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Abstract: A passive localization algorithm based on UAV aerial images and Angle of Arrival (AOA)
is proposed to solve the target passive localization problem. In this paper, the images are captured
using fixed-focus shooting. A target localization factor is defined to eliminate the effect of focal length
and simplify calculations. To synchronize the positions of multiple UAVs, a dynamic navigation
coordinate system is defined with the leader at its center. The target positioning factor is calculated
based on image information and azimuth elements within the UAV photoelectric reconnaissance
device. The covariance equation is used to derive AOA, which is then used to obtain the target
coordinate value by solving the joint UAV swarm positional information. The accuracy of the
positioning algorithm is verified by actual aerial images. Based on this, an error model is established,
the calculation method of the co-localization PDOP is given, and the correctness of the error model is
verified through the simulation of the Monte Carlo statistical method. At the end of the article, the
trackless Kalman filter algorithm is designed to improve positioning accuracy, and the simulation
analysis is performed on the stationary and moving states of the target. The experimental results
show that the algorithm can significantly improve the target positioning accuracy and ensure stable
tracking of the target.

Keywords: UAVs; co-localization; error analysis; cubature Kalman filter

1. Introduction

Reconnaissance-type UAVs are equipped with key features that enable them to lo-
cate targets quickly and accurately, as well as predict their behavior with precision. As
technology has advanced, UAVs have become capable of multi-machine collaborative
operations, thanks to bionic clustering and communication networking technologies. Opto-
electronic information technology has also undergone significant development, resulting in
the integration, miniaturization, and cost-effectiveness of airborne optoelectronic detection
devices [1,2]. To further improve target localization accuracy, UAVs now employ a clustered
approach to execute target localization and situational awareness duties [3].

In general, there are two types of UAV target localization techniques: active localization
and passive localization. Active localization is the process of actively locating a target using
a radio instrument, such as a UAV radar. The UAV actively ranges the target while actively
positioning itself, which has a bigger impact on the UAV’s own concealing abilities and
survivability [4,5]. By passively collecting target information rather than actively producing
electromagnetic waves, lasers, etc., to obtain ranging information, passive placement helps
to some extent, ensuring the safety of the UAV itself. According to the type of observation
quantity, passive localization techniques are divided into several categories: primarily
Collinear Equation, Image Matching, Binocular Vision 3D Localization, Doppler Rate of
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Frequency Change (DRC), Doppler Rate of Chang (DRC), Phase Difference Rate of Change
(PDRC), Time Difference of Arrival (TDOA), Frequency Difference of Arrival (FDOA),
Angle of Arrival (AOA), and other techniques [6,7]. The UAVs mentioned in this paper
perform clustered localization tasks, and they distinguish themselves by being small, light,
and having low power consumption, as well as better anti-jamming and stealthiness.
To accommodate the UAV platform and usage needs, localization techniques need to
be improved.

Collinear equation, image matching, and binocular vision 3D localization methods in
the aforementioned passive localization are localization methods based on image informa-
tion that can localize the target via a single image but with significant localization error. The
flat terrain assumption, which is not always true in real-world application circumstances, is
the foundation of the covariance equation approach. Although feature-based image match-
ing is more efficient and gray-scale correlation-based image matching is more widely used,
image-matching algorithms are more difficult to use, take longer to complete, and demand
more computing resources, and thus they cannot be employed in situations where real-time
performance is crucial. The secret to binocular or multicamera vision 3D localization is to
shoot the target from various angles and acquire local feature points of the object, which
cannot satisfy the measurement accuracy of further away targets due to the restriction of
baseline distance. Although direction-finding cross-localization improves target maneuver-
ing performance prediction, it has a significant flaw in multi-target localization and falls
short of UAVs’ general criteria. In wireless sensor networks, where target information is
typically received from sensors mounted on several observation points, methods like DRC,
PDRC, TDOA, FDOA, and AOA are based on fast-improving localization algorithms [8].

To sum up, this work suggests an enhanced passive localization technique with the
following key contributions based on the picture data obtained from aerial photography.

1. The solution technique does not require the input of focal length and elevation information;
2. Simultaneous localization of multiple targets is possible;
3. The target localization error may be estimated based on the error component of

each observation;
4. The proposed traceless Kalman filtering approach can significantly increase the target

localization and tracking accuracy while maintaining good robustness.

The article is organized as follows. Section 2 discusses the multi-UAV cooperative
target localization method, including algorithm assumptions and a schematic depiction
of the computational flow. Section 3 introduces the multi-UAV target cooperative local-
ization algorithm. Section 4 examines the localization error and constructs a cooperative
localization error model based on Section 3. Section 5 describes the traceless Kalman filter’s
principles and computational methods. Section 6 simulates the algorithm’s correctness and
highlights its benefits and drawbacks. Section 7 presents the conclusions.

2. Scenario Problem Description
2.1. Cooperative Target Localization Process for Multiple UAVs

The scenario is described in terms of multiple UAVs performing real-time reconnais-
sance and localization missions, as follows: The UAV is equipped with an electro-optical
load to obtain wide-field of view, high-resolution infrared and visible image information,
allowing both target and target-assisted localization to be performed.

Through mission mustering, multiple UAVs in the scenario area coordinate to pin-
point the objective. Within the electric-optic load action range, multiple UAVs gather the
corresponding target pixel coordinates based on image data, sync the image data with the
appropriate navigation data to determine the target’s relative position using the pertinent
interior orientation data, and then convert the target’s absolute position data, The specific
process is shown in Figure 1. A single UAV’s positioning process requires preassembled
elevation or range information. We design a collaborative target placement solution ap-
proach in the absence of elevation information, taking into account the benefits of passive
positioning and relative height measurement accuracy. Continuous tracking and gazing of



Aerospace 2023, 10, 943 3 of 24

the target is impossible due to the complex combat environment, but to take advantage
of the UAV’s wide field of view for efficient reconnaissance in a limited time window, it
is necessary to complete multiple target localization solutions based on multiple images.
Furthermore, because absolute target position information is required, multiple UAVs
should establish spatial relative relationships through position sharing prior to collabora-
tive target localization, and the time uniformity problem is solved by synchronizing and
fusing multiple information of respective UAVs.

Aerospace 2023, 10, x FOR PEER REVIEW 3 of 26 
 

 

process is shown in Figure 1. A single UAV’s positioning process requires preassembled 

elevation or range information. We design a collaborative target placement solution ap-

proach in the absence of elevation information, taking into account the benefits of passive 

positioning and relative height measurement accuracy. Continuous tracking and gazing 

of the target is impossible due to the complex combat environment, but to take advantage 

of the UAV’s wide field of view for efficient reconnaissance in a limited time window, it is 

necessary to complete multiple target localization solutions based on multiple images. 

Furthermore, because absolute target position information is required, multiple UAVs 

should establish spatial relative relationships through position sharing prior to collabora-

tive target localization, and the time uniformity problem is solved by synchronizing and 

fusing multiple information of respective UAVs. 

 

Figure 1. Schematic diagram of the process of Multi-UAV performing target positioning tasks. 

2.2. Model Assumptions 

The following assumptions are made in the above scenario problem: 

(1) Because the UAV’s camera center corresponds with the origin of the navigation coor-

dinate system, any position mistake between them is ignored. 

(2) The UAV’s own location information is updated without delay; 

(3) The data link has no latency, a big bandwidth, and anti-interference properties to 

ensure that information is properly transferred. 

(4) The image’s optical distortion is ignored. 

The input parameters for cooperative target localization of numerous UAVs are pri-

marily separated into the following categories: UAV flight status parameters, navigation 

data, and picture data, among others. The output parameter is the location information of 

the target, and the specific calculation process is shown in Figure 2. 
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2.2. Model Assumptions

The following assumptions are made in the above scenario problem:

(1) Because the UAV’s camera center corresponds with the origin of the navigation
coordinate system, any position mistake between them is ignored.

(2) The UAV’s own location information is updated without delay;
(3) The data link has no latency, a big bandwidth, and anti-interference properties to

ensure that information is properly transferred.
(4) The image’s optical distortion is ignored.

The input parameters for cooperative target localization of numerous UAVs are pri-
marily separated into the following categories: UAV flight status parameters, navigation
data, and picture data, among others. The output parameter is the location information of
the target, and the specific calculation process is shown in Figure 2.
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Figure 2. Flow chart of target co-location calculation.

3. Multi-UAV Target Co-Location Modeling

The set of UAVs involved in cooperative positioning is denoted by
Sn =

{
Snj
∣∣j = 1, 2, . . . , N

}
, where N is the total number of UAVs involved in localization;

the set of targets that may be scouted and located is denoted by UT =
{

UTi

∣∣i = 1, 2, . . . , K
}

,
where K denotes the total number of targets that can be scouted and located.

3.1. WGS-84 Earth Ellipsoid Model

The Earth ellipsoid is a mathematically defined Earth surface that approximates
the geodetic level and serves as the reference framework for geodesy and global posi-
tioning techniques [9]. This reference also displays the WGS-84 Earth ellipsoid model’s
major parameters.

3.2. Synchronization and Updating of Observational Position

The coordinates of the UAV coordinate system are derived from the image and the
cooperative positioning of the target by the UAV, but because the positions of numerous
UAVs are continually changing, the positions of multiple UAVs must be synchronized
and updated.

It is expected that each UAV may collect its own geodetic coordinates and share their
position with one another. Localization UAVs are classified into two types: leaders and
followers. The mission planning technique assures that there is always one leader in the
system to participate in positioning while the rest of the UAVs are followers. The method
described in [10] is used in this paper to pick the leader aircraft.

This work develops a dynamic navigation coordinate system to ease the calculation.
The dynamic navigation coordinate system (On − XnYnZn) is defined as follows: the
coordinate system’s origin is solidly connected to the camera center of the lead aircraft, the
Xn axis is positively pointing to the north, the Yn axis is in the plumb plane and positively
pointing to the sky, and the Zn axis follows the right-hand rule. The positions of the other
UAVs in the dynamic navigation coordinate system are dynamically updated as the leader’s
position changes. Figure 3 depicts the position of each UAV in the dynamic navigation
coordinate system at a given time.
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Figure 3. Schematic diagram of position synchronization and update based on dynamic navigation
coordinate system.

The longitude, latitude, and altitude information for the UAV in the WGS-84 Earth
ellipsoidal geodetic coordinate system is τ

g
c(j) = (λj, ϕj, hj), (j = 1, 2, . . . , N), and its posi-

tion in the dynamic navigation coordinate system is Snj, (j = 1, 2, . . . , N), where the lead
aircraft coordinates are denoted as τ

g
c(1) = (λ0(1), ϕ0(1), h0(1)) and Sn1, respectively, and

the positions of other UAVs in the dynamic navigation coordinate system are shown in
Equation (1):

Snj = Cn
e · Ce

g · (τ
g
c(j) − τ

g
c(1)), (j = 2, . . . , N) (1)

Ce
g =

− sin ϕ0(1) cos λ0(1) − sin ϕ0(1) sin λ0(1) cos ϕ0(1)
cos ϕ0(1) cos λ0(1) cos ϕ0(1) sin λ0(1) sin ϕ0(1)
− sin λ0(1) cos λ0(1) 0

 (2)

where Cn
e denotes the ratio transformation of the geographical Cartesian coordinate system

to the navigation coordinate system.

3.3. Image Based Localization Factor Solution Method

The target positioning solution process has to specify the coordinate system, angle,
and coordinate system conversion matrix for a single image. Six coordinate systems: carrier
coordinate system, servo stabilization coordinate system, electric-optic load system, and
pixel coordinate system, as well as parameters like aircraft attitude angle, electric-optic load
installation angle, servo frame angle, and look-down angle [11], are involved in addition to
the definition of the coordinate systems shown in Sections 3.1 and 3.2.

By identifying the targets and using the coaxial image plane, the electric-optic load may
be used to determine the pixel coordinates of each target. Through image detection data and
optoelectronic device characteristics, the target information on the image can be determined.
Give the symbol ΘTij to this information and define it as a target positioning factor.

First, build the camera coordinate system as depicted in Figure 4 and use the UAV’s
position Snj as the coordinate origin. In the navigation coordinate system, the coordinates
of Snj are (Xns(j), Yns(j), Zns(j)), those of the target point A(i), which corresponds to the
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image point a(i), are (XnA(i), YnA(i), ZnA(i)), and the inverse equation of the common line
equation is as follows: XnA(i) − Xns(j) = (YnA(i) −Yns(j))

c11(j)Xsa(i)+c12(j)Ysa(i)+c13(j)Zsa(i)
c21(j)Xsa(i)+c22(j)Ysa(i)+c23(j)Zsa(i)

ZnA(i) − Zns(j) = (YnA(i) −Yns(j))
c31(j)Xsa(i)+c32(j)Ysa(i)+c33(j)Zsa(i)
c21(j)Xsa(i)+c22(j)Ysa(i)+c23(j)Zsa(i)

(3)

where Cmn(j)(m ∈ [1, 3], n ∈ [1, 3]), the conversion matrix between the navigation coordinate
system and the UAV camera coordinate system, corresponds to the coefficients of Cn

c(j).

Aerospace 2023, 10, x FOR PEER REVIEW 7 of 26 
 

 

( )

( )

( )1/2

0( )

max( )

( )1/2

0( )

max( )

1

2 tan
( )

2 tan
( )

j

Tij i j

j

j

i j

j

v v
PxV

u u
PxU





 
 
 
 
 

 = − − 
 
 
 −
  

 (7) 

Define 
( )

T
n T T T

c j nj nj njC    =    , where ( )11( ) 12( ) 13( )nj j j jC C C =  , 

( )21( ) 22( ) 23( )nj j j jC C C = , and ( )31( ) 32( ) 33( )nj j j jC C C = . We can obtain the follow-

ing by converting Equation (3): 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

nA i j nj Tij

nA i j nj Tij

nA i j nj T

i

ns

ns

n ij

nA j nj Ti

s

ns j

X X

Y Y

Z Z

Y Y









− 
=

− 


−  =
 − 

 (8) 

The internal orientation components and target pixel coordinates used in the UAV 

njS ’s reconnaissance of the target 
iTU  are represented by Tij  in Equation (7). It is clear 

that for a specific kind of electric-optic load, the internal orientation elements 
( )1/2j  , 

( )1/2j  , 
( )max jPxV  , 

( )max jPxU  , 
0( )ju   and 

0( )jv   have constant values and that the localiza-

tion factor only varies with the target pixel coordinates and is unaffected by the actual size 

and focal length of the image element. 

 

Figure 4. Schematic diagram of single-image based object detection. 

3.4. Image-Based AOA Vector Solution Process 

The AOA can be solved if the current position and attitude of the UAV and the ori-

entation factor within the target are known as follows: 

Ys

Zs

Xs

Os

Op

up

vp

A in Pixel coordinate

(Xsa, Ysa, Zsa)

Sc

Target A

(XsA, YsA, ZsA)

On

Yn

Xn

Zn

Pixel coordinate 
system

Electric-optic load 
system

Navigation 
coordinate system

Geodetic 
coordinate system

Servo image 
stabilization system

Carrier coordinate 
system

Pixel coordinate system

Figure 4. Schematic diagram of single-image based object detection.

Set the UAV electric-optic load’s longitudinal and lateral resolution to
PxVmax(j)× PxUmax(j), the half field of view angles in the longitudinal and lateral directions
to α(j)1/2 × β(j)1/2, the physical dimensions of the image elements in the longitudinal and
lateral directions to dv(j) × du(j), the focal length to f(j), and using the definition in Figure 4
we can obtain f(i) = Xsa(i), and the principal point of the image’s position in the pixel coor-
dinate system to (u0(j), v0(j)). Target’s pixel coordinates are (ui, vi), (i = 1, 2, . . . , K), image
point a(i)’s camera coordinates are (Xsa(i), Ysa(i), Zsa(i)), and the transformation between
the two-dimensional image coordinate system and the camera coordinate system can be
expressed as follows:

1
Xsa(i)

Xsa(i)
Ysa(i)
Zsa(i)

 =


1

−(vi − v0)
dv(j)
f(j)

(ui − uo)
du(j)
f(j)

 (4)

The following formula can be derived in accordance with Figure 4 and its definition.

dv(j)

f(j)
=

2 tan
(

α(j)1/2

)
PxVmax(j)

(5)

du(j)

f(j)
=

2 tan
(

β(j)1/2

)
PxUmax(j)

(6)
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The desired placement factor is the right-hand side of Equation (4), and the organized
expression is as follows:

ΘTij =


1

−(vi − v0(j))
2 tan(α(j)1/2)

PxVmax(j)

(ui − u0(j))
2 tan(β(j)1/2)

PxUmax(j)

 (7)

Define Cn
c(j) =

[
ωT

nj κT
nj ρT

nj

]T
, where ωnj =

(
C11(j) C12(j) C13(j)

)
,

κnj =
(

C21(j) C22(j) C23(j)

)
, and ρnj =

(
C31(j) C32(j) C33(j)

)
. We can obtain the

following by converting Equation (3):
XnA(i)−Xns(j)
YnA(i)−Yns(j)

=
ωnj×ΘTij
κnj×ΘTij

ZnA(i)−Zns(j)
YnA(i)−Yns(j)

=
ρnj×ΘTij
κnj×ΘTij

(8)

The internal orientation components and target pixel coordinates used in the UAV
Snj’s reconnaissance of the target UTi are represented by ΘTij in Equation (7). It is clear that
for a specific kind of electric-optic load, the internal orientation elements α(j)1/2, β(j)1/2,
PxVmax(j), PxUmax(j), u0(j) and v0(j) have constant values and that the localization factor
only varies with the target pixel coordinates and is unaffected by the actual size and focal
length of the image element.

3.4. Image-Based AOA Vector Solution Process

The AOA can be solved if the current position and attitude of the UAV and the
orientation factor within the target are known as follows:

Vij =
[
θij(k), ψij(k)

]T represents the AOA Vector. The following equation is obtained
using Equation (8).

tan Vij =

[
σtarget(i) · 1

‖ζij‖2
εij

]
(9)

ζij =
[

ωnj × ΘTij
κnj × ΘTij

ρnj × ΘTij
κnj × ΘTij

]T
(10)

εij =
ωnj ×ΘTij

ρnj ×ΘTij
(11)

From Equation (9) we obtain:

Vij =

[
σtarget(i) · tan−1( 1

‖ζij‖2
)

tan−1(εij)

]
(12)

Define σtarget(i) as follows:

σtarget(i) =

{
1, Aerial Target
−1, Ground Target

(13)

As evident from Equations (9)–(13), targets positioning factor ΘTij, the transformation
matrix Cn

c(j) and the target coefficient σtarget(i) have the biggest effects on the AOA vector.
This paper performs ground reconnaissance operations with σtarget(i) set to −1.
The AOA Vector for N UAVs is:

VSN =
[
Vi1, . . . , Vij . . . , ViN

]T (14)
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3.5. Co-Location Solution Model

The targets’ location coordinates are UTi =
[
xTi , yTi , zTi

]T
(i = 1, 2, . . . , K). Figure 3

depicts the relationship between the UAV Snj and the target UTi , with Rij serving as a
measure of their separation.

According to Figure 3 and Equations (8) and (12), the following equation can be
obtained:

UTi − Snj = Rij ·

cos θij · sin ψij
sin θij

cos θij · cos ψij

 (15)

Define τθij ,ψij =
[
τ

θij ,ψij
1 τ

θij
2 τ

θij ,ψij
3

]T
, then:τ

θij ,ψij
1

τ
θij
2

τ
θij ,ψij
3

=
cos θij · sin ψij

sin θij
cos θij · cos ψij

 (16)

The procedure suggested in [12] allows us to roughly eliminate Rij:

Φij ×UTi = Φij × Snj, (i = 1, 2, . . . , K, j = 1, 2, . . . , N) (17)

Φij =


(τ

θij ,ψij
1 )

2
− 1 τ

θij ,ψij
1 τ

θij
2 τ

θij ,ψij
1 τ

θij ,ψij
3

· · · (τ
θij
2 )

2
− 1 τ

θij
2 τ

θij ,ψij
3

· · · · · · (τ
θij ,ψij
3 )

2
− 1

 (18)

where Φij is the symmetric matrix and rank(Φij) = 2, and thus Equation (17) requires more
equations than necessary to meet the target position’s solution.

For UAVs involved in localization Sn, there exists:
Φi1
Φi2
. . .

ΦiN

×UTi =


Φi1 × Sn1
Φi2 × Sn2

. . .
ΦiN × SnN

, N ≥ 2 (19)

It is possible to determine the target location coordinates by using Equation (1),
Equation (7), Equation (12) and Equation (19). By converting the Earth’s Cartesian coordi-
nate system to the geodetic coordinate system and iteratively calculating the final geodetic
coordinates, satisfying the accuracy longitude, latitude, and altitude as (λTi, φTi, hTi), and
the result UTi is the coordinates of the navigation system of each target calculated with the
coordinates of the UAV Snj in the navigation coordinate system as the reference point. After
converting the measure to degrees, the targets’ Earth coordinates are finally discovered.

4. Collaborative Positioning Error Model
4.1. AOA Error Model Based on Image

The look-down angle of the electric-optic load is θxsj, with error δθxsj(k), the installation
angle of the electric-optic load is [φpj(k), ϑpj(k), γpj(k)], with error [δφpj(k), δϑpj(k), δγpj(k)],
the yaw, pitch, and roll angles at the camera moment are [φbj(k), ϑbj(k), γbj(k)], with mea-
surement errors [δφbj(k), δϑbj(k), δγbj(k)], the altitude and azimuth angles of the frame are
[θcj(k), ψcj(k)], with error [δθcj(k), δψcj(k)], and let the true value of the pixel coordinates of
the target observed by UAV Snj at time k. It should be noted that since the navigation device
and the electric-optic load are solidly coupled to reduce error, the installation angle is 0.
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Then the observation vector is:

L̂k =
[
θ̂bj(k), φ̂bj(k), γ̂bj(k), θ̂cj(k), φ̂cj(k), θ̂xsj(k)

]T
(20)

The observation measurement error is:

δLk =
[
δθbj(k), δφbj(k), δγbj(k), δθcj(k), δφcj(k), δθxsj(k)

]T
(21)

At time k, The measured value of AOA Vector VSN is V̂k, The true value of AOA Vector
VSN is Vk, then we get:

V̂k =
[
V̂i1(k), . . . , V̂ij(k) . . . , V̂iN(k)

]T (22)

Vk = V̂k + Jk × δLk + σJ
k (23)

where Jk is the Jacobian matrix, σJ
k the residual vector, and each value in σJ

k is the residual
of a single observation from its standardized value.

The calculation of the matrix Jk is performed below.
To facilitate the calculation, set the auxiliary variable as Maux =

[
X j, Y j, Zj

]T , ΘTij is
normalized to obtain unit vector τ̃c(i), and τ̃c(i) is transformed by Cn

c(j):

Maux =

 X j
Y j
Zj

 = Cn
c(j) · τ̃c(i)(i = 1, 2, . . . , M), (j = 1, 2, . . . , N) (24)

Equation (24) is transformed to obtain a new expression for the AOA Vector.

Vk =

[
· · · arcsinY j arctan

X j

Zj
· · · arcsinYN arctan XN

ZN

]T
(25)

A linearized transformation of Equation (23) yields Jk:

Jk =



f1(θb1) f1(φb1) f1(γb1) f1(θc1) f1(φc1) f1(θxs1)
g1(θb1) g1(φb1) g1(γb1) g1(θc1) g1(φc1) g1(θxs1)

. . . . . . . . . . . . . . . . . .
f j(θbj) f j(φbj) f j(γbj) f j(θcj) f j(φcj) f j(θxsj)
gj(θbj) gj(φbj) gj(γbj) gj(θcj) gj(φcj) gj(θxsj)

. . . . . . . . . . . . . . . . . .


de f ine :

f j(x) = Kj
∂Y j
∂υj

, υj = θbj, φbj, γbj, θpj, φpj, γpj, θcj, φcj, θxsj

gj(x) = Wj

(
∂X j
∂υj

Zj −
∂Zj
∂υj

X j

)
, υj = θbj, φbj, γbj, θpj, φpj, γpj, θcj, φcj, θxsj

(26)

where: Kj =
1√

1−Y j
2
, Wj =

1
X j

2+Zj
2

∂Maux

∂υj
=

∂Cn
c(j)

∂υj
τ̃c(i), υj = θbj, φbj, γbj, θpj, φpj, γpj, θcj, φcj, θxsj (27)

4.2. Collaborative Positioning Error Model Based on PDOP

Position Dilution of Precision, or PDOP, is simply a measure of how accurate a location
is, and in a satellite positioning system, the degree of the PDOP value indicates how well-
distributed the satellite terminals are [13]. During the cooperative positioning of several
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UAVs, the DOP value of each measurement site in the reconnaissance region is influenced,
with reduced DOP values frequently resulting in higher positioning accuracy [14]. In
order to analyze the error range of cooperative positioning and to suggest optimization
ideas, PDOP simulation and analysis of the cooperative positioning of numerous UAVs are
employed in this study. The derivation formula in question is displayed below.

Assuming that the target is indeed in the position [xTi, yTi, zTi]
T , (i = 2, 3, . . . , M), the

target solution is in the position [x̂Ti, ŷTi, ẑTi]
T , (i = 2, 3, . . . , M), and we obtain:

δXk =

 xTi
yTi
zTi

−
 x̂Ti

ŷTi
ẑTi

 (28)

Vk = V̂k + Hk × δXk + σH
k (29)

Hk is the Jacobian matrix, and σH
k is a vector of residuals between the observed values

and the standard values. Each value in this vector represents the residual of a single
observation compared to its standard value.

According to Equation (29), Hk is obtained as:

Hk =



− (xTi−xn1)(yTi−yn1)

L1r2
1

L1
r2

1
− (zTi−zn1)(yTi−yn1)

L1r2
1

zTi−zn1
L2

1
0 − (xTi−xn1)

L2
1
· sign(zTi − zn1)

· · · · · · · · ·
− (xTi−xnj)(yTi−ynj)

Ljr2
j

Lj

r2
j

− (zTi−znj)(yTi−ynj)

Ljr2
j

zTi−znj

L2
j

0 − (xTi−xnj)

L2
j
· sign(zTi − znj)

· · · · · · · · ·


(30)

The covariance array of the error δXk is:

GδX = E[δXkδXT
k ] = BδX

{
E[δVkδVT

k ]
}

BT
δX (31)

BδX = (Hk
T Hk)

−1
Hk

T (32)

PDOP =
√

trac(GδX) (33)

The PDOP solution procedure for cooperative localization of multiple UAV targets is
provided by Equations (30)–(33).

4.3. Error Analysis

There are two sections to the error analysis. One is the external orientation element, or
the UAV’s flying status at the time of target launch, as illustrated in Table 1. The other is
the internal orientation element, which is represented by the target pixel coordinates at the
time of target launch in Tables 2 and 3, which displays the distribution of the measurement
errors for the external orientation element.

The simulation is run under the conditions indicated in Table 1 to ensure that the error
model is accurate, and the additional parameters are shown in Tables 2 and 3.

The location factor can be calculated as ΘTij ≈
[
1 0 0

]T from Equation (7), assuming
that the target is close to the center of the image. According to the circumstances outlined
in [11], the error when the target is at the edge of the image is greater than the error when
the target is in the center of the image, so four places in Figure 5A–D were chosen for a
Monte Carlo simulation using arithmetic. The look-down angle of view was set at −90◦,
and the relative altitude of the flight was 3000 m.
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Table 1. Observation parameters.

Parameter Signal Numerical Value

pitch/◦ ϑbj 1.2
yaw/◦ φbj 0
roll/◦ γbj −0.5

Installation pitch/◦ ϑpj 0
Installation yaw/◦ φpj 0
Installation roll/◦ γpj 0

Frame altitude angle/◦ ϑcj −1.2
Frame azimuth angle/◦ φcj 0.5

Look down angle/◦ ϑxsj −90

Table 2. Electro-optical reconnaissance equipment parameters.

Parameter Signal Value

Field of view β(j)× α(j) 28◦ × 21◦

Resolution PxUmax(j)× PxVmax(j) 4096 × 3072
Horizontal half field of view β(j)1/2 14◦

Vertical half field of view α(j)1/2 10.5◦

Principal point position (u0(j), v0(j)) (2047, 1535)

Table 3. Observation parameters.

Parameter Signal Error Range

Pitch error/◦ δϑbj N (0, 0.8)
Yaw error/◦ δφbj N (0, 0.8)
Roll error/◦ δγbj N (0, 0.8)

Installation pitch error/◦ δϑpj N (0, 0.2)
Installation yaw error/◦ δφpj N (0, 0.2)
Installation roll error/◦ δγpj N (0, 0.2)

Frame altitude angle error/◦ δϑcj N (0, 0.1)
Frame azimuth angle error/◦ δφcj N (0, 0.1)
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Figure 5. Points selected for Monte Carlo simulation to obtain maximum error. A, B, C and D
correspond to the maximum error position and E corresponds to the minimum error position.
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Figures 6–9 display the distribution of AOA errors for the target sites when the
parameter values in Table 1 are used. Table 4 displays the computation results and
observational parameters.
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Figure 6. Distribution of AOA errors of A. (a) shows the distribution of altitude AOA error, with
mean −72.747 and standard deviation 0.810; (b) shows the distribution of azimuth AOA error, with
mean 143.377 and standard deviation 2.734.
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Figure 7. Distribution of AOA errors of B. (a) shows the distribution of altitude AOA error, with
mean −72.733 and standard deviation 0.803; (b) shows the distribution of azimuth AOA error, with
mean 36.590 and standard deviation 2.701.
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Figure 8. Distribution of AOA errors of C. (a) shows the distribution of altitude AOA error, with
mean −72.702 and standard deviation 0.799; (b) shows the distribution of azimuth AOA error, with
mean −36.655 and standard deviation 2.715.
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Figure 9. Distribution of AOA errors of D. (a) shows the distribution of altitude AOA error, with
mean −72.726 and standard deviation 0.808; (b) shows the distribution of azimuth AOA error, with
mean −143.310 and standard deviation 2.727.
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Table 4. AOA of measurements at each point under condition 1.

ID Point Pixel
Coordinate

Distribution of AOA
Altitude

Angle/◦(Monte Carlo)

Distribution of
AOA Altitude

Angle/◦(PDOP)

Distribution of AOA
Azimuth

Angle/◦(Monte Carlo)

Distribution of
AOA Altitude

Angle/◦(PDOP)

1 A (0, 0) N (−72.747, 0.810) N (−72.75, 0.806) N (143.377, 2.734) N (143.38, 2.717)
2 B (4096, 0) N (−72.733, 0.803) N (−72.74, 0.806) N (36.590, 2.701) N (36.59, 2.715)
3 C (4096, 3072) N (−72.702, 0.799) N (−72.73, 0.806) N (−36.655, 2.715) N (−36.63, 2.714)
4 D (0, 3072) N (−72.726, 0.808) N (−72.74, 0.806) N (−143.310, 2.727) N (−143.34, 2.716)

According to the experiments, under ideal flight conditions, the target’s image-based
AOA azimuth angle and altitude angles should both not exceed 2.73◦ and 0.81◦, respectively.

Based on the calculation method of PDOP value proposed in Sections 4.1 and 4.2, the
multi-aircraft cooperative localization error analysis is carried out. Firstly, two UAVs are
set up for target localization; the position coordinates of the UAVs are shown in Table 5,
the position error is 0 m, and the flight altitude is 3000 m. According to the parameters in
Table 2, it can be known that the size of the corresponding area of the captured image is
calculated to be about 1400 m × 1200 m when flying at a relative altitude of 3000 m. In
this area, the PDOP value under any position can be calculated and plotted into a contour
distribution map, as shown in Figure 10.
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Figure 10. Two-UAV cooperative reconnaissance PDOP simulation (Baseline: 200 m and 100 m).
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Table 5. Coordinate distribution of UAVs.

Point Coordinates Symbol Value 1/m Value 2/m

UAV1 (x1, y1, z1) (50, 0, 0) (25, 0, 0)
UAV2 (x2, y2, z2) (−50, 0, 0) (−25, 0, 0)

The results of cooperative localization of two UAVs show that when the distance
between UAVs is 200 m and 100 m, the minimum value of PDOP distribution is 50 m
and 100 m, respectively, i.e., the smaller the spacing is, the larger the localization error
is. In addition, the target localization accuracy is also related to the distribution of UAVs;
therefore, four UAVs are set up for target localization, and their errors are analyzed.
Assuming that four UAVs fly at a relative height of 3000 m, the position coordinates in the
2D plane are shown in Table 6. The calculation results are shown in Figures 11 and 12.

Table 6. Coordinate distribution of UAVs.

Point Coordinates Symbol Square Formation Flying/m Diamond Formation Flying/m

UAV1 (x1, z1) (100, 100) (0, 100)
UAV2 (x2, z2) (100, −100) (0, −100)
UAV3 (x3, z3) (−100, 100) (200, 0)
UAV4 (x4, z4) (−100, −100) (−200, 0)

PDOP Contour line is distributed as follows.
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Figure 11. PDOP and Monte Carlo simulation position error conture map of square formation flying.

Figures 11 and 12 compare the PDOP values of four unmanned aerial vehicles’ target
collaborative positioning under different flying modes with Monte Carlo shooting simula-
tion results. The errors between the two are roughly equal, with a minimum placement
inaccuracy of about 20 m.
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Figure 12. PDOP and Monte Carlo simulation position error conture map of diamond formation flying.

In summary, utilizing the collaborative positioning model of many unmanned aerial
vehicles, a PDOP-based error computation model was constructed, and it was validated
using Monte Carlo simulation. The simulation findings show that the baseline has a
significant impact on the collaborative positioning error of the two UAVs, with a minimal
positioning error of roughly 50 m. The collaborative positioning error of four unmanned
aerial vehicles is less affected by the formation mode under the same conditions, with a
minimal positioning error of roughly 20 m. Filtering methods can increase the accuracy of
error models.

5. Target Localization Method Based on Cubature Kalman Filter

Nonlinear filtering is used because the observation functions of both the time dif-
ference and the measured AOA observations are nonlinear functions [15,16]. Because of
its linearization procedure, the Extended Kalman Filter (EKF) can only achieve a greater
filtering performance provided the linearization error of the system’s state and observation
equations is small [17,18]. The particle filter (PF) algorithm, which has recently been devel-
oped, is a good algorithm for solving the nonlinear estimation problem [19,20]. As a result,
the improvements in localization error by the EKF and PF algorithms were compared.

Arasaratnam and Haykin et al. proposed the Cubature Kalman Filter (CKF) algo-
rithm [21] to solve the integration problem of nonlinear functions in filtering algorithms,
which is similar to the Unscented Kalman Filter (UKF), first calculates the sampling points
(called volume points), then calculates the one-step prediction of the volume points by the
state equation, and then corrects the predicted value of the state by the quantitative update
and the Kalman gain calculation. In comparison to the Unscented Kalman filter algorithm,
the Cubature Kalman Filter algorithm obtains the volume points by calculating the spheri-
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cal radial volume criterion without linearizing the state equation and directly transferring
the volume points by the nonlinear state equation while ensuring that the weights are
always positive. This improves the algorithm’s robustness and accuracy [22–24].

According to the third-order spherical radial criterion, the number of volume points
for an n-dimensional state vector is m = 2n, and the set of volume points is designated as:

ξ j =

√
m
2
[1]j, j = 1, 2, . . . , 2n (34)

where [1]j denotes the jth volume point, i.e., the jth column of [1], and [1] can be expressed as:

[1] =




1
0
...
0

 · · ·


0
0
...
1



−1
0
...
0

 · · ·


0
0
...
−1


 (35)

The weights of each volume point are equal, as written:

ωj =
1
m

(36)

For the following target state equation and the measurement equation:

Xk = f (Xk−1, uk−1) + wk−1
Zk = h(Xk, uk) + vk

(37)

The Cubature Kalman Filtering algorithm and the specific process are given below:
Step 1: Calculation of volume points.{

Pk−1,k−1 = Sk−1ST
k−1

χ̃
j
k−1 = X̂k−1 + Sk−1ξ j

(38)

where a Cholesky decomposition of Pk−1,k−1 gives Sk−1.
Step 2: One-step prediction of volume points.

χ̃
∗j
k,k−1 = f (χ̃j

k−1) (39)

Step 3: Compute one-step prediction and covariance matrix of state quantities. X̂k,k−1 =

m
∑

j=1
χ̃
∗j
k,k−1

m

Pk,k−1 = 1
m

m
∑

j=1
wjχ̃

∗j
k,k−1(χ̃

∗j
k,k−1)

T
− X̂k,k−1X̂T

k,k−1 + Qk−1

(40)

Step 4: Calculation of new volume points based on one-step predicted values.{
Pk,k−1 = Sk,k−1ST

k,k−1

χ̃
j
k,k−1 = X̂k,k−1 + Sk,k−1ξ j

(41)

Step 5: Observation prediction for new volume points.

Zj
k,k−1 = h(χ̃j

k,k−1) (42)
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Step 6: Calculate the mean and covariance of the target observations weighted by the
observation predictions of the volume points.

Ẑk,k−1 =

m
∑

j=1
Zj

k,k−1

m
(43)

Pxz =
1
m

m

∑
j=1

χ̃
j
k,k−1(Zj

k,k−1)
T
− X̂k,k−1ẐT

k,k−1 (44)

Pzz =
1
m

m

∑
j=1

Zj
k,k−1(Zj

k,k−1)
T
− Ẑk,k−1ẐT

k,k−1 + Rk (45)

Step 7: Calculating Kalman gain.

Kk = PxzP−1
zz (46)

Step 8: Calculate system state update and covariance update.{
X̂k = X̂k,k−1 + Kk(Zk − Ẑk,k−1)
Pk = Pk,k−1 − KkPzzKT

k
(47)

The flow of the Cubature Kalman Filtering algorithm is shown in Figure 13.

Aerospace 2023, 10, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 13. Flow of the Cubature Kalman Filtering algorithm. 

6. Simulation and Analysis 

6.1. Co-Localization Algorithm Verification 

An external field test was performed to validate the co-localization algorithm’s cor-

rectness. For the same ground identifier, twelve groups of UAV aerial photographs were 

selected under varied working conditions, with two images in each group, and the target 

location was solved separately, yielding a total of six groups of target coordinate values. 

An example of a group of aerial images is shown in Figure 14. 

 

Initialization

End?

Calculate state covariance

One-step prediction

Calculate the volume point

End

Recalculate the volume point

Weighted calculation of  mean 
value  of observations

Weighted calculation of 
observation covariance

Weighted calculation of 
Observation cross-covariance

Calculate Kalman Gain

Update  state volume
and Covariance          

1k k− →

Propagation of the volume 
point by state equation

Propagation of volume point 
By measurement eqation

Y

States update

Time update Measurement update

1

j

kX −

*

, 1

j

k kX −

, 1
ˆ

k k−X

, 1k kP −

, 1

j

k kX −

, 1

j

k kZ −

, 1
ˆ j

k kZ −

xzP

zzP

KK

ˆ ,k kPX

N

Figure 13. Flow of the Cubature Kalman Filtering algorithm.

6. Simulation and Analysis
6.1. Co-Localization Algorithm Verification

An external field test was performed to validate the co-localization algorithm’s cor-
rectness. For the same ground identifier, twelve groups of UAV aerial photographs were
selected under varied working conditions, with two images in each group, and the target
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location was solved separately, yielding a total of six groups of target coordinate values.
An example of a group of aerial images is shown in Figure 14.
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2 113.283782, 34.840863, 1987.8  3.41, 75.55, 2.98 −90, 0, 0 −3.52, −2.69 

3 113.285258, 34.840542, 1986.6  2.75, 267.91, 0.89 −90, 0, 0 −2.76, −1.26 

4 113.284669, 34.841472, 1980.9  3.36, 267.42, 1.62 −90, 0, 0 −3.37, −1.78 

5 113.283662, 34.839757, 1978.0  2.49, 144.30, 0.40 −90, 0, 0 −2.54, −0.39 

Figure 14. The ground images captured by two drones at the same time, with the number “28” in the
red box as the ground identifier, and their true coordinates are known.

Figure 15 shows the target localization results (the status of UAV collaborative target
localization is shown in Table 7, The calculation results of the target position in this state are
shown in Table 8). The blue solid dots in the figure represent the true position of the ground
identification (target), while the red solid dots represent the results of collaborative target
localization by two machines. There are a total of six sets of data. It can be seen that the
algorithm can accurately calculate the position of the target in the two-dimensional plane.
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Table 7. States of 12 UAVs using for localization.

UAV
ID

UAV Pose
Installation Angle
(Pitch, Yaw, Roll)

Frame Angle
(Alt., Azim.)UAV Position

(Lng., Lat., Alt.)
UAV Attitude

(Pitch, Yaw, Roll)

1 113.285672, 34.840742, 1988.7 3.25, 75.52, 1.32 −90, 0, 0 −3.27, −1.24
2 113.283782, 34.840863, 1987.8 3.41, 75.55, 2.98 −90, 0, 0 −3.52, −2.69
3 113.285258, 34.840542, 1986.6 2.75, 267.91, 0.89 −90, 0, 0 −2.76, −1.26
4 113.284669, 34.841472, 1980.9 3.36, 267.42, 1.62 −90, 0, 0 −3.37, −1.78

5 113.283662, 34.839757, 1978.0 2.49, 144.30, 0.40 −90, 0, 0 −2.54, −0.39
6 113.284839, 34.840663, 982.3 3.34, 144.85, −0.08 −90, 0, 0 −3.40, 0.10
7 113.283124, 34.840924, 982.2 3.75, 80.46, 3.67 −90, 0, 0 −3.79, −3.57
8 113.283091, 34.840818, 980.3 3.60, 79.11, 4.12 −90, 0, 0 −3.62, −4.13

9 113.285250, 34.840497, 980.1 6.15, 260.06, 3.47 −90, 0, 0 −6.23, −3.55
10 113.284723, 34.841950, 978.6 4.82, 261.98, −0.96 −90, 0, 0 −4.82, 0.81
11 113.284085, 34.840844, 976.0 2.79, 145.32, −1.25 −90, 0, 0 −2.79, 1.14
12 113.285672, 34.840742, 1988.7 2.81, 145.20, 2.55 −90, 0, 0 −2.87, −2.37

Table 8. Two UAVs collaborative target positioning results (first group ID: 1&5, second group ID:
2&6, third group ID: 3&4, fourth group ID: 7&9, fifth group ID: 8&11, sixth group ID: 10&12).

Actual Target Position (2D) Localization Result (2D)
Localization Error/m

Lng. Lat. Lng. Lat.

113.284076 34.840799

113.284151 34.840752 8.6
113.284111 34.840713 10.1
113.284178 34.840758 10.5
113.284145 34.840733 9.8
113.284151 34.840734 9.9
113.284156 34.840757 8.7

6.2. Multi-UAV Co-Location and Tracking

Simulations for fixed and moving targets are discussed in this section, and these
were used to validate the effectiveness of CKF. During the process of target discovery and
localization by the four UAV observatories, the UAV moves along a specific trajectory
and makes numerous observations of the target area. The observations from the first
measurement are combined with the initial position where the UAV observatory begins
positioning to obtain the initial position estimate of the target and the corresponding
covariance matrix of the zero-mean estimation error as the initial estimate of the filtering
algorithm, and the filtering algorithm is then used to process the multiple observations to
obtain a more accurate estimate of the target.

Figure 3 shows the NUE (North-Up-East) coordinate system On −XnYnZn,and Table 9
shows the beginning condition of the ground target, data related to the number of UAVs,
initial status, and measurement errors.

Table 9. Co-location simulation parameters.

Simulation Parameters Range

Target initial state xT
Stationary:

[
0, 0, 0, 0]T

Moving: [0, 11.7851, 0, 11.7851]T

Number 4

Error 0.81◦ (AOA altitude angle)
2.73◦ (AOA azimuth angle)

Noise Gaussian White Noise
Sampling step 500 ms
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Ref. [25] provides the basic motion model of the target, and the efficiency of the
Unscented Kalman Filter-based target localization approach is validated in this study using
the target’s constant linear and rotating motion.

The discrete constant velocity linear and rotating motion models of the target are
shown in the following equations:

xcv
k

= Φcv
k xcv

k−1
+ Wcv

k (48)

xct
k
= Φct

k xct
k−1

+ Wct
k (49)

where xcv
k

=
[
xk

.
xk
]T and xct

k
=
[ .
xk

.
xkyk

.
yk
]T are the state vectors of the target’s

constant linear and turning motion models, Φcv
k and Φct

k the status transition matrices, and
Wcv

k , Wct
k the system noise.

To model the positional adequacy and location error of the UAVs, a random normal
error with a mean value of 0 and a standard deviation of 10 m is added to the position of
the UAVs’ path. Figure 16 depicts the error between the measuring position and the real
position of the UAV.
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Figure 16. Diagrammatic representation of the noise interference on the drone’s position, superim-
posed on the motion trajectory, with a mean of 0 and a standard deviation of 10 m.

Four UAVs approach the target from various angles. Figure 17 depicts the position
result for a stationary object. The target position’s positioning deviance quickly converges
from tens of meters to less than ten meters.
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Assume that the target moves in a straight path and turns in a straight line and that
one revolution of the motion takes 80 s. Four UAVs are programmed to proceed toward the
target’s initial position to finish the target’s continual localization and tracking. Figure 18
depicts the target’s and UAVs’ respective motion trajectories and tracking at a certain time.
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Figure 18. Moving target localization and tracking trajectory status (2D).

To account for the interference of random perturbations on positioning outcomes,
100 Monte Carlo simulations were run, and the RMSE (Root Mean Square Error) was
employed as the accuracy judgment measure.

Figure 19 shows the measurement results of the position component when tracking a
moving target, and it can be seen that the algorithm proposed in this paper can quickly
converge and stably trac the target. Figure 20 shows the position and velocity RMS
errors when tracking a moving target, and the tracking accuracy gradually improves
with the change of time, the position error converges within 12 m, and the velocity error
converges within 0.5 m/s, which also shows that the algorithm has high accuracy under
external interference.
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7. Conclusions

This paper’s target co-localization approach is a localization method that does not
rely on elevation and ranging information. It can calculate the positions of many targets at
once, considerably improving UAV detecting capability. The approach is almost hardware-
independent and thus appropriate for low-cost small UAV cluster systems. The error model
is used in this study to examine the lowest target positioning error of 20 m at 3000 m
relative flight altitude under typical flight conditions. This paper uses the traceless Kalman
filtering algorithm to simulate and verify the stationary and moving targets, respectively,
and the target localization accuracy is improved by 40% compared to the original one, and
the target can be continuously tracked in the case of interference with a high degree of
accuracy guaranteed.
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