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Abstract: The mission of hypersonic vehicles faces the problem of highly nonlinear dynamics and
complex environments, which presents challenges to the intelligent level and real-time performance
of onboard guidance algorithms. In this paper, inverse reinforcement learning is used to address
the hypersonic entry guidance problem. The state-control sample pairs and state-rewards sample
pairs obtained by interacting with hypersonic entry dynamics are used to train the neural network
by applying the distributed proximal policy optimization method. To overcome the sparse reward
problem in the hypersonic entry problem, a novel reward function combined with a sophisticated
discriminator network is designed to generate dense optimal rewards continuously, which is the main
contribution of this paper. The optimized guidance methodology can achieve good terminal accuracy
and high success rates with a small number of trajectories as datasets while satisfying heating
rate, overload, and dynamic pressure constraints. The proposed guidance method is employed for
two typical hypersonic entry vehicles (Common Aero Vehicle-Hypersonic and Reusable Launch
Vehicle) to demonstrate the feasibility and potential. Numerical simulation results validate the
real-time performance and optimality of the proposed method and indicate its suitability for onboard
applications in the hypersonic entry flight.

Keywords: hypersonic entry; inverse reinforcement learning; few datasets; autonomous guidance;
real-time optimal control

1. Introduction

A hypersonic vehicle is a specific type of vehicle that traverses the atmosphere at
speeds exceeding Mach 5. In recent years, the prominence of gliding hypersonic vehi-
cles has increased significantly due to their remarkable capabilities for long-range and
cross-range flights, as well as their ability to achieve high-precision targeting in both mili-
tary and civilian domains [1]. However, when operating in complex flight environments
characterized by factors such as heat, pressure, and overload, the system dynamics of
a hypersonic vehicle become coupled, uncertain, and highly nonlinear [2]. In order to
ensure the success of flight missions, the entry guidance algorithm for a hypersonic vehicle
necessitates enhanced robustness and autonomy [3]. Therefore, the online real-time trajec-
tory optimization algorithm is particularly necessary to be developed [4]. Nevertheless,
it is still a significant challenge to design an optimal or near-optimal guidance strategy
for onboard applications with guaranteed stability and real-time performance [5]. In this
paper, a novel entry guidance algorithm based on inverse reinforcement learning is pro-
posed to generate optimal or near-optimal control in real-time under complex hypersonic
flight environments.

The optimal guidance can be described as a trajectory optimization or an optimal
control problem (OCP), which aims to optimize a performance index while satisfying
complex constraints. Traditionally, OCP algorithms can be classified into two main types:
indirect methods and direct methods [6,7]. Based on Pontryagin’s minimum principle,
indirect methods transform the OCP problem into a two-point boundary value problem [8].
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Numerous indirect methods have been developed to solve OCP problems, offering high-
precision solutions [9–11]. However, due to the main drawbacks of indirect methods in
convergence difficulty and solving path constraints, direct methods have gained broader
application. Direct methods involve transforming OCP problems into finite-dimensional
parameter optimization problems through discretization methods, subsequently solved
using nonlinear solvers. By combining convex optimization theory and the pseudospectral
method, direct methods offer advantages in real-time performance and solution accuracy
and have been successfully applied to solving many OCP problems [12–14]. Ref. [15]
developed a two-stage trajectory optimization framework using convex optimization and
the pseudospectral method to solve the hypersonic vehicle entry problem, improving
computational efficiency. Additionally, a Chebyshev pseudospectral method based on
differential flatness theory was applied to the hypersonic vehicle entry problem, demon-
strating that the guidance algorithm can reduce the solution time for a single trajectory [16].
Unfortunately, modeling the constraints of the trajectory planning problem into a convex
format losslessly is difficult work, particularly for hypersonic dynamic systems with highly
nonlinear dynamics and constraints. Moreover, the computational cost escalates rapidly
with an increase in discrete points, and the number of iterations becomes unpredictable
when aiming for a high-precision solution [17,18]. Consequently, for the OCP algorithms,
the above shortcomings limit its online application.

In recent years, artificial intelligence (AI)-based guidance algorithms have gained
significant attention in the aerospace field, primarily due to their real-time performance
and adaptable capabilities. Ref. [19] proposed that these algorithms can be broadly classi-
fied into two implementations: supervised learning (SL) and reinforcement learning (RL).
In supervised learning, neural networks are trained using extensive datasets of optimal
trajectories generated by OCP algorithms. Several SL-based guidance algorithms have been
proposed for onboard applications [20]. For instance, Ref. [21] presented a deep neural
network (DNN)-based guidance framework for planetary landing, capable of predicting
fuel optimal controls from raw images captured by an onboard optical camera. Ref. [22]
introduced a DNN-based guidance method for two-degree-of-freedom (2DOF) entry trajec-
tory planning of hypersonic vehicles, and numerical simulations demonstrated its ability to
provide stable and real-time control instructions for maximizing terminal velocity. Ref. [23]
proposed a real-time DNN-based algorithm to solve the 3DOF entry problem of hypersonic
vehicles, and the results showed its capability to generate optimal onboard controls. Simi-
larly, Ref. [24] proposed a DNN-based controller to map optimal control commands from
the state, and a hard-ware-in-the-loop (HIL) system was developed to support the real-time
performance conclusion of the controller. However, both Ref. [23] and Ref. [24] required
generating a large number of datasets before the training process, which was extremely
costly in practical applications. Consequently, ensuring the convergence accuracy of exist-
ing SL-based algorithms for hypersonic entry problems necessitates constructing a large
number of datasets to cover all scenarios, which remains a drawback for these algorithms
when the missions are time-sensitive.

On the other hand, reinforcement learning offers an alternative approach that does not
rely on existing datasets. RL algorithms continuously update model parameters through
interactions with the environment, leading to improved generalization and robustness. RL
has also shown promising results in addressing aerospace problems [25,26]. In comparison
to traditional guidance algorithms, RL-based guidance algorithms exhibit strong anti-
disturbance capabilities and real-time performance [27–30]. Ref. [31] proposed an RL-based
adaptive real-time guidance algorithm for the 3DOF entry problem of hypersonic vehicles,
and numerical simulation demonstrated that the proposed algorithm achieved a higher
terminal success rate compared to the Linear Quadratic Regulator (LQR) method. The
convergence of RL-based algorithms heavily relies on the design of the reward function.
In the implementation of Ref. [31], dense rewards were provided by tracking a human-
designed guidance law, which made it challenging for the model to search for the global



Aerospace 2023, 10, 948 3 of 19

optimal solution. Hence, in order to generate optimal control commands, it is key to design
an improved reward function for RL-based algorithms.

In hypersonic entry flight environments, the reward signal is often sparse, meaning
that the agent receives a reward only after completing a mission. To address this challenge,
a reward shaping function needs to be designed to provide dense rewards throughout the
learning process, motivating the agent to learn continuously. A reasonable reward shaping
function is hard to complicate manually. Fortunately, the IRL method is one potential solu-
tion for solving this problem. The IRL algorithm represents an innovative approach within
the realm of the RL method. Diverging from the traditional RL algorithm, the IRL method
aims to infer a potential reward function from observed expert examples. Furthermore, IRL
can be thought of as an inverse problem where the objective is to understand the motivation
behind expert behavior rather than directly learning a policy.

This paper presents a novel guidance algorithm based on Inverse Reinforcement
Learning (IRL) to address the guidance problem during the entry phase of hypersonic
vehicles. In comparison to other AI-based algorithms and traditional optimal control
algorithms explored in previous works, the proposed algorithm’s controller can generate
optimal actions that meet the requirements of onboard applications using only a few
trajectories as datasets. To the best of our knowledge, there have been few studies reported
on the generation of optimal actions for hypersonic vehicles via a well-trained DNN-based
controller supported by a few trajectories as datasets. Therefore, the concern is attempted to
be addressed in this work. In our work, the guidance algorithm is implemented as a policy
neural network updated through simulated experience over an interaction of a hypersonic
entry simulated environment. In the proposed IRL framework, a customized version of
Proximal Policy Optimization Algorithms (PPO) [32] is used to optimize the policy network.
In particular, a generative adversarial neural network is designed to distinguish between
the agent trajectories and the optimal datasets provided by the optimal control theory,
which can effectively address the sparse reward problem while maintaining optimality. It
is worth noting that the optimal dataset is only served by a few trajectories. After model
optimization, the policy can offer high-frequency closed-loop guidance commands for
onboard applications. To fully demonstrate the applicability of the proposed algorithm,
numerical simulations are conducted on two typical hypersonic vehicles: the Common
Aero Vehicle-Hypersonic (CAV-H) [33] and the Reusable Launch Vehicle (RLV). The two
hypersonic vehicles correspond to different flight conditions, which is sufficient to illustrate
the generalization of the proposed algorithm.

This paper is structured as follows. Section 2 provides an introduction to the entry
problem for hypersonic vehicles, highlighting its characteristics of highly nonlinear dynam-
ics. The Inverse-Reinforcement-Learning-based (IRL-based) guidance method is detailed
in Section 3, including the algorithm framework, reward function design, and network
structures utilized in the approach. Section 4 verifies the effectiveness and optimality of the
proposed algorithm by performing a number of simulations through comparisons with
General Pseudo-Spectral Optimal Control Software (GPOPS) [34]. The conclusion of this
paper is given in Section 5.

2. Problem Formulation
2.1. The 3DOF Dynamic Model for Hypersonic Entry

The Earth is modeled as a uniform sphere, taking into account the effects of Earth’s
rotation. During the entry phase of hypersonic vehicles, the control of the vehicle is
achieved through the manipulation of the bank angle and attack angle, assuming no flight
sideslip angle. The dynamic model for the entry phase is formulated in a 3-degree-of-
freedom (3DOF) format, and the parameters of the dynamic model used in this paper
are defined within the geocentric fixed coordinate system. These parameters are further
elaborated in Equations (1)–(3), and these expressions are derived from Refs. [16,35].
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dr
dt = v sin(γ)
dθ
dt = v cos(γ) sin(ψ)

r cos(ϕ)

dϕ
dt = v cos(γ) cos(ψ)

r
dv
dt = −D

m − g sin(γ) + Ωv

dγ
dt = 1

v [
L cos(σ)

m + ( v2

r − g) cos(γ)] + Ωγ

dψ
dt = 1

v [
L sin(σ)
m cos(γ) +

v2

r cos(γ) sin(ψ) tan(ϕ)] + Ωψ

(1)

with

Ωv = ω2r cos(ϕ)[sin(γ) cos(ϕ)− cos(γ) sin(ϕ) cos(ψ)]

Ωγ = 2ω cos(ϕ) sin(ψ) + ω2r cos(ϕ)
v [cos(γ) cos(ϕ) + sin(γ) sin(ϕ) cos(ψ)]

Ωψ = 2ω[cos(ϕ) tan(γ) cos(ψ)− sin(ϕ) + ω2r
v cos(γ) sin(ϕ) cos(ϕ) sin(ψ)]

(2)

where r represents the distance from the center of the earth to the hypersonic vehicle, θ and
ϕ denote the longitude and latitude, respectively. v represents the velocity of the vehicle
relative to the earth. γ describes the flight angle of the velocity versus the local horizontal
plane angle. ψ is the heading angle. ω represents the angular velocity of the earth’s rotation.
σ denotes the bank angle. g represents the gravitational acceleration, defined as µ/r2

where µ is the gravitational constant. L and D represent the aerodynamic lift and the drag,
respectively, which can be expressed as:

L = 1
2 ρv2Sre f CL

D = 1
2 ρv2Sre f CD

(3)

in which the reference area of the vehicle is denoted by Sre f , the atmospheric density
ρ = ρ0e−(r−Re)/hs is given by the equation that is the function of altitude and reference sea
level density. Here, ρ0 is the reference density at sea level, Re is the earth’s radius, and
hs is the density scale height. The lift coefficient CL, and the drag coefficient CD, are both
functions of the attack angle and the Mach number.

2.2. Problem Statement

The paper addresses the trajectory planning problem for hypersonic vehicles, which
can be formulated as an optimization control problem. The objective is to generate a
sequence of optimal control commands that minimize a given objective function, subject to
various constraints, including boundary, path, and control constraints. Using the dynamic
model, a typical optimization problem for hypersonic entry vehicles can be defined as
follows [35]:

min J
s.t.

.
x = f (x, u)

x(t0) = x0, x(t f ) = x f

x ∈ [xmin, xmax]

umin ≤ u ≤ umax
.

Q = KQρ0.5v3.15 ≤
.

Qmax

q = 1
2 ρv2 ≤ qmax

n = Sre f
q
√

CL2+CD2

mg ≤ nmax

(4)

where the objective function is denoted as J, the dynamics system is represented by the
equation

.
x = f (x, u), x is a six-dimensional state vector given by [r, θ, ϕ, v, γ, ψ]T . Addi-

tionally, the heat rate at the stagnation point is denoted as
.

Q, the dynamic pressure as q, the
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overload as n, and KQ is a constant parameter related to the curvature radius of the vehicle.
The initial state is represented as x0 and the mission target as x f . The boundary constraints
for the states are denoted as [xmin, xmax]. It is important to note that the initial states x0 are
randomly generated to simulate actual flight conditions. The control command vector u is
determined by the vehicle model and mission requirements. The minimum and maximum
values of the control commands are represented by [umin, umax].

3. Inverse-Reinforcement-Learning-Based Guidance Method

In this section, the proposed framework based on the IRL method is introduced. Our
framework describes a novel training process for a DNN model, which achieves high
accuracy even with a few optimal trajectories as datasets. The RL problem formulation,
reward function design, and the architecture of the neural network are also discussed in
this section.

3.1. IRL-Based Guidance Framework

Different from traditional RL algorithms, the IRL method requires the dataset and
can enable the learning of a reward shaping function from expert demonstrations, such as
optimal trajectories generated by the OCP algorithms, allowing the agent to generalize from
limited data and generate dense rewards. By using IRL, the reward shaping function can
be learned automatically, relieving the need for manual and complex reward design. When
the expert demonstration does not cover the scene, the IRL method can still optimize the
agent to learn a decent policy. Several IRL methods have been proposed, such as extracting
reward functions using the maximum-margin method [36], using the Gaussian method [37],
and using decision trees [38].

In this paper, the Generative Adversarial Imitation Learning (GAIL) algorithm [39]
is utilized as a form of the IRL algorithms to train a DNN-based model. The proposed
guidance framework based on IRL is designed to achieve effective training of the model
using a small number of expert demonstrations. The process of model training is depicted
in Figure 1, illustrating the steps involved in training the model.
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Prior to the model training phase, expert demonstrations are generated using a sophis-
ticated direct trajectory optimization algorithm to solve the hypersonic entry problem. It is
important to note that the initial states of the trajectories in the expert demonstrations only
cover a limited range. However, the subsequent numerical experiment demonstrates that
even with a few trajectories, the proposed algorithm is effective and capable of achieving
good guidance.

The proposed IRL-based guidance method incorporates three different neural net-
works: the Policy Neural Network (Actor), the Value Neural Network (Critic), and the
Discriminator Neural Network. The training phase of the IRL-based method proceeds as
follows: (1) The policy network interacts with a high-fidelity hypersonic entry environment,
as described in Section 2, and generates trajectories online. All initial states are generated
randomly and contain all state space for the hypersonic entry problems. (2) State-action
pairs from the generated trajectories and the expert demonstration are randomly sampled
to train the discriminator network. The goal is to maximize the expert reward while min-
imizing the agent reward, enabling the discriminator to distinguish between the expert
behaviors and the agent behaviors. (3) The advantage function is calculated by combining
the IRL reward generated by the discriminator network, the reward computed by the re-
ward function, and the value predicted by the value network. Then, the advantage function
is used to optimize the policy network, enabling it to generate improved control commands.

In our IRL-based framework, we utilize the PPO algorithm, which is a popular Advan-
tage Actor-Critic (A2C) method and is widely used in various complex problems. The PPO
algorithm is a policy gradient algorithm based on the Trust Region Policy Optimization
(TRPO) method. It can dynamically adjust the maximum updated step size by constraining
Kullback–Leibler (KL) divergence between the new and old policy. The PPO objective
function can be expressed as follows:

maxJ(θ) = E[min( rt(θ), clip(rt(θ), 1− ε, 1 + ε)) Aπ,t(s, a)] (5)

where rt(θ) represents the probability ratio πθ(at |st)

πθold
(at

∣∣∣st)
between the new and old policy. The

advantage function is denoted by Aπ,t(s, a), which captures the advantage or benefit of
taking action a in state s. The function clip(x, 1− ε, 1 + ε) is a clipped function that limits
the value of x within the range [1− ε, 1 + ε], where ε is the clipping ratio.

To reduce the computational cost of the model training phase, the Distributed Proximal
Policy Optimization (DPPO) algorithm [40] is implemented in this paper, which utilizes
a multi-process mechanism to accelerate exploration efficiency. The combination of IRL
with DPPO is described in Algorithm 1. According to the recommendations from prior
research [25,32], adjusting the clipping ratio and the policy learning rate during the model
training phase dynamically can improve performance. The approach is also employed in
our work, as shown in line 17 of Algorithm 1, and can be described as follows:

ε =

{
min(εmax, 1.5ε) if kl < 1

2 kltarg

max(εmin, 1
1.5 ε) if kl > 2kltarg

(6)

αθ =

{
min(αθmax , 1.5αθ), if kl < 1

2 kltarg and ε > 1
2 εmax

max(αθmin , 1
1.5 αθ), if kl > 2kltarg and ε < 2εmin

(7)
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Algorithm 1 DPPO-IRL algorithm

1. Input: Expert trajectories τE ∼ πE, iteration number I, DPPO worker process number M, buffer size K,
2. discount factor Γ, initial policy, value network, and discriminator parameters θ0, φ0, ω0.
3. Generate the DPPO worker process [worker 1, worker2, . . . , workerM].
4. for i = 1, 2, 3, . . . , I do
5. for j = 1, 2, . . . , M do
6. Send the current policy πθi to the process workerj, and run the policy πθi for K/M timesteps
7. to collect online trajectories.
8. end for
9. Sample agent trajectories τi ∼ πθi and expert trajectories τE ∼ πE.

10. Update the discriminator parameter from ωi to ωi+1 with the gradient:
11. Eτθi

[∇ω log(Dω(s, a))] +EτE [∇ω log(1− Dω(s, a)]
12. The final reward Rt is calculated as the sum of the cost generated by the cost function log(1− Dωi+1 (s, a))
13. and the reward is computed by the reward function.
14. Discount the reward using the factor Γ and estimate advantages via Aπ,t = R̂t −Vφi (st).
15. Update the policy parameter from θi to θi+1 and value network parameter from φi to φi+1, using the
16. PPO algorithm.
17. Adjust the policy learning rate and clipping ratio according to the approximate KL divergence.
18. end for

3.2. RL Problem Formulation

An episode in the training process will be terminated prematurely if the range angle
increases, indicating that the vehicle has deviated from the target point. Additionally, the
episode will also be terminated if the path constraints (such as heat rate, dynamic pressure,
or overload) are violated. After a certain number of steps have been accumulated, the
policy, value function, and discriminator network are updated once using the IRL-based
method. During the model optimization, the observation is represented by a vector given
in Equation (8). As mentioned in Equation (9), the action space is defined differently
for various problems. For the CAV-H entry problem and the RLV entry problem, the
action space consists of [generalized lift coefficient λ, bank angle σ] and [bank angle
σ], respectively.

obs =[r θ ϕ v γ ψ] (8)

action =

{
[λ, σ] ∈ R2, when CAV−H Entry Problem

[σ] ∈ R1, when RLV Entry Problem
(9)

The position and velocity of observations used in this paper are normalized before
being fed into the model. The definition of normalization is [r = r/Re, v = v/

√
g0Re].

Furthermore, each element in the action space is independently normalized to the range
[−1, 1] using the Equation (10):

u(i)norm =
2 ∗ (u(i)− u(i)min)

u(i)max − u(i)min
− 1, i =

{
[λ, σ] , when CAV−H Entry Problem

[σ] , when RLV Entry Problem
(10)

3.3. Reward Function Design

In the field of hypersonic entry problems, the issue of sparse reward is a challenge, and
designing a reasonable and dense reward function has been a focal point for researchers.
However, to the best of our knowledge, there is little literature available on the design of
the reward function in the field of hypersonic entry problems. One potential solution is to
follow predetermined guidance law. The design of the tracking guidance law resulted in
a loss of trajectory optimality. To overcome this limitation, in this paper, a novel reward
function is introduced in Equation (11) that combines the discriminator network with
several designed terms.
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r = rIRL + rshaping + rpenalty + rbonus + η

rshaping = rshapingh
+ rshapingheat

+ rshapingpressure + rshapingoverload

rpenalty = rpenaltyθ
+ rpenaltyϕ

+ rpenaltyh
+ rpenaltyγ

+ rpenaltyψ

(11)

where the variables mentioned above are defined as follows:

(1) In contrast to other classical RL methods, rIRL is a term generated by the discriminator
network at each step, which provides incentives for the agent to learn an optimal
policy that aligns with the expert demonstrations.

(2) rshaping is a punishment term for undesired states when the agent approaches the
boundary, such as altitude, heat rate, dynamic pressure, and overload. As shown in
Equation (12), the value of rshaping is determined by an exponential function, where the
punishment increases as the agent gets closer to the boundary. This method enables
the agent to quickly learn the solution that does not violate the path constraints.

rshapingh
=


αh exp(−

∥∥∥h− hboundarymin

∥∥∥/hscale

)
, if h > hlimitmax

βh exp(−
∥∥∥h− hboundarymax

∥∥∥/hscale

)
, if h < hlimitmin

0, otherwise

rshapingheat
=

{
αheat exp(−

∥∥∥ .
Q−

.
Qmax

∥∥∥/
.

Qmax

)
, if

.
Q > βheat

.
Qmax

0, otherwise

rshapingpressure =

{
αpressure exp(−‖q− qmax‖/qmax

)
, if q > βpressureqmax

0, otherwise

rshapingoverload
=

{
αoverload exp(−‖n− nmax‖/nmax), if n > βoverloadnmax

0, otherwise

(12)

(3) To continuously incentivize the agent to improve terminal accuracy, we introduce the
term rpenalty which measures the accuracy of the terminal state and is only provided
at the end of an episode. The specific formulations of rpenalty are described as follows:

rpenaltyθ
=

{
ζθ‖ θ − θtarget ‖, if done
0, otherwise

rpenaltyϕ
=

{
ζϕ‖ ϕ− ϕtarget ‖, if done
0, otherwise

rpenaltyh
=

{
ζh min

(
‖ h− htargetmin

‖, ‖ h− htargetmax
‖
)
, if done and h /∈

[
htargetmin

, htargetmax

]
0, otherwise

rpenaltyγ
=

{
ζγ min

(
‖ γ− γtargetmin

‖, ‖ γ− γtargetmax
‖
)
, if done and γ /∈

[
γtargetmin

, γtargetmax

]
0, otherwise

rpenaltyψ
=

{
ζψ min

(
‖ ψ− ψtargetmin

‖, ‖ ψ− ψtargetmax
‖
)
, if done and ψ /∈

[
ψtargetmin

, ψtargetmax

]
0, otherwise

(13)

(4) As defined in Equation (14), rbonus is a bonus given at the end of an episode if the
agent satisfies all terminal constraints and the range angle dx is less than the specified
tolerance dxlim.

rbonus =

{
κ, if done and dx < dxlim and x f ∈ [xtargetmin , xtargetmax ]

0, otherwise
(14)

(5) η is a positive constant that encourages the agent to continue exploring. This is
necessary because the agent might tend to terminate early if all rewards are negative.
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3.4. Neural Network Architecture

Two opposing neural networks are required for the IRL-based algorithm, called the
generator and the discriminator. In the implementation of the algorithm described in this
article, the policy plays the role of the generator, which is composed of a four-layer neural
network. The input to the policy is a six-dimensional vector representing the state, and the
output is a vector whose dimension depends on the action definition. Each hidden layer
of the policy uses a hyperbolic tangent activation function. The value function network
estimates the advantage value, which is a one-dimensional value representing the expected
advantage of taking a specific action in a given state. The output of the value function
network is a single value that represents the estimated advantage value. The discriminator
network takes as input a concatenated vector of the observation and action. Figure 2
provides a summary of three network structures.
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4. Experiments

First, this section provides an overview of two vehicle models and missions con-
sidered in this study. The characteristics and parameters of the hypersonic vehicles are
described. Next, the process of generating expert demonstrations and optimizing the model
is presented. Furthermore, numerical trajectories of the IRL-based guidance algorithm
are given in this section. Additionally, a comparison between the IRL-based algorithm
and the GPOPS solver is provided. It is important to note that the model optimization
and all numerical experiments were finished on a personal computer with an Intel Core
i9-9900 CPU @ 3.10GHz, 16.0 GB RAM, and Windows 10 operating system. The Python 3.7
environment with PyTorch 1.10 was used for implementing the IRL-based algorithm, while
the GPOPS software was executed in MATLAB.

4.1. Vehicle Model and Mission
4.1.1. CAV-H Entry Problem

Referring to the article [20], the first vehicle model used in this paper is CAV-H, which
exhibits a high lift-drag ratio during hypersonic entry flight. Without loss of generality,
the drag coefficient CD of CAV-H can be assumed to follow the equation of CL, and the
expression for the lift-to-drag ratio can be obtained through a corresponding equation.
Assuming the vehicle maintains the maximum lift-to-drag ratio, the lift coefficient and drag
coefficient of the vehicle can be defined as follows:

CL
∗ =

√
CD0

K

CD
∗ = 2CD0

(15)

Therefore, the maximum lift-to-drag ratio coefficient E∗ can be expressed as
E∗ = C∗L/CD

∗ = 1/2
√

K · CD0. In this problem, the vehicle always maintains the maxi-
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mum lift-to-drag ratio during flight, and the generalized coefficient λ is used as the control
command instead of the traditional attack angle. The generalized coefficient λ is defined as
λ = CL/CL

∗. As a result, the lift and drag coefficients can be redefined as follows:

CL = λC∗L

CD = CL
∗(1+λ2)
2E∗

(16)

The generalized lift coefficient λ and bank angle σ used as the control command in this
CAV-H entry problem are limited within a certain range. The parameters for the CAV-H
can be found in Table 1. The initial and terminal states of the vehicle are provided in Table 2.
The entry mission is to reach a target location defined by a specific longitude, latitude,
and final altitude range. Generally, in hypersonic missions, there are various performance
indexes that can be optimized. Due to the CAV-H’s classification as a weapon missile, the
minimization of flight time is considered imperative. The objective function can be defined
as min J = t f .

Table 1. The parameters of the CAV-H.

Parameter Value Parameter Value

m (kg) 907
.

Qmax (kW/m2) 2000

Sre f (m
2) 0.4839 qmax (kN/m2) 300

E∗ (-) 3.24 nmax (g0) 3.0

CL
∗ (-) 0.45 KQ (-) 1.688× 10−5

λmin (-) 0 σmin (deg) −80

λmax (-) 2 σmax (deg) 80

Table 2. Boundary constraints for the CAV-H entry problem.

Boundary

Item
h (km) θ (deg) ϕ (deg) v (m/s) γ (deg) ψ (deg)

Initial condition 41 ≤ h ≤ 46 −0.5 ≤ θ ≤ 0.5 −0.5 ≤ ϕ ≤ 0.5 5300 ≤ v ≤ 5500 −0.5 ≤ γ ≤ 0.5 89.9 ≤ ψ ≤ 90.1

Terminal condition 30 ≤ h ≤ 40 39.3 20 − − −

4.1.2. RLV Entry Problem

Similar to the assumption in reference [41], an RLV model is used for numerical demon-
strations in this work. The RLV is a winged-body vehicle for vertical takeoff and horizontal
landing. The trajectory optimization in this paper considers the approximated aerodynamic
coefficients regime as described in reference [42], with the following expressions:

CL = 0.0002602α2 + 0.016292α− 0.041065
CD = 0.86495CL

2 − 0.03026CL + 0.080505
(17)

where α is in degrees and is scheduled based on the velocity profile as given below:

α =

{
40, if v > 4570 m/s
40− 0.20705(v− 4570)2/3402, otherwise

(18)

Profiles of the angle of attack and aerodynamic coefficients are shown in Figure 3.
Consequently, in the RLV entry problem of this paper, the bank angle σ is the only control
command, and the rate of the bank angle is limited to 10 deg/s. The parameters for the
RLV can be found in Table 3. Similar to the CAV-H entry problem, the parameters of the
initial and terminal points are listed in Table 4. The free-flight-time entry is considered
in this paper. For the RLV, it is significant to minimize the total heat load during entry.
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Therefore, the objective function for the RLV mission is to minimize the total heat load, as

expressed as min J =
∫ t f

t0

.
Q dt.
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Table 3. The parameters of the RLV.

Parameter Value Parameter Value

m (kg) 104, 305
.

Qmax (kW/m2) 1800

Sre f (m
2) 391.22 qmax (kN/m2) 20

σmin (deg) −80 nmax (g0) 3.0

σmax (deg) 80 KQ (-) 1.65× 10−4

Table 4. Boundary constraints for the RLV entry problem.

Boundary

Item
h (km) θ (deg) ϕ (deg) v (m/s) γ (deg) ψ (deg)

Initial condition 99 ≤ h ≤ 101 −0.2 ≤ θ ≤ 0.2 −0.2 ≤ ϕ ≤ 0.2 7450 −0.5 0

Terminal condition 20 ≤ h ≤ 30 12 70 − −20 ≤ γ ≤ 0 80 ≤ ψ ≤ 100

4.2. Expert Demonstrations Generation Strategy

The GPOPS software, which is based on a pseudospectral method, is used in this paper
as the OCP solver to generate the expert demonstrations. The environment parameters
used in the simulations and dataset generation are reported in Table 5.

Table 5. Environment parameters.

Parameter Value

Atmosphere scale height hs (m) 7500 (CAV-H), 7200 (RLV)

Surface air density ρ0 (kg/m3) 1.2 (CAV-H), 1.225 (RLV)

Earth redius Re (m) 6.378× 106

Gravitational acceleration at Earth redius g0 (m/s2) 9.81

For both the CAV-H and RLV entry problems, 50 trajectories are randomly selected.
The profiles of the 50 trajectories for the CAV-H and RLV entry problem are plotted in
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Figures 4 and 5, respectively. After the generation of the trajectories, with the aim of aug-
menting the dataset, the 50 trajectories were linearly interpolated at intervals of step = 1 s.
It should be noted that if a well-trained network is optimized using supervised learning
methods, the number of samples required would typically be two orders of magnitude
larger than the dataset used in this paper [22–24].
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4.3. Model Optimization

The initial state range used in this model optimization can be obtained in Tables 2 and 4.
At the beginning of model optimization, the initial learning rates of policy, value function,
and discriminator network are set to 0.0002, 0.0025, and 0.001, respectively. All of the
hyperparameters during the model optimization are listed in Table 6. These hyperpa-
rameters have been elaborately determined based on the mission objectives, constraints,
and empirical knowledge, with the aim of rescaling rewards across all components to
sensible ranges. During the model optimization, the guidance period is set to 2.5 s, and
the integration period is 0.5 s. For both the CAV-H and RLV entry problems, a total of
3000 model iterations are performed, which takes approximately 15 h to complete.
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Table 6. Hyperparameters settings.

Parameter CAV-H Entry Problem RLV Entry Problem

αi , i ∈ [h, heat, pressure, overload] [−1,−1,−1,−1] [−1,−2.5,−2.5,−5]

βi, i ∈ [h, heat, pressure, overload] [−0.5, 0.98, 0.98, 0.98] [−1, 0.96, 0.96, 0.96]

ζi, i ∈ [θ, ϕ, h, γ, ψ] [−10,−10,−0.1, 0, 0] [−5,−5,−2,−0.5,−0.5]

hi, i ∈ [boundarymin, boundarymax, limitmin, limitmax, scale] [25, 55, 30, 50, 0.1] [20, 120, 20, 120, 0.1]

κ 150 100

η 0.01 0.01

dxlim 0.25 0.5

ε 0.1 0.1

Γ 0.99 0.99

K 32, 768 32, 768

M 6 6

I 3000 3000

After applying smoothing with a window size of 5, the reward curves and terminal
range angle curves for the CAV-H and RLV entry problems are plotted in Figures 6 and 7,
respectively. The left y-axis represents the reward curve, while the right y-axis describes the
terminal range angle curve. At the beginning of the model optimization, the agent violated
the path constraints, and the terminal range angle was large. As the model optimization
progressed, the control commands generated by the agent gradually became similar to
the expert demonstrations, leading to a rapid increase in total rewards. Finally, the agent
learned how to satisfy all constraints and to continuously receive the terminal bonus. After
approximately 1500 epochs of updating, both the policy and the discriminator network
reached convergence, indicating that the algorithm had effectively learned the optimal
guidance strategy.
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It is important to note that while the total reward curve increased continuously during
the model training process, the reward generated by the discriminator network might not
followed the same trend. This can be attributed to the limited number of trajectories in the
expert demonstrations, which can introduce compounding errors in the control sequence.
This observation highlights the advantage of using the IRL-based algorithm compared to
supervised learning methods, where a large amount of data is typically required to ensure
model generalization. In the case of the RLV entry mission, the reward generated by the
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discriminator network exhibited an upward and then downward trend. This phenomenon
resulted in a slight overall decrease in the total reward, as evidenced in Figure 7. This
indicates that the agent was able to learn a different strategy from the expert demonstrations
through the IRL-based algorithm, demonstrating its ability to explore alternative solutions.

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 6. Optimization reward curve and range angle curve for the CAV-H entry problem. 

 

Figure 7. Optimization reward curve and range angle curve for the RLV entry problem. 

4.4. Terminal Guidance Accuracy of the IRL-Based Guidance Method 

In this subsection, in order to fully evaluate the performance of the IRL-based guid-

ance method, 1000 trajectories are served in numerical simulations. The state variables of 

the vehicle are randomly initialized, and real-time closed-loop guidance is performed us-

ing IRL-based controllers introduced above. The statistics for the terminal state are used 

to measure the performance of the IRL-based algorithm, which are tabulated in Table 7. 

The mission is considered successful if the trajectory satisfies all constraints and the ter-

minal range angle error is less than a certain threshold, 
lim

dx  degrees. For the CAV-H 

mission, the threshold is set to 0.25 degrees, while for the RLV mission, it is set to 0.5 

degrees due to the greater difficulty of finding a viable solution. The results show that the 

proposed algorithm achieves a success rate of 99.6% for the CAV-H mission, with the max-

imum range angle well controlled below 0.27 degrees. Even for the more challenging RLV 

mission, the success rate is still high at 99.2%. Table 8 provides statistics for the heating 

rate, dynamic pressure, and overload, demonstrating that all 1000 trajectories generated 

by the IRL-based method strictly stratify the path constraints. Furthermore, the terminal 

Figure 7. Optimization reward curve and range angle curve for the RLV entry problem.

4.4. Terminal Guidance Accuracy of the IRL-Based Guidance Method

In this subsection, in order to fully evaluate the performance of the IRL-based guidance
method, 1000 trajectories are served in numerical simulations. The state variables of the
vehicle are randomly initialized, and real-time closed-loop guidance is performed using
IRL-based controllers introduced above. The statistics for the terminal state are used to
measure the performance of the IRL-based algorithm, which are tabulated in Table 7. The
mission is considered successful if the trajectory satisfies all constraints and the terminal
range angle error is less than a certain threshold, dxlim degrees. For the CAV-H mission, the
threshold is set to 0.25 degrees, while for the RLV mission, it is set to 0.5 degrees due to the
greater difficulty of finding a viable solution. The results show that the proposed algorithm
achieves a success rate of 99.6% for the CAV-H mission, with the maximum range angle
well controlled below 0.27 degrees. Even for the more challenging RLV mission, the success
rate is still high at 99.2%. Table 8 provides statistics for the heating rate, dynamic pressure,
and overload, demonstrating that all 1000 trajectories generated by the IRL-based method
strictly stratify the path constraints. Furthermore, the terminal state distributions of the
two vehicles are plotted in Figures 8 and 9, respectively, providing a visual representation
of the achieved performance.

Table 7. Terminal Accuracy Statistics.

Parameter
CAV Entry Problem RLV Entry Problem

Min Mean Max Min Mean Max

Range Angle (deg) 0.01 0.07 0.27 0.00 0.17 0.46

Latitude (deg) 39.14 39.31 39.51 11.81 12.05 12.20

Longitude (deg) 19.83 19.99 20.15 69.83 70.14 70.45

Velocity (m/s) 2074.24 2456.57 2755.38 1086.91 1205.92 1407.08

Altitude (km) 30.76 33.38 35.50 28.12 28.83 31.97

Flight Path Angle (deg) − −9.04 −5.54 0.03

Heading Angle (deg) − 81.36 96.05 99.46

Success Rate 99.6% 99.2%



Aerospace 2023, 10, 948 15 of 19

Table 8. Path Constraint Statistics.

Vehicle Mission Constraints µ σ Max Limit

CAV-H Entry

Heating Rate (kW/m2) 587.57 60.35 725.43 2000

Dynamic Pressure (kN/m2) 54.86 10.05 76.34 300

Overload (g0) 1.42 0.27 1.98 3

RLV Entry

Heating Rate (kW/m2) 1436.14 13.84 1459.8 1800

Dynamic Pressure (kN/m2) 16.42 0.17 16.59 20

Overload (g0) 2.86 0.019 2.88 3
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4.5. Optimality Analysis and Real-Time Performance

As shown in Ref. [35] and Ref. [41], the solutions from GPOPS are typically considered
the benchmark for the trajectory optimality. Therefore, in this paper, the IRL-based results
are compared to the GPOPS solutions to validate their optimality. With the given initial
and terminal conditions, the optimization objective for the CAV-H entry problem is the
minimum flight time, and for the RLV entry problem is the minimum total heat load.
Figures 10 and 11 show sample trajectories obtained using the IRL-based controller and
the GPOPS method. For the CAV-H entry problem, it can be observed that the solutions
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obtained from the IRL-based are similar to the results of the GPOPS method. The profiles
of the generalized lift coefficient and bank angle also exhibit the same trends. When
the vehicle approaches the target point, the generalized lift coefficient of the IRL-based
algorithm appears to be smoother compared to the GPOPS method.
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For the RLV entry problem, the objective function becomes a highly nonlinear integral
function, which can make the problem infeasible or difficult to converge. As shown in
Figure 5, the control profiles of the expert demonstration for the RLV mission exhibit high-
frequency jitter, indicating the complexity of searching for an optimal solution using GPOPS
methods. This complexity also brings challenges in the model learning phase, especially
when working with a limited number of trajectories in this paper. From Figure 11, the
bank angle profiles of the IRL-based method have a similar trend to that of GPOPS, but the
control results of the IRL-based method are smoother, which is more conducive to the actual
flight environment. One noteworthy item is that in order to reduce the total heat load, the
IRL-based method chooses to reach the target point faster, while the GPOPS method tends
to decelerate as much as possible. The terminal range angle of the IRL-based method is
only 0.1459 degrees, which satisfies the required accuracy for the RLV entry problem.

In order to further analyze the closed-loop guidance effect and optimality of the
intelligence controller, 50 trajectories are severed for evaluating the performance and the
computational cost of two vehicles. The results of the comparison with the GPOPS method
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are presented in Tables 9 and 10, respectively. While the training phase of the IRL-based
method requires time, once the model training is completed, the online guidance frequency
of the controller is high. The statistics illustrate that the IRL-based method achieves a
guidance frequency of 1 s/0.000167 s ≈ 5988 HZ, which provides potential for future
online closed-loop applications. In general, the Nonlinear Programming solver used in
GPOPS is much slower compared to the IRL-based method, and the solution time of GPOPS
is unpredictable because good initial guesses are required for convergence. Specially, due to
the complexity of the minimum total head load, the calculation time of GPOPS increases to
28 s during the RLV entry environment. In contrast, the CPU time of the IRL-based method
is only 0.167 milliseconds, demonstrating the computational advantage. Furthermore, the
total heat load of the IRL-based method is only 3% higher than that of GPOPS. The result
further demonstrates the optimality of the IRL-based method.

Table 9. Comparison with GPOPS for the CAV-H entry problem.

Method Mean Flight Time (s) Mean CPU Time (ms)

IRL-based 1264 0.163

GPOPS 1260 14328

Table 10. Comparison with GPOPS for the RLV entry problem.

Method Mean Total Heat Load (kw/m2) Mean CPU Time (ms)

IRL-based 1,099,644 0.167

GPOPS 1,064,421 28,234

5. Conclusions

In this paper, an Inverse-Reinforcement-Learning-based method for hypersonic en-
try problems is developed to solve highly nonlinear optimal control problems, where a
discriminator network is employed to implicitly capture the optimal reward information
associated with expert demonstrations. On this basis, a novel reward function is proposed
to address the sparse reward dilemma and provide optimal incentives, which is the main
contribution of this paper. The IRL-based method has been validated on two typical
hypersonic entry vehicle missions, showcasing its generalization capability. Extensive
experiments have demonstrated the effectiveness of the IRL-based method in achieving
real-time and high terminal precision with a small dataset. Furthermore, the optimality of
the IRL-based method has been demonstrated by numerical solutions through comparison
with GPOPS, and the simulation results show that the methodology proposed in this paper
is suitable for online optimal guidance and has the potential for onboard implementation
in practical applications.

Author Contributions: Conceptualization, J.W. and L.S.; Methodology, J.W. and L.S.; Software,
L.S.; Validation, L.S.; Formal analysis, J.W.; Investigation, L.S.; Resources, J.W. and H.C.; Data
Curation, L.S.; Writing—Original Draft Preparation, L.S.; Writing—Review and Editing, J.W. and
H.C.; Visualization, L.S.; Supervision, J.W.; Project administration, H.C.; Funding acquisition, J.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Basic and Applied Basic Research Project of Guangzhou
Science and Technology Bureau, No. 202201011187.

Data Availability Statement: All data used during the study appear in the submitted article.

Conflicts of Interest: The authors declare no conflict of interest.



Aerospace 2023, 10, 948 18 of 19

References
1. Li, Z.; Hu, C.; Ding, C.; Liu, G.; He, B. Stochastic gradient particle swarm optimization based entry trajectory rapid planning for

hypersonic glide vehicles. Aerosp. Sci. Technol. 2018, 76, 176–186. [CrossRef]
2. Conway, B.A. A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems. J. Optim. Theory

Appl. 2012, 152, 271–306. [CrossRef]
3. Chai, R.; Tsourdos, A.; Savvaris, A.; Chai, S.; Xia, Y.; Philip Chen, C. Review of advanced guidance and control algorithms for

space/aerospace vehicles. Prog. Aerosp. Sci. 2021, 122, 100696. [CrossRef]
4. Ross, I.M.; Fahroo, F. Issues in the real-time computation of optimal control. Math. Comput. Model. 2006, 43, 1172–1188. [CrossRef]
5. Wang, Z.P.; Wu, H.N.; Li, H.X. Sampled-Data Fuzzy Control for Nonlinear Coupled Parabolic PDE-ODE Systems. IEEE Trans.

Cybern. 2017, 47, 2603–2615. [CrossRef]
6. Betts, J.T. Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [CrossRef]
7. von Stryk, O.; Bulirsch, R. Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 1992, 37, 357–373. [CrossRef]
8. Ozimek, M.T.; Howell, K.C. Low-Thrust Transfers in the Earth-Moon System, Including Applications to Libration Point Orbits.

J. Guid. Control Dyn. 2010, 33, 533–549. [CrossRef]
9. Mansell, J.R.; Grant, M.J. Adaptive Continuation Strategy for Indirect Hypersonic Trajectory Optimization. J. Spacecr. Rocket. 2018,

55, 818–828. [CrossRef]
10. Grant, M.J.; Braun, R.D. Rapid Indirect Trajectory Optimization for Conceptual Design of Hypersonic Missions. J. Spacecr. Rocket.

2015, 52, 177–182. [CrossRef]
11. Tang, G.; Jiang, F.; Li, J. Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex

Programming. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2053–2066. [CrossRef]
12. Wang, J.; Li, H.; Chen, H. An Iterative Convex Programming Method for Rocket Landing Trajectory Optimization. J. Astronaut.

Sci. 2020, 67, 1553–1574. [CrossRef]
13. Açıkme¸se, B.; Carson, J.M.; Blackmore, L. Lossless Convexification of Nonconvex Control Bound and Pointing Constraints of the

Soft Landing Optimal Control Problem. IEEE Trans. Control Syst. Technol. 2013, 21, 2104–2113. [CrossRef]
14. Wang, J.; Cui, N.; Wei, C. Optimal Rocket Landing Guidance Using Convex Optimization and Model Predictive Control. J. Guid.

Control Dyn. 2019, 42, 1078–1092. [CrossRef]
15. Wang, J.; Cui, N.; Wei, C. Rapid trajectory optimization for hypersonic entry using convex optimization and pseudospectral

method. Aircr. Eng. Aerosp. Technol. 2019, 91, 669–679. [CrossRef]
16. Wang, J.; Liang, H.; Qi, Z.; Ye, D. Mapped Chebyshev pseudospectral methods for optimal trajectory planning of differentially

flat hypersonic vehicle systems. Aerosp. Sci. Technol. 2019, 89, 420–430. [CrossRef]
17. Yang, S.; Cui, T.; Hao, X.; Yu, D. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral

method. Aerosp. Sci. Technol. 2017, 67, 88–95. [CrossRef]
18. Lekkas, A.M.; Roald, A.L.; Breivik, M. Online Path Planning for Surface Vehicles Exposed to Unknown Ocean Currents Using

Pseudospectral Optimal Control. In Proceedings of the 10th IFAC Conference on Control Applications in MarineSystemsCAMS,
Trondheim, Norway, 13–16 September 2016; Volume 49, pp. 1–7.

19. Shirobokov, M.; Trofimov, S.; Ovchinnikov, M. Survey of machine learning techniques in spacecraft control design. Acta Astronaut.
2021, 186, 87–97. [CrossRef]

20. Thuruthel, T.G.; Shih, B.; Laschi, C.; Tolley, M.T. Soft robot perception using embedded soft sensors and recurrent neural networks.
Sci. Robot. 2019, 4, eaav1488. [CrossRef]

21. Furfaro, R.; Bloise, I.; Orlandelli, M.; Di Lizia, P.; Topputo, F.; Linares, R. Deep learning for autonomous lunar landing. In
Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, USA, 19–23 August 2018; pp. 3285–3306.

22. Shi, Y.; Wang, Z. Onboard Generation of Optimal Trajectories for Hypersonic Vehicles Using Deep Learning. J. Spacecr. Rocket.
2021, 58, 400–414. [CrossRef]

23. Wang, J.; Wu, Y.; Liu, M.; Yang, M.; Liang, H. A Real-Time Trajectory Optimization Method for Hypersonic Vehicles Based on a
Deep Neural Network. Aerospace 2022, 9, 188. [CrossRef]

24. Chai, R.; Tsourdos, A.; Savvaris, A.; Xia, Y.; Chai, S. Real-Time Reentry Trajectory Planning of Hypersonic Vehicles: A Two-Step
Strategy Incorporating Fuzzy Multiobjective Transcription and Deep Neural Network. IEEE Trans. Ind. Electron. 2020, 67,
6904–6915. [CrossRef]

25. Deng, T.; Huang, H.; Fang, Y.; Yan, J.; Cheng, H. Reinforcement learning-based missile terminal guidance of maneuvering targets
with decoys. Chin. J. Aeronaut. 2023. [CrossRef]

26. Wang, H.; Yang, Z.; Zhou, W.; Li, D. Online scheduling of image satellites based on neural networks and deep reinforcement
learning. Chin. J. Aeronaut. 2019, 32, 1011–1019. [CrossRef]

27. Gaudet, B.; Linares, R.; Furfaro, R. Deep reinforcement learning for six degree-of-freedom planetary landing. Adv. Space Res. 2020,
65, 1723–1741. [CrossRef]

28. Xu, X.; Chen, Y.; Bai, C. Deep Reinforcement Learning-Based Accurate Control of Planetary Soft Landing. Sensors 2021, 21, 8161.
[CrossRef] [PubMed]

29. Li, S.; Yan, Y.; Qiao, H.; Guan, X.; Li, X. Reinforcement Learning for Computational Guidance of Launch Vehicle Upper Stage. Int.
J. Aerosp. Eng. 2022, 2022, 2935929. [CrossRef]

https://doi.org/10.1016/j.ast.2018.01.033
https://doi.org/10.1007/s10957-011-9918-z
https://doi.org/10.1016/j.paerosci.2021.100696
https://doi.org/10.1016/j.mcm.2005.05.021
https://doi.org/10.1109/TCYB.2017.2690798
https://doi.org/10.2514/2.4231
https://doi.org/10.1007/BF02071065
https://doi.org/10.2514/1.43179
https://doi.org/10.2514/1.A34013
https://doi.org/10.2514/1.A32949
https://doi.org/10.1109/TAES.2018.2803558
https://doi.org/10.1007/s40295-020-00235-y
https://doi.org/10.1109/TCST.2012.2237346
https://doi.org/10.2514/1.G003518
https://doi.org/10.1108/AEAT-06-2018-0159
https://doi.org/10.1016/j.ast.2019.04.017
https://doi.org/10.1016/j.ast.2017.04.001
https://doi.org/10.1016/j.actaastro.2021.05.018
https://doi.org/10.1126/scirobotics.aav1488
https://doi.org/10.2514/1.A34670
https://doi.org/10.3390/aerospace9040188
https://doi.org/10.1109/TIE.2019.2939934
https://doi.org/10.1016/j.cja.2023.05.028
https://doi.org/10.1016/j.cja.2018.12.018
https://doi.org/10.1016/j.asr.2019.12.030
https://doi.org/10.3390/s21238161
https://www.ncbi.nlm.nih.gov/pubmed/34884162
https://doi.org/10.1155/2022/2935929


Aerospace 2023, 10, 948 19 of 19

30. Furfaro, R.; Scorsoglio, A.; Linares, R.; Massari, M. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via
a deep reinforcement learning approach. Acta Astronaut. 2020, 171, 156–171. [CrossRef]

31. Gaudet, B.; Drozd, K.; Furfaro, R. Adaptive Approach Phase Guidance for a Hypersonic Glider via Reinforcement Meta Learning.
In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022.

32. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

33. Richie, G. The Common Aero Vehicle—Space delivery system of the future. In Proceedings of the Space Technology Conference
and Exposition, Albuquerque, NM, USA, 28–30 September 1999.

34. Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using
HpAdaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM Trans. Math. Softw. 2014, 41,
1–37. [CrossRef]

35. Wang, Z.; Grant, M.J. Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming. J. Guid.
Control Dyn. 2017, 40, 2603–2615. [CrossRef]

36. Ng, A.Y.; Russell, S.J. Algorithms for Inverse Reinforcement Learning. In Proceedings of the Seventeenth International Conference
on Machine Learning, ICML ’00, San Francisco, CA, USA, 29 June–2 July 2000; pp. 663–670.

37. Levine, S.; Popovic, Z.; Koltun, V. Nonlinear inverse reinforcement learning with gaussian processes. Adv. Neural Inf. Process.
Syst. 2011, 24, 19–27.

38. Bagnell, J.; Chestnutt, J.; Bradley, D.; Ratliff, N. Boosting Structured Prediction for Imitation Learning. In Proceedings of the
Advances in Neural Information Processing Systems; Schölkopf, B., Platt, J., Hoffman, T., Eds.; MIT Press: Cambridge, MA, USA,
2006; Volume 19.

39. Ho, J.; Ermon, S. Generative Adversarial Imitation Learning. In Proceedings of the Advances in Neural Information Processing Systems;
Schölkopf, B., Platt, J., Hoffman, T., Eds.; MIT Press: Cambridge, MA, USA, 2016; Volume 29.

40. Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.M.A.; et al. Emergence of
locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.02286.

41. Wang, Z.; Lu, Y. Improved Sequential Convex Programming Algorithms for Entry Trajectory Optimization. J. Spacecr. Rocket.
2020, 57, 1373–1386. [CrossRef]

42. Lu, P. Entry Guidance and Trajectory Control for Reusable Launch Vehicle. J. Guid. Control Dyn. 1997, 20, 143–149. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.actaastro.2020.02.051
https://doi.org/10.1145/2558904
https://doi.org/10.2514/1.G002150
https://doi.org/10.2514/1.A34640
https://doi.org/10.2514/2.4008

	Introduction 
	Problem Formulation 
	The 3DOF Dynamic Model for Hypersonic Entry 
	Problem Statement 

	Inverse-Reinforcement-Learning-Based Guidance Method 
	IRL-Based Guidance Framework 
	RL Problem Formulation 
	Reward Function Design 
	Neural Network Architecture 

	Experiments 
	Vehicle Model and Mission 
	CAV-H Entry Problem 
	RLV Entry Problem 

	Expert Demonstrations Generation Strategy 
	Model Optimization 
	Terminal Guidance Accuracy of the IRL-Based Guidance Method 
	Optimality Analysis and Real-Time Performance 

	Conclusions 
	References

