Results

In order to evaluate the performance of the proposed GRU-aided ESKF-based VIO,
two trajectories corresponding to experiments 1 and 2 are selected from the package delivery
experiment in an urban environment. Both experiments are carried out under sunlight
conditions, introducing common fault scenario shadows, lighting variations, motion blur,
no-texture, and motion variation consistently present throughout the flight duration. For
both experiments, a consistent fault condition is injected, i.e., the shadow of tall buildings
on a sunny day during the fight. According to the fault types and number, the flying regions
in the experiments are categorized into four distinct zones that encompass single faults,
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multiple faults, and combined faults. The faults arising from environmental sensitivity and
dynamic motion transitions under previously estimated two major failure events in visual
systems using FMEA analysis results in Section 3.1 have been discussed.

5.1. Experiment 1—Dense Urban Cynon

The purpose of this experiment is to validate the effectiveness of the proposed GRU-
aided VIO in managing specific failure modes in complex conditions. This experimental
environment includes a combination of tall and short buildings. During the experiment, a
distance of 235 m was covered within a time span of 55 s. Figure 7 shows the accumulated
3D visual position error. Our proposed GRU-aided VIO is able to reduce position error
by 86.6% compared with an ESKF-based VIO reference system. The maximum error in
Figure 7 reduces from 7.5 m to 1.9 m with the GRU adoption.
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When the UAV takes off with rapid and sudden changes in waypoints, the Dynamic
Motion Transitions failure mode occurs under the condition of jerking movements that con-
sistently result in feature tracking errors and feature association error failure modes in VO.
Moreover, the other dynamic motion transition failure mode is incorporated, i.e., turning
to replicate complex environmental conditions, thereby emulating real fight scenarios. The
UAV takes off speed sets to 20 m/s while its speed will increase up to 50 m/s at 7 s.

Figure 8 shows the RMSE position error of the proposed GRU-aided VIO system and
benchmarked with two references of VO- and ESK-based VIO position error. The RMSE
position error in the x-axis under NED coordination is relatively lower compared to y- and
z-axis. It is worth noting that the maximum position error of the ESKF-based VIO reference
system is 3.227 m, 5.6 m, and 4.1 m in the x, y, and z-axes.

In the y-axis, the position error axis increases at 22 s due to the shadow of another
building creating a variation of light. At 27 s, the UAV encounters a turn facing a plain wall
because of a lack of textures, leading to drift, inaccuracies and failure of visual odometry.
ESKF-based VIO showed relatively poor performance along the y-axis during diagonal
motion due to cross-axis coupling and multiple failure modes due to featureless plain
wall, sunlight variation, and shadow of tall buildings leading to feature degradation and
tracking features. The loss of visual features results in insufficient information for ESKF
to estimate the position accurately. In Figures 7 and 8, it is shown that VIO based on
ESKF fails to mitigate visual positioning error due to non-linear motion, lack of observable



Aerospace 2023, 10, 923 16 of 27

features, non-Gaussian noise, and uncertain state estimation, leading to non-linearization
error propagation. However, it was found that our proposed solution can mitigate position
error by 60.44%, 78.13% and 77.13% in the x-, y- and z-axes, respectively. The maximum
position error is decreased from 1.5 m, 1.6 m, and 1.2 m.
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Experiment 1.

When analyzing the z-axis performance in Figure 8, at around 37 s, the ESKF-based
VIO position error starts increasing due to a dark wall shadowed from another tall building,
causing variation of light in the frame leading to feature association error. ESKF perfor-
mance degrades due to multiple factors present in the scenario, and error accumulates over
time. After applying our proposed GRU-aided ESKF, the VIO fusion method is able to
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reduce position error at 37 s from 2.1 m to 0.6 m by predicting the VO error indicated with
details in Table 3.

Table 3. RMSE Comparison on the performance of two experiments.

Experiment Method RMSE(m)-x-axis RMSE(m)-y-axis RMSE(m)-z-axis RMSE(m)-Overall

1

VO 1.4 2.3 3.4 4.3

ESKF VIO 1.3 2.2 1.6 3.1

GRU-aided ESKF VIO 0.5 0.4 0.3 0.7

2

VO 6.6 2.9 10.4 12.6

ESKF VIO 4.7 2.5 8.6 10.1

GRU-aided ESKF VIO 0.8 0.9 0.5 1.3

5.2. Experiment 2—Semi-Structured Urban Environment

This experiment aims to measure GRU-aided ESKF VIO performance under envi-
ronments of tall buildings with open space parking areas. In this experiment, the UAV
encounters two turns, which means changing two waypoints at 60 s and 110 s, leading to
motion variation causing feature association error described as ‘Dynamic Motion Transitions’.

Figure 9 shows the accumulated 3D position error of the proposed GRU-aided ESKF
VIO system and is benchmarked with two references of VO- and ESKF-based VIO position
error. In Figure 9, the position error in the first few seconds is negative due to multiple
factors, such as shadows of tall buildings, trees on plain surfaces, shadowed buildings, and
lighting variations due to sunlight, motion blur, and rapid motion. The maximum position
error is 19.1 m at 110 s due to combinational failure modes such as dark wall, rapid motion
and motion blur. The proposed GRU-aided ESKF VIO is able to mitigate 86.62% of overall
position error. The maximum error is reduced from 19.1 m to 6.8 m.
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Figure 9. The D-position error in the presence of multiple failure modes for Experiment 2.

Figure 10 shows the VIO position RMSE error in the separate x-, y- and z-axes. Table 3
indicates that position error RMSE of ESKF is 4.7 m, 2.5 m, and 8.6 m in the x-, y- and z-axes,
respectively. The proposed GRU-aided ESKF VIO has a remarkable improvement in terms
of position error, and the specific values along the x-, y- and z-axes are 0.8 m, 0.9 m, and
0.5 m, respectively. Due to cross-axis coupling, the y-axis faces a larger estimated position
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error than others. During the time interval of 57–65 s, UAV takes a turn and passes through
a parking area where buildings are under limited field of view. In this case, the feature
extraction and tracing processes encounter challenges and lead to position estimation errors.
The proposed solution has shown excellent performance improvement in the presence of
failure modes of feature extraction error and feature tracking error, where the position error
is decreased by 62.86% in comparison to the reference systems.
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Figure 10. Position error along each axis in the presence of multiple failure modes for Experiment 2.

When analysing the z-axis performance in Figure 10, the proposed GRU-aided ESKF
VIO outperforms the reference ESKF fusion with respect to a reduction in the z-axis error
by 93.46%. According to Table 3, the reference ESKF has shown the worst performance of
8.6 m RMSE compared to the proposed method of 0.5 m RMSE. It is noted that at 104 s
during the landing phase, the UAV turns around and encounters a black wall. This leads
to higher performance errors because the VO system struggles to extract enough features
in the complex scene with poor lighting [6,8,9]. The GRU-aided ESKF VIO demonstrates
improvement compared to the traditional ESKF-based approach, resulting in a remarkable
reduction of error of 93.45%. The maximum position error in the z-axis due to dark scene
at 110 s is reduced from 16.2 m to 3.0 m. During the experiment, a distance of 459 m was
covered within a time span of 1 min 50 s.
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Table 4 indicates the maximum position error comparison for two of the experiments.
By integrating fault-tolerant mechanisms, our approach achieves more accurate position
estimation, even in challenging situations with limited visual cues. The fault-tolerant
GRU-aided ESKF VIO architecture shows robustness over a number of realistic visual
degradation scenarios.

Table 4. Maximum position error comparison for two experiments.

Experiment Method Maximum Error
in x-axis (m)-

Maximum Error
in y-axis (m)-

Maximum Error
in z-axis (m)-

Maximum 3D
Error (m)-

ESKF VIO 3.2 5.6 4.1 7.5

1 GRU-aided ESKF VIO 1.5 1.6 1.2 1.9

ESKF VIO 8.2 6.6 16.2 19.1

2 GRU-aided ESKF VIO 5.0 4.4 3.0 6.8

5.3. Performance Evaluation Based on Zone Categories

To further evaluate the successful rate when mitigating failure modes from experi-
ments 1 and 2, as detailed in Section 3.1, the fault zones are extracted in the above two
experiments.

Zone 1 indicates building shadow as the single fault triggering feature matching and
feature tracking error failure modes within the time interval. In experiment 1, between the
time interval of 33–49 s, UAV passes through shadow buildings that distort visual features,
causing incorrect matches and tracking errors when they move into or out of shadows,
as shown in Figure 11. In addition, introducing the sudden change in lighting may be
misinterpreted as IMU acceleration and rotation.
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in experiment 1.

Figure 12 a,b depict the zone 1 region to show performance comparisons of our
proposed algorithm with the reference algorithms in the presence of two failure modes.
The maximum position errors for experiment 1 in zone 1 along x-, y- and z-axes are reduced
by 52.38%, 81.57%, and 73.17%, respectively. In experiment 2, a single fault is encountered
twice during the time interval of 13–44 s and 70–106 s. Maximum position error in the time
interval of 13–44 s in x-, y- and z-axes are reduced by 93.33%, 75%, and 85%, respectively.
Hence, the proposed solution proves to be robust over two failure modes.

Zone 2 includes multiple faults, including turning manoeuvre and shadow of tall
buildings that are present in both experiments. When a UAV makes a turn, the motion
dynamics change rapidly. This leads to challenges in estimating camera motion and orien-
tation estimations, causing tracking errors. In the meantime, visual distortion also causes
feature extraction errors and feature mismatch errors due to inconsistent lighting, as shown
in Figure 13. The combination of both conditions adds complexity to the environment,
exacerbating the existing challenges in traditional ESKF-based VIO. Our proposed algo-
rithm is able to mitigate these failure modes and shows robustness in such complex scenes
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compared with traditional VIO systems. The algorithm is able to mitigate motion dynamics
and feature extraction error, reducing feature matching error by 20%, 20%, and 50% at the
time interval of 13–24 s in experiment 1 and 62.5%, 40%, and 90% at the time interval of
45–70 s with respect to the x-, y- and z-axes, as shown in Figure 14a,b.
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Figure 13. Motion dynamics, feature tracking and feature mismatch error failure modes due to the
tall, shadowed buildings in experiment 2.

In Zone 3, multiple faults are combined together, including the turning manoeuvre,
shadows from the tall buildings, variations in lighting, areas of darkness and sunlight
shadows. Zone 3 only exists as one of the most complex conditions in experiment 2. As
observed in Zone 1 and Zone 2, the turning behaviour and shadow of the tall buildings
introduce changes in motion dynamics that make the position estimation and feature
tracking challenging for traditional, ESKF-based VIO. Additionally, the presence of both
dark and well-lit areas within the scene created abrupt changes in illumination.

Figure 15 presents one demonstration image from the mounted front-facing camera
in a UAV when passing through an illuminated and shaded area. The shadows caused
by direct sunlight also create sharp pixel contrast between illuminated and shaded ar-
eas. These sudden lighting changes and the combination of multiple fault conditions
amplify the challenges posed by each individual fault, making the overall VIO perfor-
mance more susceptible to tracking errors, feature mismatches, and feature extraction error
failure modes.
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Figure 15. Feature tracking, feature extraction error, and feature mismatch failure modes for dark
and well-illuminated tall buildings in experiment 2.

Figure 16 shows that the GRU-aided ESKF VIO architecture reduces maximum po-
sition error in experiment 2 at the time interval of 107–114 s from 32.6%, 81.327%, and
64.397% in x-, y- and z-axes. Therefore, the GRU-aided fusion algorithm can perform
without interruption when the UAV navigates in illuminated and shaded areas and has
shown robustness in the presence of multiple failure modes and moving features amidst
dynamic lighting.

Zone 4 consists of a combination of complex faults, including navigation environmen-
tal error and data association fault events. The fault events consist of turning manoeuvres,
building shadows, the presence of featureless blank walls and variation in lighting. In
experiment 1, the UAV encountered a plain wall at 27–32 s of its flight, resulting in a feature
extraction error due to the lack of distinctive features on the wall shown in Figure 17. As
a result, the feature extraction process failed, leading to a lack of identifiable features to
track and match in consecutive frames. Such lack of features caused the VO to lose its
frame-to-frame correspondence, resulting in the inability to accurately estimate the UAV’s
motion in this specific time of 27–32 s. Figure 18 shows the increment of position error
caused by the mentioned disruption. The ESKF algorithm performance is heavily affected,
leading to incremental tracking errors and loss of tracking when dealing with a featureless
wall. Figure 18 shows that our algorithm has effectively reduced the maximum position
error by 42.1%, 63.3%, and 60.12% in x-, y- and z-axes, respectively.
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To evaluate the performance of the proposed fault-tolerant federated multi-sensor
navigation system, the experiment is conducted using the Experiment 1 dataset with GNSS
condition applied (faulted-GNSS and without fault GNSS) adopted from [71]. Table 5
shows the performance comparison results of the proposed GRU-aided ESKF VIO with
faulted GNSS and no-fault GNSS. The results indicate that the hybrid approach enables
mitigating the overall position error even with faulted GNSS conditions compared to [11,71].
Therefore, it is approved that the FMEA-assisted fault-tolerant multi-sensor navigation
system facilitates positioning performance in the presence of multiple faults covering all
the sensor faults in diverse, complex environments.

Table 5. The RMSE of 3D position errors of GNSS/faulted-IMU/faulted-VO solution with faulted-
GNSS/faulted-IMU/faulted-VO.

Algorithms 3D RMSE Position Error (m)

Faulted-VO/GNSS/IMU 1.2

Faulted-VIO-ESKF/GNSS/IMU 0.7

Faulted-GRU-aided-ESKF-VIO/GNSS/IMU 0.09

Faulted-VO/Faulted-GNSS/IMU 1.5

Faulted-ESKF-VIO/Faulted-GNSS/IMU 1.0

Faulted-GRU-aided-ESKF-VIO/Faulted-
GNSS/IMU 0.2

5.4. Performance Comparison with Other Datasets

This paper selects the EUROC dataset, specifically MH05_difficult, for benchmarking
with other algorithms since EUROC is commonly applied by other researchers [12,45]. The
EUROC sequence dataset was collected in an indoor machine hall with light variation.
MH05_difficult dataset contained black and white images, which they referred to as dark
and shadowed environments and captured with rapid motion. The dataset is captured in a
customized way that has several limitations, including manipulated images, customized
blur, and brightness.

Figure 19 presents the 3D position error of running our proposed GRU-aided ESKF
VIO to process MH05_difficult. The key finding is that the position error in RMSE is
reduced by 67.32%. The maximum error is reduced from 2.81 m to 1.5 m.
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Table 6 highlights the comparison results in terms of the accumulated RSME with
state-of-the-art systems, i.e., End-to-End VIO, Self-supervised VIO [12,45]. It is worth
mentioning that the EUROC dataset does not provide tight synchronization between IMU
and images, which is a primary requirement of using RNN-based VIO.

Table 6. Comparison with state-of-the-art methods that used MH_05 seq. EUROC Dataset with
motion blur failure mode.

Algorithms RMSE (m)-of MH_05 seq Improvement

End-to-end VIO [45] 1.96 m 66.32%

Self-supervised VIO [12] 1.48 m 55.4%%

Proposed GRU-aided ESKF VIO 0.66 m ---------

By cross-checking with the work of Brandon et al. [12], the proposed GRU-aided ESKF
VIO confirms the robust improvement in the presence of motion blur failure mode.

6. Conclusions

Aiming to provide fault-tolerant VIO navigation solutions against complex environ-
ments, this study proposed a hybrid federated navigation system framework aided by
FMEA for enabling fault tolerance and GRU fused with ESKF-VIO to mitigate visual
positioning errors.

Through simulations, the main advantages of the GRU and ESKF hybrid algorithm are
summarized as follows: (1) A high-efficiency recurrent neural cell with simple architecture,
namely the GRU, was chosen to predict the position error during visual degradation.
Benefiting from the proper selection of the Kalman filter performance enhancement method,
such as updating the state vector by predicting errors using the AI method, our proposed
algorithm possesses superior navigation accuracy under complex conditions. (2) The
FMEA analysis helps to prioritize anticipated failure modes such as feature extraction
error, feature tracking error, and motion dynamics, enabling us to mitigate position error
caused by these failure modes before they lead to operation failure. (3) The mitigation
of feature extraction failure modes, which can subsequently lead to feature association
errors. Via demonstrations, it is found that multiple factors or faults within the navigation
environment and the UAV’s dynamics reduce the impact of those failures.

This approach represents a significant step towards improving the robustness and reli-
ability of VIO, particularly in complex and dynamic environments where feature extraction
error, feature tracking error, and feature mismatch are critical for accurate navigation. With
the correction of the VIO, the fault-tolerant multi-sensor performance is demonstrated to be
improved under diverse, complex urban environments in terms of robustness and accuracy
at different time scales, enabling uninterrupted and seamless flight operations.
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