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Abstract: This paper introduces the novel application of the mass and force lumping technique to
enhance the finite element discretization of the fully intrinsic beam formulation. In our aeroelastic
system model, 2-D unsteady aerodynamics were incorporated alongside simple calculations for
thrust and gravity. Through the central difference discretization method, the discretized system was
thoroughly examined, shedding light on the advantages of the mass and force lumping approach.
With the use of a first-order lumping method, we successfully reconstructed the inertia matrices,
external forces, and moments. The resulting equations are more systematically structured, facilitating
the extraction of a regular state-space linear system using the direct index reduction method post-
linearization. Numerical results further confirm that the proposed techniques can effectively capture
the nonlinear dynamics of aeroelastic systems, enabling equation reconstruction and leading to
significant benefits in system order reduction and flight dynamical analysis.

Keywords: fully intrinsic equation; geometrically exact beam; differential-algebraic equation; regular
state space; mass and force lumping

1. Introduction

High-altitude, long-endurance aircraft often feature large, flexible, high-aspect-ratio
wings to enhance aerodynamic efficiency and endurance. Due to the flexibility of the
structure and the coupling between the structure and flight dynamics, the large deforma-
tions generated during flight are major challenges [1]. In order to understand and safely
accommodate these effects in the design process, geometric nonlinear structural effects
need to be incorporated into numerical models. For high-altitude, long-endurance aircraft
with large flexibility and a high aspect ratio, the geometrically exact beam model proposed
by Hodges [2] is one of the most widely used approaches. A number of very flexible
aircraft simulation frameworks based on the geometrically exact beam model have been
created [3–7], often using nonlinear beam models to represent the structural response, com-
bined with low-order aerodynamic descriptions to reduce coupled nonlinear aeroelastic
problems to a manageable scale for time domain calculations. There are several versions
of the geometrically exact beam model, such as the displacement-based formulation [8],
strain-based formulation [9,10], and fully intrinsic formulation [11,12]. Compared to other
formulations, the fully intrinsic beam formulation is characterized by its exclusive reliance
on first-order differential equations. Furthermore, it obviates the need to recompute the
stiffness and mass matrices after deformation, leading to a marked enhancement in com-
putational efficiency. Consequently, its adoption has become increasingly prevalent in
recent times.

Various versions of the fully intrinsic formulation exist, such as the mixed formulation [11],
intrinsic beam theory [12,13], and nonlinear modal-based formulation [14,15], among oth-
ers. While these variations exhibit distinct equation forms, they fundamentally retain
the same essence. In modeling aircraft, it is not merely the structural dynamics model
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that is paramount; one must also construct models for potential external forces and mo-
ments, encompassing aerodynamic force models, gravitational models, thrust, landing
gear models, and more. Among these, the establishment of the aerodynamic model is
of paramount importance. Its computational speed varies significantly depending on
the chosen aerodynamic model, and its accuracy profoundly impacts the precision of the
aeroelastic model. Depending on computational accuracy requisites, practitioners often
opt for low- to medium-fidelity aerodynamic models. Low-fidelity approaches encompass
steady and unsteady strip theory and similar methodologies. In contrast, medium-fidelity
strategies include the unsteady vortex lattice method (UVLM) and the unsteady doublet-
lattice method (UDLM), to name a few [16]. The selection between these is often predicated
upon a balance between the desired accuracy and computational speed.

For the fully intrinsic formulation, there are many forms of spatial discretization,
such as the central difference method [17–19], Galerkin approach [3,6,20], and generalized
differential quadrature method [21,22], etc. Upon examining the spatial discretization
outcomes of the fully intrinsic beam formulation in the aforementioned literature, we
discovered that, with the exception of [3], none have delved into the analysis of the system’s
equation form post spatial discretization. Even when there is a need for linearization, many
only go as far as the generalized state space. While [3] recognized the system’s equation
form as differential-algebraic equations (DAEs), they did not probe further into the results
of such an equation form.

While DAEs pose no significant challenges during time domain simulation and static
trimming (given that one can employ iterative methods or DAE-specific differential solvers),
issues arise when it comes to the system’s reduction, dynamic analysis, and control system
design for aircraft. The necessity of linearization around equilibrium points results in DAEs
manifesting in the form of a generalized state space. The coefficient matrix of its first-order
derivative term is singular, rendering the straightforward transformation into a regular
state space form quite challenging. This poses considerable complications as compared
to linear system equations in the regular state space form, especially when embarking
upon tasks like system order reduction, dynamic characteristic analysis, and subsequent
control system design. When modeling aircraft systems, it is essential to account for various
physical components and their interactions. Assuming an aircraft devoid of lumped masses
or concentrated forces and moments is impractical. Key components like payloads, engines,
or even landing gears often introduce lumped masses or concentrated forces. In such
realistic settings, it becomes impossible to simply dismiss constraint equations from the
system. Otherwise, one would introduce the differential of the system input into the
governing equations. Such a situation could lead to inaccuracies or even render the system
unsolvable under certain conditions. Hence, realistic modeling and proper accounting for
these constraints are pivotal for any meaningful aeroelastic or system dynamics analysis.

This study used the mass and force lumping technique as a crucial supplement to
the finite element discretization of the fully intrinsic beam formula. After discretizing the
partial differential equation using the central difference method, the mass and force lumping
method was employed to discretize the system’s inertia matrix and external inputs, thereby
reconstructing the system’s equation structure. After linearizing the system, we utilized a
targeted index reduction technique to transform the system from a generalized state space
to a regular state space. Subsequently, the static trimming, eigenvalues, and nonlinear time
domain simulation results of the system after using mass and force lumping were validated.
The results show that the mass and force lumping outcome for the central difference finite
element discretization can still capture the nonlinear and dynamic characteristics of the
intrinsic beam. Lastly, starting from the regular state space, the modal selection method was
used for system model order reduction and dynamic analysis. The remainder of this paper
is structured as follows. Section 2 introduces the fully intrinsic beam formulation and the
forces and moments that an aircraft might encounter. Section 3, using the central difference
finite element method as an example, presents the process of reconstructing the system
equation form through mass and force lumping. Section 4 describes how, after system
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trimming and linearization, a specific index reduction method can be used to convert the
generalized state space form of the system equation into a regular state space. In Section 5,
numerical examples validate the feasibility and superiority of the method. Finally, Section 6
provides the conclusions and outlook.

2. Aeroelastic System
2.1. Fully Intrinsic Formulation

The fully intrinsic beam equation describes the evolution of velocity measures V,
angular velocity measures Ω, internal force measures F, and internal moment measures M
at each location s along a beam assembly. The above variables are all three-dimensional
vectors defined in the deformed beam cross-sectional B-frame. The y-axis and z-axis of the
B-frame are oriented in the directions that define the beam’s cross-sectional flexibility and
mass coefficients. The x-axis runs along the local tangent of the beam element. Typically,
the x-axis points to the right along the span, the y-axis points forward, and the z-axis points
upward, as shown in Figure 1. The intrinsic equations are given as [13]

F′ + (k̃ + κ̃)F + fexternal = Ṗ + Ω̃ P (1)

M′ + (k̃ + κ̃)M + (ẽ1 + γ̃)F + mexternal = Ḣ + Ω̃H + Ṽ P (2)

V′ + (k̃ + κ̃)V + (ẽ1 + γ̃)Ω = γ̇ (3)

Ω′ + (k̃ + κ̃)Ω = κ̇ (4)

where P, H, κ, γ denote the linear momentum measures, angular momentum measures,
force strain measures, and moment strain measures in the B-frame, respectively;
k = [k1, k2, k3]

T is the initial curvature of the beam; e1 = [1, 0, 0]T is a constant vector; and
fexternal , mexternal are external forces and moments. Ẋ indicates the time derivative of X and
X′ indicates its spatial derivative. X̃ is the cross-product operator. For X = [X1, X2, X3]

T ,

X̃ =

 0 −X3 X2
X3 0 −X1
−X2 X1 0

 (5)

The secondary beam variables P, H, κ, γ are linearly related to the primary variables
F, M, V, Ω by the cross-sectional constitutive laws (flexibility and inertia matrices), such that{

γ
κ

}
=

[
R S
ST T

]{
F
M

}
= C

{
F
M

}
(6){

P
H

}
=

[
µ∆ −µζ̃
µζ̃ I

]{
V
Ω

}
= M

{
V
Ω

}
(7)

where, R, S, and T are 3× 3 matrices of cross-sectional flexibility coefficients, and µ, ζ, and
I are the mass per unit length, mass center offset, and mass moment of inertia per unit
length, respectively.

2.2. External Forces and Moments

For aircraft, the trio of fundamental external forces and moments encompasses gravity,
aerodynamic force, and thrust. All of these need to be projected onto the B-frame for
inclusion in equation computations. Elements marked with a hat indicate concentrated
components, while those with an overline denote distributed components. A succinct
overview of each is provided below.
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Figure 1. Frame of reference of the intrinsic beam formulation.

2.2.1. Gravity

Initially, we define the inertial reference frame (referred to as the i-frame). This
frame is recognized as the North–East Earth coordinate system, with its point of origin
set at any arbitrary location. Within the i-frame, the gravitational vector g = [0, 0, 9.8]T

remains invariant.
Concerning the lumped mass, the external force and moment introduced by gravity in

the B-frame are articulated as follows:

f̂gravity = µ̂TBig (8)

m̂gravity = µ̂˜̂ζTBig (9)

where TBi represents the coordinate transformation matrix transitioning from the i-frame
to the B-frame, specifically at the lumped mass’s location. The term µ̂ denotes the lumped
mass, ζ̂ signifies the positional deviation of the lumped mass relative to the beam reference
line, and Î is the matrix capturing the mass moment of inertia of the lumped mass.

The distributed force and moment generated by gravity are as follows:

f gravity = µTBig (10)

mgravity = µζ̃TBig (11)

where TBi denotes the coordinate transformation matrix from the i-frame to the B-frame.

2.2.2. Aerodynamics

Firstly, we define the aerodynamic frame (denoted as the a-frame). The origin of the
a-frame is positioned at the aerodynamic center of the airfoil, typically at one quarter of
the chord length. Within this frame, the y- and z-axes are established on the airfoil’s plane,
with the y-axis directed forward and the z-axis oriented upward. Concurrently, the x-axis
is aligned with the local tangent of the beam.

Aerodynamic force computations are based on two-dimensional aerodynamics, utiliz-
ing specified airfoil parameters such as Cl0 , Clδe

, Clα , Cd0 , Cm0 , Cmδe
, and Cmα . Given these

parameters, the velocity and angular velocity at the mid-chord, represented by Va and Ωa,
are articulated as follows:

Va = TaBV − ỹmcTaBΩ (12)

Ωa = TaBΩ (13)

where ymc denotes the position vector from the beam reference axis to the middle chord
of the airfoil.

According to Peters 2-D inflow theory [23], the airfoil aerodynamic force and moment
can be expressed in the a-frame with inflow coefficient λ0 as
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f a
aero = ρb


0

−(Cl0 + Clδ δ)VTVa3 + Clα(Va3 + λ0)
2 − Cd0 VTVa2

(Cl0 + Clδ δ)VTVa2 − Clα V̇a3 b/2− Clα Va2(Va3 + λ0 −Ωa1 b/2)− Cd0 VTVa3

 (14)

ma
aero = ρb2


(Cm0 + Cmδ

δ)V2
T − Cmα VTVa3 − bClα /8Va2 Ωa1 − b2Clα Ω̇n

a1
/32 + bClα V̇a3 /8

0
0

 (15)

The inflow model can be written as

{Ain f low}λ̇ + (
VT
b
)λ = (−V̇a3 +

b
2

Ω̇a1){cin f low} (16)

λ0 =
1
2
{bin f low}Tλ (17)

where λ is a column matrix of inflow states, and {Ain f low}, {bin f low}, {cin f low} are constant
matrices derived in [23].

The distributed force and moment generated by aerodynamics are as follows:

f aero = TBa f a
aero (18)

maero = TBamaero + TBaỹac f a
aero (19)

where yac denotes the position vector from the beam reference axis to the aerodynamic center.

2.2.3. Thrust

For high-altitude, long-endurance aircraft, the thrust units are typically characterized
by propellers. In this context, the thrust is simplistically viewed as the result of the thrust
magnitude and its associated vector and can be expressed as

f̂thrust = fT(δT)e f (20)

m̂thrust = mT(δT)em (21)

where e f and em represent the unit vector projections of the thrust force and moment direc-
tions within the B-frame, respectively. fT(δT) and mT(δT) correspond to the thrust force
and moment values produced by the engine in response to the command δT , respectively.

2.3. Attitude and Rotation Matrix

Given that the system employs the coordinate transformation matrix from the i-frame
to the B-frame during gravity calculations, it is convenient to use Euler angles as state
variables. We introduce the body frame (denoted as the b-frame), which has its z-axis
directed downward and its x-axis oriented forward within the aircraft’s symmetry plane.
If the B-frame is appropriately defined, the directional axes of both coordinate systems can
only exhibit relationships characterized by axis swapping or axis inversion. For instance,
the coordinate transformation matrix transitioning from the B-frame to the b-frame on the
wing can be expressed as

TbB =

0 1 0
1 0 0
0 0 −1

 (22)

An auxiliary set of equations, elucidating the aircraft’s attitude, can be articulated as follows:
˙̂φ
˙̂θ
˙̂ψ

 =

 p̂ + tanθ̂(q̂sinφ̂ + r̂cosφ̂)
q̂cosφ̂− r̂sinφ̂

(q̂sinφ̂ + r̂cosφ̂)/cosθ̂

 (23)
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where [φ̂, θ̂, ψ̂]T denote the Euler angles, and [ p̂, q̂, r̂]T represent the angular velocities.
The interrelation between these variables can be articulated as

p̂
q̂
r̂

 = TbBΩ̂ (24)

Defining Φ̂ as [φ̂, θ̂, ψ̂]T , Equation (23) can be reformulated as

˙̂Φ = L(Φ̂, Ω̂) (25)

where L denotes a nonlinear operator.

3. Spatial Time Discretization Scheme

Initially, we utilize Patil’s finite element methodology, as delineated in [13], to ex-
emplify the transformation in equation form resultant from mass and force lumping.
Subsequently, we provide a concise overview of the equation characteristics post-spatial-
discretization and delve into methods for time domain simulation.

3.1. Spatial Finite Element Discretization

To resolve the fully intrinsic beam equations, the beam undergoes discretization into
finite elements. This process breaks down the beam into individual beam nodes and
beam elements, each element being tethered by two such nodes. Disregarding statically
indeterminate structures, the count of nodes in a discretized beam will invariably be one
fewer than its corresponding elements. An arbitrary sequencing is used to number the
beam nodes and elements. Each side of the given element receives the designation of either
Side A or Side B, with their respective node identification numbers duly noted. B-frames
are established across all nodes and elements. Pertaining to beam elements, B-frames are
set up at each side of the element. As for the beam nodes, their respective B-frames are
situated at the node positions, aligning with the B-frame of the element possessing the
smallest identification number corresponding to that specific node. It is crucial to note that
owing to potential discontinuities in beam inclinations, the B-frame pertaining to the same
beam node might vary across different elements.

For each node G, velocity V̂G and angular velocity Ω̂G are articulated within the
B-frame. Pertaining to each element n, forces and moments F̂n

A, F̂n
B , M̂n

A, M̂n
B, as well as

velocity and angular velocity Vn
A, Vn

B , Ωn
A, Ωn

B are defined within the B-frame. Notably,
for this element n, the identification numbers of its nodes are recognized as A on Side A
and B on Side B. Based on this configuration for nodes A, B and element n, the ensuing
relationship can be delineated:

V̂n
A = TnAV̂A, V̂n

B = TnBV̂B, (26)

Ω̂n
A = TnAΩ̂A, Ω̂n

B = TnBΩ̂B (27)

Here, TnA and TnB represent the coordinate transformation matrices transitioning from
the B-frames of nodes A and B, respectively, to the B-frames located at Side A and Side
B of element n. Intrinsically, these matrices are solely predicated upon the beam’s initial
configuration and the outcome of finite element discretization, remaining unaffected by
any subsequent deformations. The state variables F, M, γ, κ pertaining to element n can be
discretized as elucidated below:

X′ =
X̂n

B − X̂n
A

ln
(28)

X = Xn
=

X̂n
B + X̂n

A
2

(29)
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where ln denotes the length of element n. State variables V, O, P, H can be discretized
as follows:

X′ =
TnBX̂B − TnAX̂A

ln
(30)

X = Xn
=

T̂nBX̂B + TnAX̂A
2

(31)

Substituting Equations (28)–(31) into the intrinsic formula in Equations (1)–(4) yields:

F̂n
B − F̂n

A
ln

+ (κ̃n + k̃
n
)Fn

+ f external − Ṗn − Ω̃nPn
= 0 (32)

M̂n
B − M̂n

A
ln

+ (κ̃n + k̃
n
)Mn

+ (ẽn
1 + γ̃n)Fn

+ mexternal − Ḣn − Ω̃n Hn − ṼnPn
= 0 (33)

TnBV̂B − TnAV̂A
ln

+ (κ̃n + k̃
n
)Vn

+ (ẽn
1 + γ̃n)Ωn − γ̇n = 0 (34)

TnBΩ̂B − TnAΩ̂A
ln

+ (κ̃n + k̃
n
)Ωn − κ̇n = 0 (35)

For a given node G, if Side A of the beam elements aligns with node G, it is categorized
into the set EA. Conversely, if Side B of the beam elements corresponds to node G, it is
incorporated into the set EB. Based on this configuration, the subsequent equation can
be derived:

∑
n∈EA

TGn F̂n
G − ∑

n∈EB

TGn F̂n
G + f̂external − ˙̂PG − ˜̂ΩG P̂G = 0 (36)

∑
n∈EA

TGn M̂n
G − ∑

n∈EB

TGn M̂n
G + m̂external − ˙̂HG − ˜̂ΩG ĤG − ˜̂VG P̂G = 0 (37)

Here, TGn symbolizes the coordinate transformation matrix transitioning from the B-frame
of beam element n that aligns with node G to the B-frame specific to node G. Moreover,
the equations representing linear momentum and angular momentum are articulated
as follows: {

P̂G
ĤG

}
= MG

{
V̂G
Ω̂G

}
(38)

MG =

[
µ̂G∆ −µ̂G

˜̂ζG

µG
˜̂ζG ÎG

]
(39)

where µ̂G denotes the concentrated mass at node G, ζ̂G signifies the positional deviation of
the concentrated mass, and ÎG represents the mass moment of inertia matrix corresponding
to the lumped mass at that node.

3.2. Mass and Force Lumping

Mass and force lumping techniques are employed to enhance the system’s discretiza-
tion method. This stands as the primary innovation in this paper. Initially, it is imperative
to lump the inertia matrices for all beam elements. For element n and node G, the inertia
matrices are as follows:

Mn =

[
µn∆ −µn ζ̃n
µn ζ̃n In

]
, MG =

[
µ̂G∆ −µ̂G

˜̂ζG

µG
˜̂ζG ÎG

]
(40)
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For an element within the element set E associated with node G, the mass lumping is
expressed as

Mcondense
G = MG + ∑

n∈E

[
TT

nG O3×3
O3×3 TT

nG

]
Mnln

2

[
TnG O3×3

O3×3 TnG

]
(41)

where Mcondense
G represents the newly lumped inertia matrix corresponding to node G.

Upon completing mass lumping for all beam elements, the mass properties inherent
to these elements cease to exist. Consequently, the momentum and angular momentum
associated with the beam elements vanish. It becomes crucial to focus on the external forces
and moments spread over the beam elements. Drawing from the formulas for gravity,
aerodynamic force, and thrust as derived in Equations (10)–(20) for the beam element set E
associated with node G, the discretized aerodynamic force and moment directed to node G
are expressed as

f̂ G
aero = ∑

n∈E
Tge f

n
aeroln/2 (42)

m̂G
aero = ∑

n∈E
Tgemn

aeroln/2 (43)

The distributed gravity is discretized to node G and is expressed as

f̂ G
gravity = (µ̂G + ∑

n∈E
µnln/2)gG (44)

m̂G
gravity = (µ̂G

˜̂ζG + ∑
n∈E

µn ζ̃nln/2)gG (45)

The mass and force lumping techniques utilized in this context are of a straightforward
first-order form, and the forces and moments applied are similarly uncomplicated. Readers
have the flexibility to incorporate more refined lumping methods and integrate a wider
variety of forces and moments, without influencing the outcomes discussed subsequently.

3.3. Final Differential-Algebraic Equations

Following the mass and force lumping process, the equations governing all ele-
ments are

0 =
F̂n

B − F̂n
A

ln
+ (κ̃n + k̃

n
)Fn (46)

0 =
M̂n

B − M̂n
A

ln
+ (κ̃n + k̃

n
)Mn

+ (ẽn
1 + γ̃n)Fn (47)

γ̇n =
TnBV̂B − TnAV̂A

ln
+ (κ̃n + k̃

n
)Vn

+ (ẽn
1 + γ̃n)Ωn (48)

κ̇n =
TnBΩ̂B − TnAΩ̂A

ln
+ (κ̃n + k̃

n
)Ωn (49)

Additionally, the equations for all nodes are

˙̂PG = ∑
n∈EA

TGn F̂n
G − ∑

n∈EB

TGn F̂n
G + f̂external − ˜̂ΩG P̂G (50)

˙̂HG = ∑
n∈EA

TGn M̂n
G − ∑

n∈EB

TGn M̂n
G + m̂external − ˜̂ΩG ĤG − ˜̂VG P̂G (51)

˙̂ΦG = L(Φ̂G, Ω̂G) (52)

When juxtaposed with the state prior to mass and force lumping, it is evident that the
equations for beam elements in the fully intrinsic beam formulation no longer encompass
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external input terms and derivative terms. Therefore, the overarching equations are recon-
structed and manifested in a more structured manner. Once linearized, the equations for
the beam elements can function as algebraic constraint equations devoid of external input
terms and derivative terms, thereby facilitating the application of straightforward index
reduction techniques as subsequently described.

3.4. Time Domain Simulation

Equations (46)–(52) can be consolidated and represented in the following form:

ẋ = f (x) (53)

In the time domain simulation, the central difference method is employed. Consequently,
Equation (53) can be reformulated as

x(t + δt)− x(t)
δt

= ẋ = f (x) =
f (x(t + δt)) + f (x(t))

2
(54)

Given the current value of the state variables x(t), the Newton–Raphson method can
be employed to ascertain the value of the state variables at the subsequent time instant
x(t + δt) iteratively. As part of the time domain progression for each step, the initial value
for x(t + δt) is set identically to x(t).

4. Linearization and Index Reduction
4.1. Trimming

To derive linearized outcomes, determining the equilibrium points of Equations (46)–(52)
is imperative. For aircraft, equilibrium is typically attained by modifying the control
surfaces and throttle commands to stabilize the desired states under specific flight condi-
tions. Consequently, additional equations that pertain to the specified flight conditions are
frequently incorporated into the system, exemplified as follows:

Vre f = Vtrim

θre f = αre f

qre f = 0

(55)

which indicates that the aircraft maintains level flight at a designated flight speed Vtrim and
specified angle of attack αre f .

For beams with free boundaries, there is no requirement to incorporate boundary
conditions, as these conditions are inherently reflected within Equations (50) and (51).
When a boundary point is fixed, one should set the corresponding boundary velocity and
angular velocity to zero and eliminate the equations pertinent to those variables from
Equations (50) and (51).

Upon determining the value of the state variable x at the fixed point using the Newton–
Raphson method and subsequently computing the Jacobian matrices for the state variable
x and its derivative ẋ at said fixed point as Equation (53), a linear generalized state-space
form can be derived as follows:

Eẋ = Ax + Bu (56)

where E = ∂ f
∂ẋ |x=x0 , A = ∂ f

∂x |x=x0 , B = ∂ f
∂u |x=x0,u=u0 .

4.2. Index Reduction

While the index reduction method presented here is straightforward, it serves as a vital
complement to the mass and force lumping, highlighting its significance. It also represents
an innovative aspect of this study. The linearization of Equations (32)–(37) (without mass



Aerospace 2023, 10, 957 10 of 18

and force lumping) yields a generalized state space. Upon setting the output as y, this
assumes the subsequent form: {

Eẋ = Ax + Bu

y = Cx
(57)

where E is a singular matrix. Therefore, Equation (57) cannot be transformed into a standard
state space form. The generalized state space does not accommodate the methodologies
applied to the conventional state space.

Drawing a comparison between Equations (46)–(52) and Equations (32)–(37), it be-
comes evident that, without mass and force lumping, the first two element equations
lack terms for external forces and moments. As a result, the linearization outcome of
Equations (46)–(52) emerges as a specific manifestation of the generalized state space. One
can reframe the DAEs into two distinct subsystems. The state in these equations bifurcates
into two segments: xd (representing independent states) and xa (indicative of algebraic
states governed by the algebraic constraint). At this juncture, it is pertinent to segment
matrices E, A, B, and C accordingly:

E =

[
Ed Ea
0 0

]
A =

[
Add Ada
Aad Aaa

]
B =

[
Bd
0

]
C =

[
Cd Ca

]
(58)

Following this decomposition, the DAEs evolve into the subsequent representation:
Ed ẋd + Ea ẋa = Addxd + Adaxa + Bdu

0 = Aadxd + Aaaxa

y = Cdxd + Caxa

(59)

Next, we aim to eradicate the algebraic states. Drawing from the second equation, we can
articulate

xa = −A−1
aa Aadxd (60)

Substituting this derived expression of xa into the first and third equation yields{
(Ed − Ea A−1

aa Aad)xd = (Add − Ada A−1
aa Aad)xd + Bdu

y = (Cd − Ca A−1
aa Aad)xd

(61)

We arrive at a regular state-space representation as follows:{
ẋd = A′xd + B′u

y = C′xd
(62)

where 
A′ = (Ed − Ea A−1

aa Aad)
−1(Add − Ada A−1

aa Aad)

B′ = (Ed − Ea A−1
aa Aad)

−1Bd

C′ = (Cd − Ca A−1
aa Aad)

(63)

Consequently, the generalized state space has been transitioned into a regular state-
space form with the inclusion of algebraic constraints.

The state variables can be represented as x = [Fn
A

T , Fn
B

T , Mn
A

T , Mn
B

T , VT
G , ΩT

G, ΦT
G]

T .
Equations (46)–(52) can be denoted as f = [ f T

Pe, f T
He, f T

γe, f T
κe, f T

PG, f T
HG, f T

Φ]
T .
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For the purpose of index reduction, we specifically opt for Fn
B and Mn

B (selecting from
either Side A or Side B):

xd = [Fn
A

T , Mn
A

T , VT
G , ΩT

G, ΦT
G]

T

xa = [Fn
B

T , Mn
B

T ]T

fd = [ f T
γe, f T

κe, f T
PG, f T

HG]
T

fa = [ f T
Pe, f T

He]
T

(64)

Following the aforementioned procedure, the result is

Ed =
∂ fd
∂ẋd

, Ea =
∂ fa

˙∂xa

Add =
∂ fd
∂xd

, Ada =
∂ fd
∂xa

, Aad =
∂ fa

∂xd
, Aaa =

∂ fa

∂xa

(65)

5. Numerical Results

Consider the case of a nonlinear aeroelastic flying wing. This particular aircraft model
was previously employed in studies conducted by Patil and Hodges [13], subsequently by
Su [9], and further explored by Wang [14], as depicted in Figure 2. The aircraft’s properties
are delineated in Table 1. In this study, the merits of the mass and force lumping method,
as well as the index reduction method, will be elucidated through the numerical out-
comes associated with the flying wing. Furthermore, these numerical results will undergo
validation against the flexible dynamic model presented in the established literature.

Figure 2. The geometry of the flying wing, as referenced in [9,13,14].

Table 1. Relevant properties of the flying wing [13].

Parameter Value

Elastic/reference axis 25% chord
Aerodynamic center 25% chord

Center of gravity 25% chord
GJ 1.65× 105 N·m2

EI2 1.03× 106 N·m2

EI3 1.24× 107 N·m2

m 8.93 kg/m
I11 4.15 kg·m
I22 0.69 kg·m
I33 3.46 kg·m

Wing Clα
2π

Wing Clδ
1

Wing Cd0 0.01
Wing Cm0 0.025
Wing Cmδ −0.25
Pod Clα

5
Pod Cd0 0.02
Pod Cm0 0
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For the designated aircraft, the elevator and aileron, denoted as δe and δa, respectively,
span the entire wing length, as illustrated in Figure 3. In the example aircraft, the structure
exhibits a span of 73.14 m with a consistent chord of 2.44 m. It is partitioned into six sections
by its propellers, and each terminal span possesses a dihedral angle of 10 degrees. Beneath
the wing, there are three pods that act as the landing gear or bay for payload. Each of these
pods measures 1.83 m in length. The payload is positioned at the central location of the
middle pod, with weights between 0 kg and 227 kg.

Figure 3. The elevator δe and aileron δa of the flying wing.

First, discretize the aircraft using finite element methods. For each section on the
wing, divide it into four beam elements and five beam grids. For every pod beneath the
wing, segment it into two beam elements and three beam grids. Subsequently, employ
Equations (40)–(45) on all beam elements for mass and force lumping. Finally, by applying
Equations (46)–(52) to all beam elements and grids, we can derive the final differential-
algebraic equations for the aircraft.

5.1. Trim Results

Use Equation (55) to trim the aircraft for level flight at a speed of 12.2 m/s. The payload
at the aircraft central pod varies from 0 kg to 227 kg, corresponding to a range of 0% to
100%. Refer to Figure 4 for the trim results. Comparisons are made with the works of
Patil [13] and Su [9]. It can be seen that after using the mass and force lumping described
above, the trim results are essentially the same.

(a) Angle of attack, thrust, and flap deflection (b) Root locus

Figure 4. Trimming results of the flexible flying wing with payload varying from 0 to 227 kg. (a) Angle
of attack, thrust, and flap deflection. (b) Root locus. The format of the comparison figure is similar to
that of Wang [14].

5.2. Nonlinear Time Domain Simulation

The input curve shown in Figure 5a is utilized for subsequent linear and nonlinear
time domain simulations. Unless otherwise specified, the input curve remains unchanged,
with only the input peak values being modified. In this section, the peak value for elevator
δe is set to 5 degrees. Results from the current study, using 100% payload, are compared
with those from Patil’s research [13].
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(a) The input curve (b) Nonlinear time domain simulation results

Figure 5. (a) The percentage of input curve; (b) nonlinear time domain simulation results with δe

input with a peak value of 5 degrees.

The results prior to 20 s show good agreement. However, the outcomes after 20 s are
not considered reliable as the angle of attack surpasses 100 degrees, and the model does
not account for stall conditions.

5.3. Linearization and Index Reduction

Examining Patil’s findings [13], it is evident that they are in a generalized state-space
form after linearization. Transforming this system into a regular state-space form presents
challenges. Conversely, the above-described method of index reduction and linearization
in Equations (57)–(65) facilitates the straightforward acquisition of linearization results in a
standard state-space form. The eigenvalues of the state space are illustrated in Figure 6.
When juxtaposed with the results without mass and force lumping, as well as index
reduction, the eigenvalues remain consistent. This affirms that the dynamic characteristics
of the system remained unchanged after the mass and force lumping.

Figure 6. Comparison of eigenvalues before and after mass and force lumping, where the part
indicated by the arrow represents the distribution of the eigenvalues near the origin.

Utilizing the input curve from Figure 5a and employing the peak values of δe and δa at
2 degrees and 10 degrees, respectively, for longitudinal and lateral directional simulations,
the time domain simulation results are as depicted in Figure 7. When contrasting the
linear system with its nonlinear counterpart, certain observations can be made. For the
longitudinal system, as illustrated in Figure 7a, the linearization outcomes align closely
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with the nonlinear simulation results when near the equilibrium state. However, post
10 s, the system substantially deviates from equilibrium, leading to marked discrepancies.
The lateral result in Figure 7b, on the other hand, consistently shows good agreement
throughout due to its proximity to the equilibrium state.

(a) Longitudinal results (b) Lateral results

Figure 7. Comparison of linear and nonlinear time domain simulation results in (a) longitudinal direc-
tion and (b) lateral direction with peak values of δe and δa at 2 degrees and 10 degrees, respectively.

5.4. Model Order Reduction

In actual flight conditions, the aerodynamic loads and inherent structural charac-
teristics of an aircraft contribute to enhanced damping effects at high frequencies. As a
result, model order reduction is achieved by selecting eigenvalues and eigenvectors near
the origin, which is called the eigenvalue selection method. The selected eigenvalues are
represented in Figure 8.

Figure 8. Eigenvalues selected from Figure 6 to execute model reduction, where the part indicated by
the arrow represents the distribution of the eigenvalues near the origin.

We designate δe as the input for longitudinal dynamics and da for lateral dynamics.
The longitudinal outputs comprise the pitch angle, forward velocity, upward velocity, and
center-bending moment at the central position. The lateral outputs encompass the roll
angle, yaw angle, roll speed, and yaw speed at the central position. The outputs selected
here are reference quantities that best reflect the current state of the aircraft during flight
dynamics analysis. The Bode plots for the longitudinal and lateral responses are presented
in Figures 9 and 10, respectively.
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(a) ds to pitch angle (b) ds to forward speed (c) ds to pitch rate (d) ds to upward speed

Figure 9. Comparison of Bode plots from ds to (a) pitch angle, (b) forward speed, (c) pitch rate, and
(d) upward velocity before and after model reduction. The red lines represent the full-order system,
while the blue lines represent the reduced-order system.

(a) da to roll angle (b) da to roll rate (c) da to yaw angle (d) da to yaw rate

Figure 10. Comparison of Bode plots from da to (a) roll angle, (b) roll rate, (c) yaw angle, and (d) yaw
rate before and after model reduction. The red lines represent the full-order system, while the blue
lines represent the reduced-order system.

As can be observed from the figures, the reduced-order model, with the exception of
the Bode plot corresponding to δa to the roll rate in its lower-frequency segment, aligns
exceptionally well with the full-order model over a frequency range of 10−2 to 102. The dis-
crepancies arise likely due to the omission of certain low-frequency eigenvalues with real
parts far from the origin during eigenvalue selection. This necessitates a trade-off between
reduction accuracy and the number of reduced-order terms.

A comparison of the time domain simulation results between the reduced-order system
and the full-order system is shown in Figure 11. The time domain simulation results are in
complete agreement and align consistently with the frequency domain characteristics.

(a) Longitudinal time domain simulation (b) Lateral time domain simulation

Figure 11. Comparison of reduced-order and full-order linear time domain simulation in (a) longitu-
dinal direction and (b) lateral direction.

When contrasted with the widely used balanced reduction method, the eigenvector
of the reduced-order system encapsulates all the system’s characteristic motions. This
facilitates the analysis of the impact of each mode. The eigenvector linked to each actual
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eigenvalue and each set of complex eigenvalues relates solely to the eigenvector correspond-
ing to the same eigenvalue in the original system. This retains tangible physical relevance
and offers valuable insights for flight dynamics analysis, as well as for the assessment of
controllability and observability.

5.5. Analysis of Flight Dynamics

The model reduction technique discussed previously preserves the modal data of the
full-order linear model. Figures 12 and 13 display the first four modal responses of the
longitudinal and lateral reduced-order models, respectively. The first row represents the
velocity outcomes, while the second row illustrates the internal moment results.

It can be observed that both pure rigid body motion modes and structural modal
forms are absent in flexible aircraft. All modes are composites of motion and structural
modalities. A single type of structural mode may correspond to multiple eigenvalues.
For instance, the second and third modes in the longitudinal direction both reflect the
first-order symmetric bending mode to some extent. Similarly, the first and third modes in
the lateral directional domain capture the first-order anti-symmetric bending mode.

Figure 12. From left to right are the first four modes of longitudinal reduced-order model. The blue
lines represent the shape of the aircraft, while the red lines represent the shape of the eigenvector.

Figure 13. From left to right are the first four modes of the lateral reduced-order model. The blue
lines represent the shape of the aircraft, while the red lines represent the shape of the eigenvectors.

Given that the reduced-order system maintains the dynamic modes of the original
system, the contribution values of various states can be distinguished during the simulation
of the reduced-order model. Moreover, they can be linearly superimposed. The modal
contributions are depicted in Figure 14. Within the figure, the lines delineated by red circles
represent the output of the reduced-order system, while the remaining lines illustrate
the contribution of each individual mode. This is an aspect that the balanced reduction
method cannot achieve, as its eigenvalues no longer retain the physical characteristics
of the original system. Through evaluating the contributions of each eigenvector under
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distinct excitations, we can examine the aircraft’s dynamic behaviors and determine the
proportional contributions of different modes to the aircraft’s overall dynamic response.

(a) Longitudinal modal contributions (b) Lateral modal contributions

Figure 14. The dashed lines represent the time-domain simulation results for the reduced-order
system, while the solid lines depict modal contributions of several main modes in (a) longitudinal
direction and (b) lateral direction.

6. Conclusions and Future Works

In this study, we introduce the concept of employing the mass and force lumping tech-
nique as a vital enhancement to the finite element discretization of the fully intrinsic beam
formulation. Using the central difference discretization method as a demonstration, we
systematically analyzed the form of the discretized system equations, elucidating the funda-
mental principles of employing the mass and force lumping technique. After reconstructing
the inertia matrices as well as external forces and torques in the discretized fully intrinsic
beam formulation using the first-order mass and force lumping method, we observed that
the restructured equations possess a more structured form. This form can subsequently be
transformed into a regular state space through the application of the index reduction method.

Subsequently, we leveraged a widely referenced, high-aspect-ratio flying wing config-
uration as a case study for numerical verification. After discretizing the system using the
finite element method integrated with the mass and force lumping technique described
earlier, we computed the trim results and long-period eigenvalues of the system under
various payloads. Comparing these with results from the literature, we found a substantial
degree of alignment. Additionally, we compared the eigenvalues of the system before and
after applying the mass and force lumping technique, noting that there was no change
in the system’s eigenvalues. This affirmed that the dynamic characteristics of the system
remained unchanged after the mass and force lumping. Lastly, we employed an eigenvalue
selection method to reduce the system’s order, verifying the accuracy of the reduced system
and analyzing the dynamic characteristics of the original system based on it. The eigen-
value selection method can only be implemented in a regular state space, further attesting
to the efficacy of mass and force lumping.

Since mass and force lumping do not disrupt the finite element discretization process,
in future works, we intend to apply more precise lumping methods to an array of finite
element discretization techniques, such as the Galerkin approach and the generalized
differential quadrature method. Our goal is to reconstruct the equations and further
validate the extensive application prospects of mass and force lumping, thereby expanding
the application boundaries of these finite element discretization methods.
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