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Abstract: Aircraft are exposed to cosmic radiation depending on their flight altitude and latitude.
Therefore, flight attendants are exposed to radiation for long periods. In this study, a 0.3 mm thick
fabric was designed with which to manufacture crew clothes to shield them against external exposure
to space radiation, and the shielding performance was analyzed based on empirical experiments
in a real environment. Gadolinium oxide, which has a high neutron reaction cross-section, and
tungsten, which is useful for gamma-ray shielding, were proposed as the main raw materials for
the shielding fabric, and the shielding performance was evaluated using detectors on Arctic flight
routes. Composite (KG-01) and single (KG-02) shielding materials were used. In the case of KG-01,
the transmission dose rate was 90.7 ± 5.6% compared with the unshielded case, showing an average
space-radiation dose reduction of 9.3%. With KG-02, the transmission dose rate was 103.1 ± 2.0%
compared with the unshielded case, and the average dose rate increased by 3.1%; therefore, there
was no shielding effect against space radiation. Considering the statistical error of the environmental
radiation at aircraft flight altitudes, KG-01 had a shielding effect of at least 5%; however, KG-02
yielded no significant shielding effects.

Keywords: aviation shielding; radiation; gadolinium oxide; tungsten; radiation shielding

1. Introduction

Depending on the flight altitude and latitude, aircraft are exposed to various radiation
environments owing to the interaction between the spacecraft and the atmosphere. These
environments expose crew members and passengers to radiation. Cosmic radiation can be
divided into galactic cosmic rays (GCRs), solar energetic particles (SEPs) generated by solar
flares or corona emissions, and radiation captured by the Earth’s magnetic field [1,2]. GCRs
are affected by solar activity and consist of protons, charged particles, alpha rays, and
helium. SEPs have relatively lower energies than GCRs; however, they are composed of
protons and electrons and are transmitted at higher fluxes compared with GCRs. Radiation
doses change according to latitude, altitude, and time [3]. Figure 1 shows that various types
of radiation are generated when space radiation interacts with the Earth’s atmosphere. This
radiation environment has variable characteristics during the flight of aircraft, depending
on time and space [4]. Space radiation has a significant biological effect on the human
body due to its high linear energy transfer (LET) [5]; during flight, the shielding effect of
the atmosphere and the Earth’s magnetic field is reduced and can thus have a significant
biological effect on an aircraft’s crew and passengers [6]. Unlike passengers, aircraft crew
members work at high altitudes for long periods; therefore, they are more exposed to
cosmic and secondary (scattered) radiation.
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Figure 1. Radiation environment at commercial aircraft flight altitudes due to galactic cosmic rays 
(GCRs) and solar energetic particles (SEPs). 

Figure 2a shows the type and dose of space radiation according to altitude. At alti-
tudes in the range of 10–13 km, where international aircraft fly, the effects are primarily 
caused by secondary radiation generated from reactions with the Earth’s atmosphere ra-
ther than the direct effects of cosmic radiation [7]. There are differences depending on 
latitude, altitude, and time. Figure 2a shows that for a total dose rate of approximately 3.3 
µSv/h at an altitude of 10 km, the neutron, proton, electron, and other radiation dose rates 
are 1.8, 1.0, 0.2, and 0.2 µSv/h, respectively. The radiation dose contribution from neutrons 
and protons is 55% and 30%, respectively, accounting for 85% of the total radiation dose 
[8]. Figure 2b shows the dose of neutrons and charged particle radiation according to lat-
itude; as latitude increases compared with that at the equator, the radiation dose increases 
by more than three times. A similar level of radiation environment is maintained for lati-
tudes > 60° [9]. The latitude dependence of radiation is caused by the distribution of the 
Earth’s magnetic field. 

Aircraft flying at high altitudes are exposed to considerably different radiation envi-
ronments compared with the radiation environment on the ground, which can affect the 
crew, passengers, and electronic components of aircraft. Therefore, although complete 
shielding is difficult to achieve, research is required to reduce the damage caused by space 
radiation using flexible sheet-type shielding. Medical institutions and nuclear power 
plants are researching various shielding materials for X-rays and gamma rays; however, 
commercial products for space radiation shielding are still limited. Therefore, in this 
study, a sheet that can block neutrons and gamma rays was developed to produce a func-
tional shielding fabric for flight attendants. Considering that neutrons contribute to more 
than 50% of space radiation, the material used to manufacture the sheet was mainly com-
posed of gadolinium (Gd), which has a large neutron reaction cross-section, and tungsten 
(W), which can shield gamma rays. Because the sheet would be used as a shielding cloth-
ing material, it must satisfy the low-weight, health, and flexibility requirements [10]. The 

Figure 1. Radiation environment at commercial aircraft flight altitudes due to galactic cosmic rays
(GCRs) and solar energetic particles (SEPs).

Figure 2a shows the type and dose of space radiation according to altitude. At altitudes
in the range of 10–13 km, where international aircraft fly, the effects are primarily caused by
secondary radiation generated from reactions with the Earth’s atmosphere rather than the
direct effects of cosmic radiation [7]. There are differences depending on latitude, altitude,
and time. Figure 2a shows that for a total dose rate of approximately 3.3 µSv/h at an
altitude of 10 km, the neutron, proton, electron, and other radiation dose rates are 1.8, 1.0,
0.2, and 0.2 µSv/h, respectively. The radiation dose contribution from neutrons and protons
is 55% and 30%, respectively, accounting for 85% of the total radiation dose [8]. Figure 2b
shows the dose of neutrons and charged particle radiation according to latitude; as latitude
increases compared with that at the equator, the radiation dose increases by more than three
times. A similar level of radiation environment is maintained for latitudes > 60◦ [9]. The
latitude dependence of radiation is caused by the distribution of the Earth’s magnetic field.

Aircraft flying at high altitudes are exposed to considerably different radiation environ-
ments compared with the radiation environment on the ground, which can affect the crew,
passengers, and electronic components of aircraft. Therefore, although complete shielding
is difficult to achieve, research is required to reduce the damage caused by space radiation
using flexible sheet-type shielding. Medical institutions and nuclear power plants are
researching various shielding materials for X-rays and gamma rays; however, commercial
products for space radiation shielding are still limited. Therefore, in this study, a sheet
that can block neutrons and gamma rays was developed to produce a functional shielding
fabric for flight attendants. Considering that neutrons contribute to more than 50% of space
radiation, the material used to manufacture the sheet was mainly composed of gadolinium
(Gd), which has a large neutron reaction cross-section, and tungsten (W), which can shield
gamma rays. Because the sheet would be used as a shielding clothing material, it must
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satisfy the low-weight, health, and flexibility requirements [10]. The shielding effect of the
manufactured sheet was measured during an aircraft flight, and the results were compared
with known data.
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ilization rate. After the addition of the shielding material to the prepared spinning solu-
tion with 5.165 g of DMF and 2.785 g of chloroform, the mixture was dispersed for 1 min 
using an ultrasonic grinder; it was mixed at a speed of 600 revolutions per min (rpm) using 
a magnetic stirrer (Laboratory stirrer/hot plate, PC-420, Corning, Reynosa, Mexico). The 
polymer was completely dissolved and then spun. Two types of nanofibers were manu-
factured by mixing the PU spinning solution with the radiation-shielding material in a 
ratio of 7:3, followed by electrospinning, as shown in Figure 3. The first type, KG-01, was 
manufactured using 40 wt% gadolinium oxide and 30 wt% tungsten, and the second type, 
KG-02, was manufactured using 70 wt% gadolinium oxide alone. The injection speed of 
the spinning solution was adjusted to 0.6 mL/h using a syringe pump (KDS100, SD Scien-
tific Inc., Holliston, MA, USA). A high-voltage power supply (CPS-60K02VIT, Chungpa 
EMT Co., Gyeonggi-do, Republic of Korea) was used. The radiation voltage was main-
tained at 10 kV after adjustment. The distance was adjusted to 10 ± 0.5 cm, and the needle 
size was 22 gauge [11,12]. The external appearances of the manufactured shielding film 
membranes (KG-01 and KG-02) are shown in Figure 4. The degree of particle dispersion 
in the internal shielding material was measured using an optical microscope (field-emis-
sion scanning electron microscope (FESEM), S-4800, Hitachi, Tokyo, Japan) [13]. 

Figure 2. Types and dose rates of radiation according to altitude (a) and latitude (b).

2. Materials and Methods
2.1. Production of the Shielding Film

To protect against cosmic radiation, we fabricated a 0.3 mm thick functional shield.
The shielding material was manufactured from powdered tungsten (W, 99.9%, <4 µm, Nan-
Gong XinDun Alloys Spraying Co., Ltd., Xingtai, China) and gadolinium oxide (Gd2O3,
<4 µm, Duksan Pure Chemicals Co., Ltd., Ansan, Republic of Korea). The polymer used
as the shielding material was dried polyurethane (PU, P-7195A, molecular weight (Mw)
100,000–150,000; Songwon, Republic of Korea). N-dimethylformamide (DMF, 99.5%, Dae-
jung, Republic of Korea) was used as the solvent for polymer dissolution. Chloroform
(95%, Duksan, Republic of Korea) was used as a poor solvent to control the volatilization
rate. After the addition of the shielding material to the prepared spinning solution with
5.165 g of DMF and 2.785 g of chloroform, the mixture was dispersed for 1 min using
an ultrasonic grinder; it was mixed at a speed of 600 revolutions per min (rpm) using a
magnetic stirrer (Laboratory stirrer/hot plate, PC-420, Corning, Reynosa, Mexico). The
polymer was completely dissolved and then spun. Two types of nanofibers were manu-
factured by mixing the PU spinning solution with the radiation-shielding material in a
ratio of 7:3, followed by electrospinning, as shown in Figure 3. The first type, KG-01, was
manufactured using 40 wt% gadolinium oxide and 30 wt% tungsten, and the second type,
KG-02, was manufactured using 70 wt% gadolinium oxide alone. The injection speed of the
spinning solution was adjusted to 0.6 mL/h using a syringe pump (KDS100, SD Scientific
Inc., Holliston, MA, USA). A high-voltage power supply (CPS-60K02VIT, Chungpa EMT
Co., Gyeonggi-do, Republic of Korea) was used. The radiation voltage was maintained at
10 kV after adjustment. The distance was adjusted to 10 ± 0.5 cm, and the needle size was
22 gauge [11,12]. The external appearances of the manufactured shielding film membranes
(KG-01 and KG-02) are shown in Figure 4. The degree of particle dispersion in the internal
shielding material was measured using an optical microscope (field-emission scanning
electron microscope (FESEM), S-4800, Hitachi, Tokyo, Japan) [13].
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tion, and the equivalent dose calculation algorithm were applied [15]. The pulse-height 
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Figure 4. (a) Appearance of a 70% gadolinium oxide shielding film (KG-01), and (b) shielding film
(KG-02) made by mixing 30% tungsten and 40% gadolinium oxide.

2.2. Dose Evaluation Algorithm

This study verified the radiation-shielding effect of the manufactured shielding films.
Figure 5 shows the process of determining the equivalent dose from the measured pulse-
height spectrum [14]. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER), a
space-radiation measuring instrument of the National Aeronautics and Space Administra-
tion, and the equivalent dose calculation algorithm were applied [15]. The pulse-height
spectrum, measured using the Si sensor, was converted into a linear-energy spectrum based
on energy correction. Because silicon has different density and atomic number from those
of the human body, the measurement result for silicon must be adjusted accordingly to
evaluate the dose applied to the human body. Benton et al. [16] showed that the LET values
of several charged particle radiations measured on Si can be converted to LET values for the
human body. Equation (1) converts LETSi, determined through mathematical calculations
for heavy ions with atomic numbers 1 to 54 with energies within 0.8 to 2000 MeV/amu, to
the LETH2O [16]. The channels of the pulse-height spectrometer correspond to the energy
of the measured radiation, and the energy Ei absorbed by each channel i can be summed
over the total number of channels (1024) and divided by the mass of the sensor to deter-
mine the absorbed dose [17]. The equivalent dose in the human body was determined by
applying the radiation weight factor (ωR) from the International Commission on Radio-
logical Protection Report 103 (ICRP 103) according to Equation (2) [18]. ωR is a physical
quantity introduced to compensate for differences in the biological effects of radiation on
the human body depending on the LET of the radiation. At LETs below 10 keV/µm, there
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is no increase in biological effects from radiation, thus ωR = 1. Above 10 keV/µm, the LET
value determines ωR, as shown in Equation (2).

log
(

LETH2O
)
= −0.2902 + 1.025log (LETSi), (1)

where LET is the linear energy transfer (keV/µm), and

ωR = 1 (LET ≤ 10 keV/µm)

ωR = 0.32× LET − 2.2 (10 keV/µm < LET ≤ 100 keV/µm) (2)

ωR = 300/LET (100 keV/µm < LET)

where ωR is the radiation weighting factor (ICRP 103).
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2.3. Space-Radiation Measuring Instrument

To verify the radiation protection effect of the shielding films produced in this study,
a GDK-101 silicon sensor (GDK-101, FtLab Co., Ansan, Republic of Korea) was used, as
shown in Figure 6a. This sensor consists of 10-pin photodiodes, operates in the counting
mode, and has a measurable dose rate range of 0.01–200 µSv/h [19]. Considering the
expected dose rate at the range of aircraft altitudes, it was judged to be suitable for dose
assessments.
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Figure 6. (a) Si-based radiation sensor, (b) multichannel pulse-height analyzer, and (c) space-
radiation measuring instrument for evaluating space-radiation shielding characteristics at aircraft
flight altitudes.

Although the GDK-101 sensor was designed to operate in the counting mode, the
measurements confirmed that it outputs a signal proportional to the incident radiation
energy, and the radiation energy spectrum was measured using this sensor. Figure 6b
shows the general-purpose multichannel pulse-height analyzer from RH Electronics for
measuring the energy spectrum. This consists of a programmable interrupt controller
(PIC18) MCA module with 1024 channels and a 10-bit analog-to-digital converter.

The operating voltage was 5–12 V, and real-time spectrum confirmation was possible
using a 128 × 64 liquid-crystal display. The measured data were saved on a microSD
memory card, and the radiation dose measurement results were analyzed using a computer.
Figure 6c shows the space-radiation detector manufactured using the GDK-101 sensor
and RH Electronics MCA. A universal serial bus (USB)-A port was installed to use the
USB power of the aircraft, and the measured spectral data were stored in a storage device
installed in the microSD (secure digital) slot.

2.4. Detector Calibration Test

Radiation detectors 1, 2, and 3 for the measured data value calibration experiment
were obtained from a standard calibration institute for radiation detectors. Energy and
dose calibrations were performed using Korasol’s Cs-137 662 keV gamma-ray source at
a dose rate of 10 µSv/h. In the case of GDK-101, the photoelectric peak of gamma rays
could not be measured due to the small size of the Si sensor and the low atomic number;
therefore, energy correction was performed by measuring the Compton edge, as shown in
Equation (3). The Compton edge of the Cs-137 662 keV gamma ray was determined using
Equation (3) to be 477 keV. Figure 7 shows the pulse-height spectrum measured for the
Cs-137 662 keV gamma ray. The Compton edge channel was 77. From these results, the
energy calibration factor was determined to be 6.2 keV/CH, and the dose-rate calibration
factors for detectors 1, 2, and 3 were 0.598, 0.530, and 0.598 nSv/count, respectively.

E′ = Eγ

1− 1

1 + 2Eγ

moc2

 (3)
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where
E′: Compton edge energy (keV);
Eγ: incident γ energy (keV);
mo: rest mass of electron (511 keV);
c: velocity of light (3 × 108 m/s).
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3. Results
3.1. Observation Results of the Internal Cross-Section of the Shielding Film

Figure 8 shows an internal cross-sectional view of the shielding films manufactured for
protection from space radiation. The dispersion of the particle distribution of the shielding
film mixed with tungsten and gadolinium oxide was better than that of the gadolinium
oxide-only film. An even dispersion of particles imparts radiation protection, and this was
the purpose of using nanofibers in the electrospinning model, where particles are evenly
dispersed [20].
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Figure 8. (a) Radiation shielding film made of 30% tungsten and 40% gadolinium oxide (KG-01), and
(b) shielding film made of 70% gadolinium oxide (KGBM-002).

3.2. Flight Test Route and Korean Radiation Exposure Assessment Model for Aviation Route Dose
(KREAM): Estimated Dose Rate

Aviation shielding demonstration tests were conducted on the Incheon–New York,
Incheon–Frankfurt, and Frankfurt–Incheon flights in July 2023. Detector 3 was used without
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a shielding film, detector 1 was shielded with a KG-01 film, and detector 2 was shielded
with a KG-02 film. The measured results were compared and analyzed at the end of the
flights. The performance of the shielding film was evaluated using the ratio of values
measured by detectors 2 and 1 and by detectors 3 and 1. The measurements were based on
KREAM, jointly developed by the Korea Astronomy and Space Science Institute. Data from
the National Meteorological Satellite Center of the Korea Meteorological Administration
were used to compare and verify the space-radiation exposure dose by aircraft route and
date [21]. Figure 9a shows the Incheon–New York flight route on 17 July 2023. The total
flight time was 13 h and 26 min, the flight distance was 12,801 km, the total dose calculated
using KREAM was 86.9 µSv, and the dose rate was 6.34 µSv/h. Figure 9b shows the
Incheon–Frankfurt flight route on 24 July 2023. The total flight time was 12 h and 54 min,
the flight distance was 10,334 km, the total dose calculated using KREAM was 58.3 µSv,
and the dose rate was 4.52 µSv/h. Figure 9c shows the Incheon–Frankfurt flight route on 31
July 2023. The total flight time was 10 h and 52 min, the flight distance was 10,122 km, the
total dose calculated using KREAM was 44.7 µSv, and the dose rate was 4.11 µSv/h. As the
flight time and latitude increased, the amount of space radiation increased; the calculated
dose rate during the Incheon–New York flight was the highest.
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Figure 9. Air routes and dose rates were calculated using the Korean Radiation Exposure Assessment
Model for Aviation Route Dose (KREAM).

3.3. Demonstration Test of the Space-Radiation Shielding Sheet using a Silicon Detector

Figure 10 shows the in-flight dose rates measured using the three detectors.
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Figure 10. Dose rate as a function of flight time according to the air route.

Table 1 lists the dose-rate measurement results for the three flights. Compared to
the KREAM values, dose rate was 6.9% lower in the ICN–JFK section, 5.8% lower in the
ICN–FRK section, and 9.7% lower in the FRK–ICN section. The Si sensor measurement
value was found to be 92.5 ± 2.0% of the KREAM value. The dose rate of space radiation
varies depending on the flight section and time. In the case of neutrons, the dose rate may
increase owing to secondary scattering rays caused by the shielding material.

Table 1. Measurements and Korean Radiation Exposure Assessment Model for Aviation Route Dose
(KREAM) rates according to flight section.

Flight Dose Rate (µSv/h)

Detector 1
with KG-01

Detector 2
with KG-02

Detector 3
without (w/o) Shield KREAM

2023.07 ICN–JFK 5.88 5.96 5.90 6.34

2023.07 ICN–FRK 3.84 4.37 4.26 4.52

2023.07 FRK–ICN 3.36 3.93 3.71 4.11

The space-radiation shielding effect of the manufactured shields was derived based on
the results obtained when there was no shielding film, as listed in Table 2. The transmittance
and shielding ratios were determined by comparing the average dose recorded using
detectors 1 and 2 for the entire flight section (with shielding films) to that using detector
3 (without a shielding film). In the case of the KG-01 composite-material shielding, the
transmission dose rate was 90.7 ± 5.6%, compared with the unshielded dose-rate case,
thus yielding an average space-radiation dose reduction of 9.3%. In the case of the KG-02
single-material shielding, the transmission dose rate was 103.1 ± 2.0% compared with
the unshielded case, and the average dose rate increased by 3.1%; therefore, there was
no reduction in the space radiation dose. Considering the statistical uncertainties in
environmental radiation levels at aircraft flight altitudes, KG-01 had a shielding effect of at
least 5%, whereas KG-002 had no meaningful shielding effect. Therefore, a shielding film
using tungsten and gadolinium oxide as composite materials was more effective than a
single-material film made using gadolinium oxide.
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Table 2. Shielding ratio measurements on KG-01 and KG-02 air routes.

Flight
Ratio of the Dose Rate

(Det. 1 with KG − 01)/
(Det. 3 w/o shield) (%) (Det. 2 with KG − 02)/

(Det. 3 w/o shield) (%)

2023.07 ICN-JFK 98.6 101.0

2023.07 ICN-FRK 87.9 102.5

2023.07 FRK-ICN 85.7 105.7

Trans. AVG (%) 90.7 ± 5.6 103.1 ± 2.0

Shielding (%) +9.3% −3.1%

4. Discussion

Most particles that cause cosmic radiation effects at aviation altitudes (8–12 km) are
high-energy space particles with MeV energies [22]. Owing to the Earth’s magnetic field
and atmosphere, only a small amount of cosmic radiation reaches inside aircraft. Protection
from high-energy particles requires thick and dense shielding materials, which makes
them heavy [23]. The space-radiation shielding effect can vary depending on the radiation
absorption properties of the shield material for different subatomic particles, making it
difficult to expect the same shielding effect against all particles [24]. In this study, two
radiation shielding films, KG-02 (containing gadolinium oxide with a large neutron reaction
cross-section) and KG-01 (containing gadolinium oxide and tungsten), were investigated to
reduce the dose caused by space radiation at aircraft flight altitudes, and the dose-shielding
effect was demonstrated through measurements during three flight routes [16]. Gadolinium
oxide is a commonly used element in neutron detectors because of its large neutron reaction
cross-section, which varies depending on the energy of neutrons; in the case of thermal
neutrons, the neutron reaction cross-section of gadolinium is approximately 4.9× 104 b [25].
Tungsten has a thermal neutron reaction cross-section of 18.4 b, which is disadvantageous
in shielding neutrons compared with gadolinium. However, tungsten has advantageous
characteristics in shielding photons or charged particles owing to its high atomic number
and density [26,27].

At aircraft flight altitudes, the proportion of the neutron dose from the ground is high
(approximately 50%), and neutrons with an energy of approximately 1 MeV, which have the
highest biological effect on the human body, are distributed in large quantities, as shown in
Figure 11 [28,29].
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Figure 11. Energy ratio of neutrons in cosmic radiation.

As shown in Figure 12, gadolinium has a high neutron reaction cross-section; therefore,
it is effective in shielding low-energy neutrons. In the case of 1 MeV neutrons, the reaction
cross-section is approximately 20 b, which is smaller than the reaction cross-section for
thermal neutrons [30]. Therefore, if the shielding thickness is insufficient, the dose may
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increase owing to secondary radiation generated by the reaction between fast neutrons
and the shielding material, or neutrons whose energy is reduced because of the shielding
material. The particle size of the shielding material affects the shielding effect [31,32].
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In this empirical experiment, the dose-shielding effect of space-radiation shielding
sheets was studied. Gadolinium oxide was found to be more effective in shielding cosmic
radiation at aircraft flight altitudes when mixed with other materials than when used
alone [33,34]. Shields using gadolinium oxide as a single material had no shielding ef-
fect. Shields made with a mixture of tungsten and gadolinium oxide had some shielding
effect [35]. Within a certain margin of error, the quantitative dose of the single-material
barrier increased. We speculate that this increase occurred because the incident high-energy
particles were attenuated and scattered to the detector, resulting in the detection of higher
doses [36]. Other studies reported measuring instruments detecting an increase in the
background dose and scattered rays generated upon collision with the subject [37]. Use
of a thin single material results in an unexpected cross effect and increased scattering
through interactions [38]. This cross effect means that mutually symmetrical elements
collide, thus increasing unwanted effects. This study had some limitations. The variability
in environmental radiation was not considered for analysis. No analysis was conducted by
varying the thickness of the manufactured shields. Although this study focused on fabrics
for full-time protective clothing, their shielding potential was tested at low thickness and
weight and without a high shielding rate. The shielding performance of a fabric varies
depending on the type of radiation and particle interaction. It is difficult to expect the
same shielding effect because protons, neutrons, and other particles can be produced in
successive reactions. In this study, the shielding effect was investigated based on a 0.3 mm
thick fabric, which is the limit of nanofiber production. Therefore, in order to produce
shielding fabrics for flight crews, empirical evaluation based on the actual environmental
conditions of flight routes is necessary. It is hoped that this study will stimulate related
research [39].

5. Conclusions

To reduce the radiation dose to cabin crew members from space radiation at aircraft
flight altitudes, a radiation shielding film containing gadolinium oxide with a large neutron
reaction cross-sectional area and a shielding film containing gadolinium oxide and tungsten
were manufactured. In the case of nanofiber-based shielding (thickness = 0.3 mm), the
transmission dose rate was 90.7 ± 5.6%, compared with the unshielded dose rate; this
corresponded to an average space-radiation dose reduction effect of 9.3%.
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