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Abstract: The aviation industry is one of the fastest-growing sectors and is crucial for both passenger
transport and logistics. However, the high costs associated with maintenance, refurbishment, and
overhaul (MRO) constitute one of the biggest challenges facing this industry. Motivated by the
significant role that remaining useful life (RUL) prognostics can play in optimising MRO operations
and saving lives, this paper proposes a novel data-driven RUL prognosis model based on counter
propagation network principles. The proposed model introduces the recursive growing hierarchical
self-organisation map (ReGHSOM) as a variant of SOM that can cluster multivariate time series
with high correlations and hierarchical dependencies typically found in RUL datasets. Moreover,
ReGHSOM is designed to allow this clustering to evolve dynamically at runtime without imposing
constraints or prior assumptions on the hypothesis spaces of the architectures. The output of
ReGHSOM is fed into the supervised learning layers of Grossberg to make the RUL prediction. The
performance of the proposed model is comprehensively evaluated by measuring its learnability,
evolution, and comparison with related work using standard statistical metrics. The results of this
evaluation show that the model can achieve an average mean square error of 5.24 and an average
score of 293 for the C-MPASS dataset, which are better results than most of the comparable works.

Keywords: counter propagation neural network; self-organising map; recursive SOM

1. Introduction

In the current decade, the use of aerospace technology in passenger transport and
logistics has increased significantly. According to [1], the global market for aerospace
forgings was estimated at USD 30 billion by 2022, and this figure is expected to rise to
more than USD 50 billion by the end of 2035, with a compound annual growth rate of 8%.
However, one of the biggest challenges facing this industry is the high cost of maintenance,
refurbishment, and overhaul (MRO). According to [2], MRO costs were estimated at USD
62 billion in 2021, representing approximately 11.2% of total airline operating costs, with
engines being the largest cost segment at 37% of these costs.

Remaining useful life (RUL) prognostics is one of the very effective strategies widely
used to optimise MRO operations. The main objective of prognostics is to accurately predict
how long an asset can continue to perform its intended function [3,4]. Such prediction
enables an MRO operation to be performed in accordance with the actual condition of
the component, which, in turn, can save costs on unnecessary MRO operations. Indeed,
several studies, e.g., [3,4], report that the high fluctuation of usage patterns and operating
conditions makes the scheduled maintenance inaccurate, while [5] estimates that a total
of USD 3 billion is wasted on the no fault found (NFF) inventory. In addition to the direct
monetary savings that can be achieved through prognostics, a reduction in MRO activities
can also reduce the human errors that occur during this process. Such a reduction is not
insignificant but accounts for about 80% of MRO errors [6,7]. Another key advantage
of prognosis-based MRO optimisation is its ability to extend component life and reduce
maintenance delay [8,9]. A study conducted by the authors of [8] on a fleet of 100 long-haul
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air-craft engines shows that prognosis-based MRO can prolong engine life by about 30–40%,
while [9] shows that a 20% reduction in maintenance time can be achieved. Besides the
above benefits, some studies show the benefits of using prognostics in terms of improving
spare parts supply chains [10], increasing fleet availability [11], and reducing collateral
damage during repairs and on-ground aviation [12].

The significant benefits that RUL prognosis can offer to the aviation sector have
sparked the interest of researchers to use the most advanced modelling approaches to
optimise MRO operations. Many of the pioneering models use analytical approaches to
develop mathematical models capable of characterising the degradation behaviour of phys-
ical systems, e.g., [13–18]. Although these models demonstrate their feasibility, the need to
account for various interactions within the modelled system and its operating conditions
can pose challenges to their solvability and in some cases make them intractable [19].
In response to these challenges, the principles of data-driven models have been utilised
as contemporary modelling techniques. Data-driven models use external observations
generated by the system to make predictions about its degradation status. This, in turn,
makes data-driven models well suited to the continuous evolution that modern aviation
systems undergo [20]. Among the various approaches used in data-driven models, the deep
artificial neural network (DANN) has emerged as the mainstream architecture. Simply
put, a DANN [21] is an acyclic graph consisting of computational units with learnable
parameters organised into layers and connected by an objective function. During training,
the model is presented with a set of observations along with their corresponding desired
outcomes. The model then attempts to adjust its learnable parameters so that its output
is as close as possible to the desired outcomes. This adjustment process is usually facil-
itated by the backpropagation algorithm, which is an error correction learning strategy.
In backpropagation, the errors calculated in the output layer are passed backwards to
the preceding layers so that each layer adjusts its learnable parameters in response to the
errors it produces. While several works using DANNs have achieved remarkable results by
tailoring the hypothesis spaces of the model to the dataset, e.g., [22–37], it is important to
recognise that there are several reported limitations associated with the DANN architecture.
One of the most important limitations is the high vulnerability of DANN models to data
and concept drift [38,39], the increase in gradient instabilities with the depth of the DANN
model [21,40], the high sensitivity of DANN to noise and outlines in the datasets [21,41],
and the high computational cost.

Motivated by the importance of developing a reliable data-driven prognosis model
and the shortcomings of existing DANN models, this paper proposes a novel model based
on the counter-propagation network (CPN) [42]. The core approach underlying the CPN is
that a combination of unsupervised and supervised learning strategies within the same
architecture can improve the learning capability of the model and solve some of the main
problems related to backpropagation. In a CPN, a raw dataset is fed into a self-organisation
map (SOM), which is a nonlinear vector quantisation algorithm known for its ability to
preserve the topological order of its inputs [43]. The output of the SOM is then fed into
a supervised network based on Grossberg’s learning approach, which is known for its
high fidelity and low computational budget. Several works comparing the performance
of CPN with that of DANN, e.g., [44–49], show the superiority of CPN in terms of higher
convergence speed, greater resilience to noise and outliers, better computational efficiency,
better interpretability and explainability, and lower sensitivity to concept/data drifts.

However, one of the biggest challenges standing in the way of applying CPN directly
to RUL prognosis tasks is the fact that the original CPN was designed to process time-
agnostic datasets. In contrast, most datasets that characterise RUL are a collection of
multivariate time series. Typically, each instance of such a dataset consists of a series of
observations taken from various subcomponents of the assets being monitored. Due to the
mutual coupling amongst these subcomponents and the fact that they are exposed to the
same operating conditions, the RUL dataset usually exhibits a high degree of correlation
and hierarchical dependencies. This work addresses the unique nature of RUL datasets
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by proposing a novel variant of a SOM map dubbed recursive growing hierarchical SOM
(ReGHSOM). ReGHSOM combines the strengths of ReSOM [50], which was developed
to allow traditional SOMs to handle temporal relationships of the dataset through a fixed
architecture, and GHSOM [51], which was developed to allow dynamic evolution of
the SOM without considering temporal dependencies. This combination enables the
proposed ReGHSOM algorithm to effectively handle high correlations and hierarchical
dependencies of multivariate time series datasets. Indeed, ReGHSOM does not impose any
constraints or prior assumptions on the architectures of the model, which, in turn, allows
ReSOM to deal with different shapes of datasets without having to seek the suitability
of the model’s hypothesis spaces for the particular dataset. Another important aspect
of the ReGHSOM is its ability to transform nonlinear statistical relationships embedded
in multivariate time series observations into a simpler geometric representation that can
preserve their topological order. Therefore, latent relationships can be thoroughly visualised
and rigorously quantified. Furthermore, feeding the supervised layer with a meaningful
and low-dimensional representation of the original dataset not only improves prediction
accuracy by reducing the impact of noisy data points, but also enables a reduction in the
time required for these predictions by reducing the computational complexity of the model.

The performance of the proposed model was comprehensively evaluated using the
commercial modular aero-propulsion system simulation (C-MPASS) dataset [52]. This
dataset was selected for evaluation because it is one of the most commonly used bench-
marking datasets in multimodal work, allowing a fair comparison between the results of
the proposed model and others. Another important feature of this dataset is that it uses
different conditions, fault models, and noise levels to generate the readings. Performing
the evaluations under these cases allows us to assess the suitability of the proposed model
for dealing with quasi-real datasets. In addition to comparing the results of the model with
relevant work, the evaluation of the proposed model also includes its learning ability and
its evolution under different subsets of C-MPASS. All evaluations are conducted using
standard statistical metrics, including mean absolute error, root mean square error, and
score. The results of this evaluation show that the proposed model is able to achieve an
average mean square error of 5.24 and an average score of 293 for the C-MPASS dataset,
which are better than most of the comparable works.

To summarise, the main contribution of this work is to develop a versatile RUL
prognostics model that can dynamically adapt its architecture to the characteristics of the
degradation dataset in real-time. This adaptability extends the applicability of the model
to entire engines or even specific components without requiring extensive adjustments
to the model’s hypothesis spaces. The high prediction accuracy that the proposed model
can achieve makes it one of the valuable methods not only in optimising standard MRO
operations but also in contemporary non-destructive testing (NDT) from different perspec-
tives. This includes reducing the cost and efforts associated with performing unnecessary
NDTs or MROs, as the prediction generated by the model can reveal the status of the
system under its actual operational conditions. Moreover, incorporating the readings from
different components in the proposed model facilitates predicting the performance of those
components that cannot be easily inspected by the NDTs. Another important benefit of the
proposed model is this context stems from its high computational feasibility, which, in turn,
facilitates incorporating it with other operational processes seamlessly.

The rest of this paper is organised as follows: Section 2 reviews the most pertinent
works presented in the open literature, Section 3 describes the proposed model, Section 4
presents the results and discussion, and Section 5 concludes this paper.

2. Related Works

The development of an effective model that can predict RUL or other related aircraft
component degradation metrics is one of the most active research areas that has received
much attention due to its key role in saving lives and optimising aviation MRO practices.
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Most of the work presented in the open literature can be divided into two border groups:
physics-based models and data-driven models.

The core concept underlying most of the physical-based models is that the behaviour
exhibited by a system during its life cycle can be quantified mathematically. Therefore, the
signs of deterioration can be identified simply by interpreting these models in the light of
fundamental laws of science and their derivations [19]. Broadly speaking, most of these
models can vary according to several criteria. These include the factors that contribute to
degradation (e.g., environmental conditions (e.g., [13]) and operating conditions (e.g., [14]));
the mechanisms by which degradation occurs (e.g., competitive degradation (e.g., [15])
and multistage degradation (e.g., [16])); and the methods used to represent uncertainty in
the model (e.g., deterministic (e.g., [17]) or stochastic approaches (e.g., [18])). Although
physical-based models have the potential to achieve a high level of fidelity, they often entail
a significant trade-off between the level of details that go into the models and the solvability
of the model. A very detailed model can represent the complexity of the real world but
may be difficult to solve, while a simplified model may be easier to work with but may not
fully represent real-world scenarios. Another notable limitation of physical-based models
is their lack of versatility, as models developed for specific machines or systems cannot be
easily applied to other machines.

Data-driven models, on the other hand, are based on the assumption that the degrada-
tion characteristics of a system can be determined by analysing the observations generated
by that system. This, in turn, makes data-driven models advantageous as they do not
require tracking the internal state space of systems or a mathematical representation of
the machine. The proliferation of high-precision sensors and rapid advances in the field
of deep learning model artificial intelligence further reinforce this trend by facilitating the
integration of extensive sensor-derived information for accurate predictions.

Deep artificial neuron networks (DANN) are one of the predominant modelling
approaches in this context. The work presented in [22] proposes a deep learning model
for predicting the remaining useful life of aircraft turbofan engines. In developing this
model, it was assumed that removing outliners and noisy data points can reduce the time
and computational complexity of the model, which, in turn, can lead to a faster learning
curve and better prediction readings. Therefore, four preprocessing phases were applied to
the raw dataset. In the first phase, a correlation analysis is performed between the RUL
values and the sensor trajectories for each sub-dataset. All trajectories whose correlation
coefficients are less than 10% are excluded from the subsequent preprocessing phases,
while the remaining trajectories are run through a moving median filter with an adaptive
time window. In the third and fourth preprocessing phases, Z-score normalisation and
an improved piecewise linear degradation model are used. The proposed model uses
the LSTM, drop-out, and fully connected architectures to obtain the RUL values, while
the iterative grid search technique is used to adjust the hyperparameters of the model
(including the number of layers, the number of neurons in each layer, batch size, etc.). In
this work, the C-MAPSS dataset is used to evaluate the accuracy of the proposed models.
The results of this evaluation show that the prediction metrics vary between the sub-
datasets, with the highest achievable root mean square error (RMSE) being 7.78, while the
lowest is 17.63. The work presented in [23] follows the same procedures presented in [22],
but uses different preprocessing techniques. More specifically, this work uses maximum
information coefficient theory (MICT) instead of the correlation analysis used in [22] to
determine the degree of association between sensor trajectories and the given RUL in each
training subset of C-MAPSS. The processed data are then treated with a technique that
combines both the simple moving average method and kernel principal component analysis
to smooth the noisy data points and map the remaining data points to a low-dimensional
space before feeding them into the deep learning model. The proposed model consists of a
series of LSTM layers followed by drop-out and fully connected layers. The results of this
work show that the highest RSME value is 9.65 and the worst is 22.21. Following the same
modelling approach, the authors of [24] investigate the impact of different correlation-based
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filtering methods and feature selection wrapper techniques on the prediction performance
using the C-MAPSS benchmark dataset. In this work, the MLP architecture with different
number of layers and neurons is used. The results of this work show that the best RMSE
value of 44.71 can be achieved when using the evolutionary wrapper selection method with
four fully connected layers followed by a drop-out layer and a single layer.

The great success that the convolutional neural network (CNN) has achieved in
computer vision and related disciplines has inspired a cadre of scholars to use it to predict
RUL. A CNN-based model relies mainly on the ability of this network architecture to extract
the salient feature automatically without a need for pre-adjusting. The work presented
in [25], for example, proposed a CNN model consisting of two pairs of convolutional layers,
each followed by a pooling layer and a fully connected layer from which the predicted RUL
values are derived. A sliding window of length 15 is used to segment the multivariate time
series of the raw datasets into smaller units before processing them with the proposed CNN
model. The results of this work show that the proposed model performs better compared
to the other three models developed using MLP, support vector regression (SVR), and
relevance vector regression (RVR). However, the highest RMSE value of 18.4480 reported
by the proposed model was not higher than the values reported by comparable works. The
work in [26] is another example that uses a CNN architecture to predict the RUL values of C-
MAPSS data. This work aims to reduce the loss of information that results from the change
in dimensionality of the dataset when it is processed through convolutional layers. The idea
of this work is to use zero-padding convolutional layers for primitive feature extraction and
a unit kernel convolutional layer for combining all previously extracted features. Despite
the tolerable performance values of the proposed model, the comprehensive evaluation of
CNN architectures in the context of RUL prediction concludes that there is a proportional
relationship between the number of convolutional layers and the prediction performed,
but this advantage is outweighed by the computational budgets and training time.

Besides the above, there are other works that aim to improve predictive performance
by integrating different ANN architectures over the same model, using continual learn-
ing techniques and federated learning principles. An example of this direction is [27],
which uses three different architectures: (i) CNN to extract the features from the dataset,
(ii) convolution block attention module to discriminate the most relevant features and
discard the rest of the features extracted by CNN, and (iii) LSTM to reveal the latent rela-
tionships between selected features and the predicted RUL. The result of this work shows
the ability of the proposed model to achieve an RMSE of 5.50 on the C-MPASS dataset,
but there is no further information about if this value is due to the whole dataset or just
a part of it. An example of the use of continual learning was presented in [28]. The basic
idea of this work is to use the elastic weight consolidation (EWC) approach to mitigate
the negative impact of catastrophic forgetting on prediction performance. Catastrophic
forgetting is one of the well-known limitations of deep learning models. It occurs when
the model cannot retrieve the knowledge it gained from processing previous samples
when a more recent instance is processed. EWC addresses this limitation by regulating the
model’s parameter spaces according to the importance of the acquired knowledge. The
performance reported in this paper shows that it outperforms other models based on CNN
and restricted Boltzmann machine and LSTM architectures. The authors of [29] propose a
federated learning model where the learning tasks are distributed across multiple nodes
rather than the exhaustion of a single machine resource by a massive training dataset. The
performance evaluation of the proposed model is performed using both weight aggregation
algorithms, synchronous and asynchronous, and it is shown that a higher value can be
obtained with the proposed model. The work proposed in [30] provides a new perspective
on the development of RUL estimation models by assuming that this estimation can be
formulated as a decision-making problem rather than a regression problem, as is the case
in other work. In this work, the Markov decision process is used to model the set of obser-
vations in the dataset as a linked state space, while deep reinforcement learning is used
as a means to identify the best estimation strategy. The work proposed in [31] attempts to
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overcome the high complexity of traditional spatio-temporal deep learning by proposing
a lightweight operator and using it with the GRU architecture. In this work, it is claimed
that the proposed operator is able to extract the relevant information for the given dataset
and seamlessly insert it into the following layers of the model. In addition, some recent
works such as [32–37] have been devoted to improving the prediction performance by
incorporating one or more of the above architectures.

3. The Proposed Model

The main contribution of this work is to develop a novel data-driven model that can
predict the values of RUL based on counter propagation network (CPN) principles [42].
This approach was chosen for its robustness in processing large amounts of multivariate
data, even when contaminated with noise and outliers. In addition, CPN is known for its
effective learning ability and fast convergence. Because of these properties, CPN has been
used to solve real-world problems with intricate data structures, including the mapping
and interpretation of infrared spectra of compounds [53], inferring the molecules behave
in acidic or basic environments [54], phylogenetic classification of ribosomal RNA [55],
structural analysis and design [44].

The CPN framework was introduced by Hecht-Nielsen as a hybrid artificial neural
network that seamlessly integrates supervised and unsupervised learning strategies into a
single architecture. In the unsupervised learning phase, the self-organising map (SOM) [43]
is used to encode the high-dimensional input data into a low-dimensional space that
preserves its topological order, while in the supervised learning phase, the Grossberg
network is used to associate the low-dimensional representations generated by the SOM to
a set of target outcomes. CPNs can be constructed in two main configurations: a full CPN
and a forward-only CPN. A full CPN consists of two input layers, a SOM map, and two
Grossberg layers. The two input layers are designed to receive a set of observations and the
corresponding target outputs, while the two Grossberg layers are responsible for generating
the best possible approximations of these inputs. The SOM layer acts as a mediator
that facilitates the transformation between the output and input spaces. In contrast, in
a forward CPN, the readings are received by an SOM layer and an approximation is
generated by the Grossberg layer. This makes the full CPN suitable for bidirectional
function approximation and the forward-only CPN suitable for unidirectional function
approximation. Considering that the main objective of the proposed model is to map
the set of observations into RUL values, the suitability of the forward-only CPN for this
purpose becomes clear. However, since the original forward-only CPN architecture was
designed for processing non-sequential datasets, a new form of this architecture is proposed
here. In our proposal, the recursive SOM [50] is combined with the growing hierarchical
SOM [51] architecture to form a novel unsupervised learning model, which we refer to
here as recursive growing hierarchical SOM (ReGHSOM), which effectively processes
RUL data. To illustrate the proposed model, Figure 1 shows a high-level abstraction of
the different components of this model. As you can see, the multivariate time series of
sensor readings are fed into the unsupervised layer (ReGHSOM), which clusters them
hierarchically to reflect the different granularity of the dataset. The centre of each cluster,
represented in colours (also known as best matching units), is connected to the supervised
layer (Grossberg), from which the predicted RUL values are generated. The rest of this
section is organised as follows: Section 3.1 provides a formal description of the RUL
prediction and the underlying assumptions used to develop the model. Sections 3.2 and 3.3
provide a detailed description for the ReGHSOM and Grossberg layer, respectively.
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Figure 1. High level abstraction of the proposed model.

3.1. Problem Formulation and Underlying Assumptions

This study considers a collection of multivariant time series, denoted by A, repre-
senting measurements of different parts of several assets and multiple conditions under
which these assets are operate;, the term observations is used here to refer to these mea-
surements and operating conditions collectively. The dimensionality of A is defined as
A ∈ RN×‖E‖×∑∀e∈E te where N is the width of observations, E is a set containing identi-
fiers of all assets accommodated A, ‖·‖ is the cardinality symbol, and te is the number
of cycles at which the observations related to arbitrary assets are is monitored. For the
sake of generality, it is assumed that the monitoring cycles of different assets are not
necessarily congruent, i.e., te 6≡ td; ∀e, d ∈ E . Furthermore let Ae be the subset of A
that contains all observations related to the engine e, Ae ⊆ A this set can be written as
Ae = {ae,n(t)}te

t=1 = {ae,1(t), ae,2(t), . . . ., ae,N(te)}te
t=1, and R be the set of length ‖E‖

containing the RUL values of all assets. Based on the above, the goal of a data-driven model
is to find such a function f that accepts the set of observations A as input and produces a
vector of values that are as close as possible to the real RUL values, denoted here by R̀;
hence, f can be expressed as f : A→ R̀ .

A data-driven model aims to derive f by applying a learning strategy to a collection
of learnable computing units constructed according to a particular hypothesis space. Al-
though there are no golden rules that can be followed in defining the hypothesis space
or the learning strategy, here we attempt to discuss the underlying assumptions used
in developing the proposed model. First, the use of a type of computing unit that can
recognise the temporal structure embedded in time series, which is strongly required due to
the fact that most of the observations provided by RUL datasets are time series. Second, the
use of a versatile hypothesis space that can be easily adapted to the structure and complexity
of the dataset.

3.2. RGHSOM Unsupervised Layer

The self-organising map (SOM) is a type of connectionist system introduced by Koho-
nen in 1982 [43] and is, therefore, also referred to as the Kohonen map in some references.
SOM was inspired by the mechanism by which cortical maps evolve automatically during
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growth. Indeed, several research studies on neuronal information processing have shown
that interactions between cortex cells in response to a given stimulus are dominated by their
lateral spacing. In this process, cells that are better able to interpret a stimulus increase their
activation by emitting excitatory signals to their neighbours, while keeping distant cells in
suspension by sending inhibitory signals. These interactions lead to self-organisation of
cortical maps in a topographically meaningful order.

SOM resembles the self-organising phenomena of the brain described above in that it
combines the competitive learning approach [56,57] with a spatiotemporal function called
the neighbourhood function. In its simplest form, a SOM consists of several artificial
neurons arranged in a two-dimensional lattice. Each neuron in the map is connected
to all neurons in the input layer by a weighting vector, referred to here as the receptive
weighting vector (it is also called the codebook vector or prototype), whose dimension is
set according to the number of neurons in the input layer. In addition, each neuron in the
SOM map is connected to the other neurons in the same layer by either an excitatory or
an inhibitory weighting, depending on their lateral distance. During the training phase,
all weighting vectors are randomly initialised, after which an instance of the observation
dataset is presented to the SOM. The neuron in the SOM map then applies some kind of
radial function to calculate the extent to which its receptive weighting vector matches the
presented instance. The neuron with the best match is then nominated and this begins the
weighting update process, in which the receptive weighting vectors of the unit with the best
match and its neighbours are moved closer to the given readings, while the vectors of the
other neurons remain unaffected. At the end of the training phase, the SOM should be able
to transform nonlinear statistical relationships embedded in high-dimensional observations
into a simpler geometric representation that can preserve their topological order.

However, the lack of effective mechanisms by which the standard SOMs can in-
corporate temporal dependencies into their clustering formation, as well as their rigid
topologies, stand in the way of straightforward application of SOMs to RUL prediction.
Some works have focused on improving SOM capabilities for processing sequential datasets
(e.g., temporal SOM, hypermap, recurrent SOM, and recursive SOM) [58], while others
have concentrated on extending the SOM topology according to the nature of the dataset
under consideration (e.g., growing SOM [59] and growing hierarchical SOM [51]). This
work aims to enhance the capabilities of SOM in both perspectives by combining ReSOM
with GHSOM. The underlying approach on which ReSOM was developed is to allow the
classical SOM to learn from its past activities by feeding it with a lagged-in-time copy of
the SOM as additional input. Therefore, at a time instant, the neurons of a ReSOM receive
two homogeneous inputs: the first is a feedforward input representing the instances of the
training dataset corresponding to that time point, and the second input is the activity of the
SOM generated at the delayed time step. These two inputs are concatenated and then fed
into a classical SOM map. This, in turn, allows the ReSOM to follow the same procedures
and mechanisms of the classical SOM map, including learning rules, weight updates, and
neighbourhood function.

The principle of the GHSOM, on the other hand, is to construct a SOM map that can
grow dynamically in accordance with the dataset that the map encounters at runtime. Such
growth can occur vertically by adding new maps to the existing structure and horizontally
by adding new neurons to the same map. This process continues until a suitable SOM
topology emerges that can effectively represent the different patterns exhibited by the
datasets and their relationships to each other.

To explain how the integration of ReSOM and GHSOM works, we assume that at
a time instant k there is a SOM map with a number of neurons at level j; here, M is
used to refer to the set that accommodates these neurons. The feedforward and feedback
weight vectors of any neuron mj at time k, i.e., mj ∈ M, are denoted by wx

mj
[k] and wy

mj [k],

respectively, where the wx
mj
[k] ∈ RN and wy

mj [k] ∈ R‖M‖. At this point, the map is presented
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with a realisation of the input, denoted r(t) ⊆A, and each neuron calculates its distance with
respect to r(t) as:

Dmj [k] = −α
(∥∥∥r(t)−wx

mj
[k]
∥∥∥)2
− β

(∥∥∥ymj
[k− 1]−wy

mj [k]
∥∥∥)2

(1)

where α and β are hypermeters used to control the how long the historical information is
involved in the computing the distance, whereas ymj

[k− 1] is the output generated by this
neuron at the preceding time step which is computed as:

ymj
[k− 1] = exp

(
Dmj [k− 1]

)
(2)

The neuron with the minimum distance to the given input at time instance k is
nominated as best matching unit (BMU), i.e., m*

j = arg min
mj

{
Dmj [k]

}
∀mj∈M

and then

weight vectors are updated according to:

wx
mj
[k + 1] = wx

mj
[k] + γ[k]hmj,m*

j

(
r(t)−wx

mj
[k]
)

wy
mj [k + 1] = wy

mj [k] + γ[k]hmj,m*
j

(
ymj

[k− 1]−wy
mj [k]

) (3)

where γ[k] is the learning rate (the rate at which the learning process is paced, which
is typically defined as γ[k] = γ0exp

(
− k

k1

)
; γ0 is the initial value of learning rate, usually,

γ0 ∈ [0, 1]; and k1 is the time constant. hmj,m*
j

is the neighbourhood function that is defined

as a hmj,m*
j
= exp

(
−

Dmj ,m
*
j

2σ[k]2

)
where Dmj ,m*

j
is the distance between the neuron mj and

m*
j and σ[k] is the effective width of the topology neighbourhood, which is defined as

σ[k] = σ0exp
(
− k

k1

)
; here, σ0 is the initial value of the effective width and again k1 is the

time constant. Depending on the representation power that neurons of the j layer provides,
the training can be conducted for one of more epochs and by the end of them, each neuron
computes its mean quantisation error (MEQ) as:

mqemj
=

1∥∥∥Cmj

∥∥∥ ∑
xi∈Cmj

∥∥∥wx
mj
− xi

∥∥∥ (4)

where Cmj is a subset of the dataset represented by neuron mj, i.e., the data points whose
BMU is mj. It is worth noting that we define mqe in terms of the feedforward weight vectors
without considering the feedback weight vector. This definition is justified by the fact
that the feedforward weight vectors connect the neuron to the input space, and it is the
sole responsibility to represent the datapoints. Following the computation of mqe’s of all
neurons, the MQE of the entire map at level j is computed as the mean of mqe’s of all BMU
neurons in j, i.e.,

MQEJ =
1
‖U‖ ∑

∀mj∈U
mqemj

(5)

where U is the subset of M containing all the BMU’s. Once these computations are per-
formed, a decision whether there is a need to add more neurons to the same level or add
new layers has to be made. Such a decision is performed by comparing the MQEJ with the
mqe of its parent, i.e., the neuron in the upper level j− 1 from which the level is emerged, i.e.,

MQEJ < τ1MQEmj−1
(6)

If the value of Equation (6) is evaluated as false, it means that the current map cannot
represent the dataset at the desired level of granularity and, therefore, the process of
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horizontal growth must be initiated. This process starts by selecting the neuron with the
maximum mqe value in layer J, i.e., ej = arg max

mj

{
Dmj

}
∀mj∈M

and the furthest neighbour

within its receptive field to ej in terms of the weight vector, denoted by dj. A new set of
neurons is then added between ej and dj. The new map architecture is then trained and
evaluated against the condition given in Equation (6). Once this condition is met, the
horizontal growth is terminated, and the vertical growth process begins. The main goal
of this process is to determine whether or not each neuron in the current map is placed at
the correct level. This determination Is made by comparing the mqe of all neurons with the
mqe of the neuron at level 0, i.e., mqe0 using Equation (7). If a neuron does not meet this
condition, it is moved to the next level of the map.

mqej,k < τ2mqe0; ∀j, k ∈ J, K (7)

where J, K denoted the sets of all neurons in the horizontal and vertical levels, whereas
τ1 and τ2 are the hyperparameters of the model whose values are set to 0.05 and 1.0,
respectively.

3.3. Grossberg Layer Supervised Layer

The output layer, as defined in the original CPN architecture, is a single layer with
one or more artificial neurons, each of which is fully connected to all other neurons in
the SOM layer. Although this makes this layer looks like an MLP architecture, it differs
significantly from that architecture both in the way by which the weighting connections are
updated and, in the strategy used to perform the learning. In this layer, the actual target
values (ground truth) are used to perform the learning process, whereas in the traditional
MLP network, the magnitude of the deviation of the target value from the predicted value
(i.e., the prediction errors) is used instead. Using the actual values not only speeds up the
convergence of the model, but also reduces the possibility of trapping into local minima,
which typically occurs when the error is too small to be captured by the learning rate.
Furthermore, the output of this layer uses the Grossberg learning rule, where the new
value of the weights is calculated based on the value of the current weight, the ground
truth and the output of the SOM layer, without the need for complicated mathematical
operations (i.e., as gradients in the MLP architecture). The main advantage of the Grossberg
learning rule, which, besides its low computational cost, has a high level of robustness
against data deviations. More specifically, adjusting the weights of the neurons in this
layer in accordance with all the fired/triggered SOM neurons facilitates the retention of
valuable available information related to various clusters derived from the unsupervised
learning strategy in the mapping space of each neuron. It is worth noting that the artificial
neurons of the CPN output layer do not contain an activation function, as is the case with
their counterparts in the MLP networks. As a result, the CPN output layer avoids the
limitations associated with selecting an inappropriate activation function, such as output
space constraints, potential bias shifts, and lack of smoothness.

4. Results and Discussion

This section is devoted to the results and discussion of this study. First, Section 4.1
describes the dataset used to evaluate the performance of the model proposed in this
study. Section 4.2 provides an overview of the performance metrics that were used to
quantify the evaluation. Sections 4.3–4.5 provide the evaluation that was conducted to
assess the model’s learning ability, its evolving process, and comparison with related works,
respectively.

4.1. Overview of the C-MPASS Dataset

With the aim to assess the validity of the proposed model from different perspectives
and under different situation, two datasets are used here: commercial modular aero-
propulsion system simulation (C-MPASS) [52]. C-MPASS was created by the National
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Aeronautics and Space Administration (NASA) and made publicly available at Ames
prognostics data repository. The repository of this dataset consists of 13 text files totalling
42.8 MB for 709 training and 707 engines data, which can be divided into four groups
named FD001, FD002, FD003, and FD004. The four files, prefixed by the word “train”,
contain temporal readings from 21 gas turbine engine’s sensors and three operating settings
that have significant effects on engine performance. In addition, each record/row in a
training file is indexed by a tuple, consisting of engine identification and a cycle number at
which the 21 sensory readings are taken. The initial wear and manufacturing variation of
each engine are not listed in the files, however, the information of the last cycle of a given
engine is the instance at which the engine reaches failure case. This, in turn, makes each
file a set of multivariate time series of run-to-failure cycles. Thus, the remaining useful
life (RUL) of each unit/engine in the training datasets can be calculated by counting the
number of cycles for that unit. The four test files, preceded by the word “test”, have an
identical structure to the training files, except that the sensory readings are given for a
subset of cycles during which the engine is fully functional, so the RUL cannot be calculated
directly from these files. Instead, the real RUL values of each engine in the test datasets
are given in separate files whose names are prefixed with the word RUL. Table 1 compares
these sub-datasets from different perspectives including the number of training and testing
trajectories, the number of conditions (e.g., sea level) under which the data were simulated,
and, finally, number of fault mode (e.g., HPC degradation, fan degradation).

Table 1. Description of the C-MPASS dataset.

Parameter FD001 FD002 FD003 FD004

Number of training trajectories 100 260 100 249
Number of testing trajectories 100 259 100 248

Number of conditions 1 6 1 6
Number of fault modes 1 1 2 2

4.2. Performance Metrics

Mean absolute error (MAE) is one of the performance metrics widely used to measure
the overall ability of regression models to make accurate predictions. MAE is defined as
the average Manhattan distance between the predictions generated by the model and the
corresponding actual values given by the dataset providers. In mathematical notation,
MAE can be expressed as follows:

MAE =
1

∑∀e∈E te

∑∀e∈E te

∑
i=1

∥∥R̂i −Ri
∥∥ (8)

Recalling that ∑∀e∈E te represents the total number of monitoring cycles of all assets
accommodated in the dataset, Ri is instances of the actual RUL values, (i.e., ∀ Ri ∈ R)
whereas R̂i; ∀ R̂i ∈ R̂ are the corresponding predicted values.

While MAE provides valuable insight into the predictive performance of a model, its
reliance on the calculation of errors using Manhattan distances makes it less sensitive to
effectively accounting for outliers in the dataset. A possible solution to this limitation is to
use mean square error (MSE), which replaces absolute differences with squared differences
so that larger deviations from the norm are weighted more heavily. However, since the unit
used to measure this error is the square of the physical unit, the square root of the MSE, i.e.,
RMSE, is often preferred and formulated as:

RMSE =

√√√√ 1
∑∀e∈E te

∑∀e∈E te

∑
i=1

∥∥R̂i −Ri
∥∥ (9)

However, one of the main limitations of MAE and RMSE is that they are not able
to quantify the directions of the errors. The use of absolute values and squared terms in
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these two metrics obscures the distinction between whether the errors are due to over-
prediction (i.e., when the predicted values are higher than the corresponding actual values)
or under-prediction (i.e., when the predicted values are lower than the actual values).
In view of this limitation, various performance metrics such as the residual error or the
mean bias error have been proposed. However, in the field of RUL, it is crucial to treat
over-predictions and under-predictions differently, as over-predictions can lead to higher
MRO costs, while under-prediction can have catastrophic consequences. Inspired by this
need, some references [25–37] have introduced the scoring index as:

Score =


∑∀e∈E te

∑
i=1

e−(
(R̂−Ri)

13 ) − 1 ; R̂−Ri < 0

∑∀e∈E te

∑
i=1

e(
(R̂−Ri)

10 ) − 1 ; R̂−Ri ≥ 0
(10)

4.3. Assessment of the Model Learnability

The first evaluation of the proposed model focuses on assessing the prediction errors
generated by the model during its training phase. For the purpose of this evaluation, four
identical models were created as described in Section 3, each trained on a subset of the
C-MPASS dataset: FD001 to FD004. During this evaluation, the normalized MAE was
recorded at the end of each epoch and plotted as shown in Figure 2.
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Figure 2. MAE vs. number of epochs of the C-MPASS dataset. (a) MAE vs. number of epochs of
FD001. (b) MAE vs. number of epochs of FD002. (c) MAE vs. number of epochs of FD003. (d) MAE
vs. number of epochs of FD004.

The results depicted in Figure 2 show that the normalized MAEs of the four models
decrease monotonically over time until they settle in quasi-negligible regimes. Furthermore,
these results also show that the number of epochs required for the different models to
reach these regimes is approximately the same, even though each model was trained on
a different subset of data. These results corroborate the ability of the proposed model
to make accurate predictions for RUL values under various conditions and fault modes.
Indeed, utilising the counter-propagation principles as a vehicle for developing the model
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allows it to take advantage of both unsupervised and supervised learning strategies. Thus,
with a simple architecture of basic mathematical operations, the model can handle very
sophisticated and highly correlated datasets. Unsurprisingly, these results are consistent
with findings from the prior articles investigating the performance of counter-propagation
networks, e.g., [44–49]. For example, it was reported in [44] that the high coverage speed of
CPN is due to the fact that the weight-adjusting process does not include all the connections
across the whole network, but only the subset of connections connecting the winning node
(best matching unit) of the given training instance and its neighbours. Another important
factor for the fast coverage of the CPN is that the training process of the unsupervised
subnetwork (recursive growing hierarchical self-organising map (ReGHSOM) in this study)
and the supervised subnetwork (Grossberg network) are performed in tandem. This, in
turn, means that the computational complexity associated with the training process does
not scale up with the depth of the networks. The high resistance of the CPN to noise and
outliners is another strong aspect to consider when interpreting the results in Figure 2. In
particular, mapping the original dataset into a SOM map, which is known for its ability to
preserve topological order, makes it easier to isolate abnormal readings from others. Thus,
when you perform supervised learning over the resulting map, the effects of these readings
are filtered out.

4.4. Assessment of the Model Evolving

In light of the above, a further evaluation of how the proposed model was able to
achieve these results is presented here. This evaluation is achieved by presenting the output
of ReGHSOM, presented in the form of the dendrogram; the results of these evaluations
can be seen in Figure 3.

As can be seen in Figure 3, the ReGHSOM dendrograms for the four subsets of
data differ significantly, which highlights the ability of ReGHSOM to construct the SOM
architectures that match the characteristics of the dataset at runtime without imposing
any constraints or prior assumptions on these architectures. We recall that ReGHSOM is
one of the main contributions of this work, proposed to leverage the capabilities of the
original counter-propagation network in processing multivariate time series. Simply put,
ReGHSOM combines the recursive SOM and the growing hierarchical self-organising map
into a new variant where the growth is based on the temporal structure of the dataset rather
than the features of the dataset as is the case with the original GHSOM.

As can be seen from Figure 3a, the dendrogram of the sub-dataset FD001 is quite simple
compared to the dendrograms of the other sub-datasets. In contrast, the dendrogram of
the FD004 sub-dataset contains a much larger number of layers, nodes, and connections
between layers. The dendrogram of FD001 shows that the maximum distance between
the root (located at the top of the y-axis of the dendrogram; this node corresponds to the
first neuron generated when the map is initialised at level 0) and the leaves (at the bottom
of the y-axis of the dendrogram, which corresponds to the BMUs and is connected to the
supervised layer) is about 18, while the size of this distance is about twice as large in
FD004. The difference in the size of the distances highlights the variability (dissimilarity)
exhibited by the datapoints of the sub-datasets where the greater the distance, the greater
the dissimilarity, and vice versa. Another important observation that emerges from the
comparison of the dendrograms of FD001 and FD004 is the number of clades and their
types. The dendrogram of FDD4 has many clades, most of which are simplicifolious (the
branch of the dendrogram of a single leaf), while the dendrogram of FD001 has fewer clades
of tri- or more folious. The increased number of simplicifolious clades in the dendrogram
is an indication of the increase in the number of odd observations, i.e., observations that
cannot be clustered with other observations because of their unique characteristics. The
level at which the clades are generated is another important indicator of how the contents
of the datasets are related. The dendrogram of FD001 shows that a considerable number of
clades are formulated at the top and middle levels, while FD004 shows that the majority of
clades are formulated at the lower level. From these differences in the levels at which the
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clades are formed, it can be inferred that most of the datapoints in FD001 have relatively
high similarities, while in the case of FD004, these similarities are limited to smaller groups
of datapoints. A justification for our discussion can be found by considering the fact that
the FD004 sub-dataset was simulated to represent six different conditions with two fault
modes: HPC degradation and fan degradation, while the FD001 sub-dataset was generated
under a single condition and a single degradation mode. The use of a higher number
of conditions and fault modes during the simulation session inevitably leads to a higher
variation in the dataset. Further evidence of this can be found in [20], where it is stated
that the FD004 sub-dataset can be seen as a general case for the other subsets. An even
more interesting observation regarding some engines in FD004 was made by [60], where
the authors of this work show that some units alternate between healthy and faulty cases
during their lifetime. A look at the dendrograms of FD002 and FD003 shows that they
represent intermediate cases between FD001 and FD004.

A further evaluation of the proposed model from the perspective of prediction accuracy
is shown in Figure 4. From these figures, it can be seen that the proposed model can
determine the RUL for all engines in the four sub-datasets with high accuracy.

4.5. Comparison Prediction Accuracy with Related Works

The results presented in Section 4.2 demonstrate the ability of the proposed model
to provide exemplary learning curves in front of multiple datasets with different condi-
tions and fault modes. This outstanding ability was further explored in Section 4.3 by
demonstrating how the model can dynamically improvise the architectures that fit the
characteristics of the given dataset at runtime. In this section, an evaluation of the proposed
model from a new perspective is presented. This evaluation was designed to quantify
the overall performance exhibited by the model during the training and testing phase.
The RMSE and score metrics of the four models developed to process the subsets of the
CMAPSS datasets are measured and then compared to their counterpart readings reported
by selected related works. The results of this comparison are presented in Table 2, where
the first column contains the reference number, the second column shows the year in which
the paper was published, the third column summarises the AI architectures, while the
remaining columns show the results ordered by the four sub-datasets. The following abbre-
viations are used to denote the architectures: LSTM for L\long short-term memory, BiLSTM
for bidirectional LSTM, CNN for convolutional neural networks, MLP for multilayer per-
ceptron, EWC for elastic weight consolidation, DRL for deep reinforcement learning, IGRU
for involution gated recurrent unit, RGCN for recurrent graph convolutional network,
STG for spatial–temporal graph, BLS for fusing broad learning, and TCN for temporal
convolutional network.

Table 2. Comparison with related works.

Ref. Year Architecture
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

[25] 2016 CNN 18.44 1286.7 30.29 1375.0 19.81 159.62 20.15 788.64
[26] 2018 CNN 12.61 273.7 22.36 10,412 12.64 284.1 23.31 12,466
[28] 2020 EWC 12.56 231 22.73 3366 12.10 251 22.66 2840
[22] 2022 LSTM and MLP 7.78 100 17.64 1440 8.3 104 17.63 2390
[23] 2022 LSTM 11.35 213.65 17.78 1512.18 9.65 191.37 22.21 3285.51
[30] 2023 DRL 12.17 208.06 16.28 1436.81 13.08 225.50 18.87 1725.74
[31] 2023 IGRU 12.34 238 15.59 1205 13.12 292 13.25 1020
[32] 2023 CNN and GRU 16.29 270.78 31.46 1014.90 23.71 583.14 41.13 1722.93
[33] 2023 LSTM and CNN 3.52 29.98 13.29 693.46 4.44 32.96 13.79 720.64
[34] 2023 RGCN 11.18 173.59 16.22 1148.16 11.52 225.03 19.11 2215.9
[35] 2023 STG 11.62 203 13.04 738 11.52 198 13.62 816
[36] 2022 BiLSTMA 13.78 255 15.94 1280 14.36 438 16.96 1650
[37] 2022 BLS and TCN 12.08 243.0 16.87 1600 11.43 244 18.12 2090
PMTr 2023 CP and ReGHSOM 1.87 16.1 8.51 521.01 2.47 12.24 8.14 624.87
PMTs 2023 CP and ReGHSOM 1.57 15.5 8.24 522.31 2.35 12.50 8.78 622.45



Aerospace 2023, 10, 972 15 of 22

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 24 
 

 

The results depicted in Figure 2 show that the normalized 𝑀𝐴𝐸s of the four models 

decrease monotonically over time until they settle in quasi-negligible regimes. 

Furthermore, these results also show that the number of epochs required for the different 

models to reach these regimes is approximately the same, even though each model was 

trained on a different subset of data. These results corroborate the ability of the proposed 

model to make accurate predictions for RUL values under various conditions and fault 

modes. Indeed, utilising the counter-propagation principles as a vehicle for developing 

the model allows it to take advantage of both unsupervised and supervised learning 

strategies. Thus, with a simple architecture of basic mathematical operations, the model 

can handle very sophisticated and highly correlated datasets. Unsurprisingly, these 

results are consistent with findings from the prior articles investigating the performance 

of counter-propagation networks, e.g., [44–49]. For example, it was reported in [44] that 

the high coverage speed of CPN is due to the fact that the weight-adjusting process does 

not include all the connections across the whole network, but only the subset of 

connections connecting the winning node (best matching unit) of the given training 

instance and its neighbours. Another important factor for the fast coverage of the CPN is 

that the training process of the unsupervised subnetwork (recursive growing hierarchical 

self-organising map (ReGHSOM) in this study) and the supervised subnetwork 

(Grossberg network) are performed in tandem. This, in turn, means that the 

computational complexity associated with the training process does not scale up with the 

depth of the networks. The high resistance of the CPN to noise and outliners is another 

strong aspect to consider when interpreting the results in Figure 2. In particular, mapping 

the original dataset into a SOM map, which is known for its ability to preserve topological 

order, makes it easier to isolate abnormal readings from others. Thus, when you perform 

supervised learning over the resulting map, the effects of these readings are filtered out. 

4.4. Assessment of the Model Evolving 

In light of the above, a further evaluation of how the proposed model was able to 

achieve these results is presented here. This evaluation is achieved by presenting the 

output of ReGHSOM, presented in the form of the dendrogram; the results of these 

evaluations can be seen in Figure 3. 

 
(a) 

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 24 
 

 

 
(b) 

 
(c) 

Figure 3. Cont.



Aerospace 2023, 10, 972 16 of 22
Aerospace 2023, 10, x FOR PEER REVIEW 16 of 24 
 

 

 
(d) 

Figure 3. Dendrogram of the C-MPASS dataset. (a) Dendrogram of FD001. (b) Dendrogram of 

FD002. (c) Dendrogram of FD003. (d) Dendrogram of FD004. 

 

As can be seen in Figure 3, the ReGHSOM dendrograms for the four subsets of data 

differ significantly, which highlights the ability of ReGHSOM to construct the SOM 

architectures that match the characteristics of the dataset at runtime without imposing any 

constraints or prior assumptions on these architectures. We recall that ReGHSOM is one 

of the main contributions of this work, proposed to leverage the capabilities of the original 

counter-propagation network in processing multivariate time series. Simply put, 

ReGHSOM combines the recursive SOM and the growing hierarchical self-organising 

map into a new variant where the growth is based on the temporal structure of the dataset 

rather than the features of the dataset as is the case with the original GHSOM. 

As can be seen from Figure 3a, the dendrogram of the sub-dataset FD001 is quite simple 

compared to the dendrograms of the other sub-datasets. In contrast, the dendrogram of the 

FD004 sub-dataset contains a much larger number of layers, nodes, and connections between 

layers. The dendrogram of FD001 shows that the maximum distance between the root (located 

at the top of the y-axis of the dendrogram; this node corresponds to the first neuron generated 

when the map is initialised at level 0) and the leaves (at the bottom of the y-axis of the 

dendrogram, which corresponds to the BMUs and is connected to the supervised layer) is 
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Another important observation that emerges from the comparison of the dendrograms of 
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clades, most of which are simplicifolious (the branch of the dendrogram of a single leaf), while 

the dendrogram of FD001 has fewer clades of tri- or more folious. The increased number of 

simplicifolious clades in the dendrogram is an indication of the increase in the number of odd 

observations, i.e., observations that cannot be clustered with other observations because of 
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indicator of how the contents of the datasets are related. The dendrogram of FD001 shows that 

a considerable number of clades are formulated at the top and middle levels, while FD004 

Figure 3. Dendrogram of the C-MPASS dataset. (a) Dendrogram of FD001. (b) Dendrogram of FD002.
(c) Dendrogram of FD003. (d) Dendrogram of FD004.
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Figure 4. Prediction curves for RUL values of C-MPASS dataset. (a) FD001. (b) FD002. (c) FD003.
(d) FD004.

In general, it can be noted that the proposed model outperforms all other models
presented in the works by a competitive rate. This characteristic can be attributed to the
fact that the proposed model integrates both unsupervised (using ReGHSOM) and super-
vised learning strategies (using the Grossberg network) in a way that allows the temporal
behaviour embedded in each sub-dataset to be perfectly represented and converted into
actual values via a simple architecture and using the same weight update rule. This gives
the proposed model and other models based on the counter-propagation network (CPN)
approach some strong properties compared to the back propagation (BPN) approach used
by most of the comparative works listed in Table 2. Firstly, the fact that the CPN is designed
to learn from multiple clusters, each representing the features of a subset of the inputs,
allows the CPN to recognise these differences in prediction, which, in turn, improves its
accuracy. Indeed, the CPN can be conceptualised as an ensemble learning approach, where
the base learners are the BMUs of the resulting SOM map and the aggregation function
is the Grossberg network. The BPN, on the other hand, can be seen as a singular learning
approach, since the main objective is to reduce the errors generated by the model with
respect to all data points collectively. This, in turn, results in the need to apply one or more
preprocessing methods to the dataset contaminated with noise and outliers before feeding
it to the model. Justification for this claim can be found by reviewing the pre-processing
techniques that BPN models have used. The second main advantage of the CPN over the
BPN in relation to the scope of this work is the simple architecture and computational bud-
get feasibility that the CPN typically has. As described in Section 3, the CPN does not apply
complicated operators (such as gradient computations, matrix multiplications, chain rule,
and weight updates, etc.) as the BPN does, nor does it require cascading multiple layers to
improve learning performance as the BPN does. Instead, the CPN relies on a simple form of
radial function and its architecture is limited to two layers. This, in turn, not only reduces
the possibility of the CPN being subject to variations of the model parameters or gradient
instabilities, but also eliminates the causes of more difficult problems such as catastrophic
forgetting and data/concept drift. A comparison of the values of [28] with [25] shows that
the use of EWC, one of the continual learning strategies developed to mitigate the effects of
catastrophic forgetting in deep learning, can lead to higher prediction accuracy.

4.6. Comparison of Computational Complexity with Related Works

The previous subsection demonstrated the ability of the proposed model to make
higher accuracy predictions than some of the state-of-the-art peer works. The focus of this
subsection is, therefore, on whether or not this outperformance is at the expense of higher
resource utilisation. To this end, several deep learning models with architectures similar to
those considered in Section 4.4 were created with particular emphasis on this and evaluated
using the following metrics: (1) number of model parameters that count the total number
of weights and biases that the model uses to map the given input to the desired output;
(2) FLOP counts, which is the total number of FLOating point operations the model per-
forms during its processing for a single instance of the input; (3) the prediction time, which
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is the number of CPU seconds required by the model to generate the output correspond-
ing to a given instance of the input in the test phase. The results of this evaluation are
summarised in Table 3.

Table 3. Computational complexity of the proposed model and other deep learning model.

Architecture Number of Parameters FLOP Count Prediction Time (CPU sec)

CNN 626,442 792,101 39.4
LSTM 752,412 851,025 44.5
DRL 1,154,201 781,241 53.8

CNN and GRU 921,410 891,021 50.3
LSTM and CNN 981,410 951,041 53.7

RGCN 890,124 984,024 52.1
BiLSTMA 1,012,410 892,120 52.9

Proposed (FD001) 35,100 12,411 13
Proposed (FD002) 78,510 34,152 25
Proposed (FD003) 45,412 25,102 20
Proposed (FD004) 98,012 40,241 29

A quick look at the readings in Table 3 shows that the recurrent graph convolutional
network (RGCN) prominently stands out with the highest FLOP count. This can be ascribed
to the large number of non-affine tensor transformations that this architecture requires.
Specifically, in this architecture, the raw input (i.e., the multivariate time series of sensor
readings) is transformed into a weighted adjacency matrix to make it compatible with the
shape of the input layer of the graph neural network. This matrix is then meticulously
processed by several networks of different dimensionality (e.g., LSTM, graph convolu-
tional networks, and 1D and 2D CNN). The aim of this extensive processing is to extract
spatiotemporal features before they are concatenated and passed to another graph neural
network from which the RUL values are determined. In terms of the number of parameters,
it is evident from Table 3 that the deep reinforcement learning (DRL) model with about
1 M parameters exceeds the other models significantly. This considerable parameter count
can be attributed primarily to the nature of the reinforcement learning, which relies on
manipulating a set of high-dimensional parametric vectors. This manipulation is carried
out according to the trial-and-error principle and aims to derive the optimal policy. Conse-
quently, the parameter space of a DRL encompasses all possible states, all potential actions,
all prospective state transitions, and the rewards and punishments associated with each
transition. It is also worth noting that the LSTM-based models, as indicated in Table 3,
exhibit a higher number of parameters and FLOP counts compared to the CNN models.
This characteristic can be explained by considering the architectural differences between
these two models. An LSTM cell, which is the building block of an LSTM-based model,
uses several types of gates with recurrent weights to capture temporal features at both long
and short timescales. Therefore, the number of parameters in an LSTM model increases
with the number of LSTM units. In contrast, a typical CNN model depends on the sparse
connections and global weight-sharing approach to extract the features from the raw data
input. The extracted features are then processed by multiple pooling and nonlinearity
layers to reduce the dimension of the processed data. This, in turn, leads to more efficient
parameter utilisation.

Interestingly, the results in Table 3 show that the proposed model excels in terms of
having the lowest number of parameters and the fewest FLOPS counts compared to the
other models. The lowest number of parameters is due to the fact that the proposed model
consists of only two layers: ReGHSOM and Grossberg, with no hidden layers. The other
model, in contrast, was constructed based on deep learning principles, which primarily
focus on assembling an abundant number of neurons across multiple layers and employing
non-linear activation functions to leverage the credit assignment path. Another important
reason for the lowest number of parameters of the proposed model lies in the learning
objects that its layers are designed to perform. Recall that the main goal of the first layer of
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the proposed model (i.e., the ReGHSOM layer) is to represent the higher-dimensional raw
data in a lower-dimensional space, which, in turn, leads to a reduction in the number of
parameters that are passed to the next layer. Deep learning typically works in the opposite
direction, as the main goal of the foremost layer is to detect the primitive features of the
dataset and then propagate them to the hidden layers, where latent feature detection takes
place. This, in turn, leads to a significant increase in the number of parameters as the layer
depth grows. Furthermore, the combination of GHSOM and ReSOM in the development of
the proposed ReGHSOM algorithm offers significant advantages in reducing the number of
parameters. This is because ReGHSOM allows the data points to be hierarchically clustered
at runtime based on their granularity levels. This, in turn, can avoid redundancy in the
representation of closely spaced data points with different clusters, as can be the case with
algorithms with a fixed number of clusters. Continuing the argumentation shows that the
second layer of the proposed model has a simple architecture whose input dimensionality
is shaped by the number of best matching units (BMUs) generated by the ReGHSOM
layer. This, in turn, leads to fewer parameters. In contrast, in a typical deep learning
model, the outputs are generated by one or more MLP layers, which are known for their
high connection density. The main resonance for using MLP is to aggregate the various
features extracted from previous layers in a way that preserves their contextual information.
The low FLOP count of the proposed model is primarily due to the fact that in counter-
propagation models, the training of the different layers is performed sequentially. This not
only obviates the need to use non-linear transformations to update the weighting matrix,
but also keeps its size as compact as possible. In addition, the homogeneous recurrent links
between the feedforward and feedback layers in the ReGHSOM help to maintaining this
compact size. Another notable factor contributing to the low FLOP count is the restriction
of weight updates to the connections between the best matching units (BMUs) and their
neighbouring nodes. This typically leads to a sparse matrix, and, interestingly, this sparsity
increases as more data points are assigned to their respective clusters. This sparseness
reduces the computational load and, thus, the total count of FLOPs.

A comparison of the time required for the predictions, as indicated in the last column
of Table 3, emphasises the exceptional efficiency of the proposed model. This efficiency can
be primarily attributed to the simplicity of the model, which avoids complex mathematical
operations. Instead, it relies on simple distance calculations between data points, thus,
minimising the computational effort. The model also benefits from a reduced number of
parameters and a minimised number of FLOPs. In contrast, deep learning models often
require more time due to several factors. These include a higher number of parameters and
a larger number of FLOPs as well as the use of complicated mathematical operations in deep
learning, such as the calculation of gradients for each parameter and their bidirectional
forwarding through several layers as well as the use of sophisticated non-linear activation
functions. Pioneering work investigating the asymptotic complexity of a simple multilayer
perceptron (MLP) network shows that the time complexity grows at a cubic rate with respect
to the number of parameters [61,62]. More recent work [63] shows that the complexity of
each layer of a CNN scales with the dimensionality of the input, the kernel size, and the
square of the representation dimension.

The results presented in this section, in conjunction with the previous findings, show
the superiority of the proposed model from various points of view. This superiority includes
aspects such as prediction accuracy, computational efficiency, and prediction time.

5. Conclusions

This paper proposed a novel data-driven remaining useful life (RUL) prognostics
model based on counter-propagation network (CPN) principles. The CPN approach was
chosen because it mitigates some of the drawbacks of the backpropagation approach
used in most related work by combining unsupervised and supervised learning strategies
over the same architectures. To adapt the CPN to the nature of the RUL dataset, this
work introduces the recursive growing hierarchical self-organisation map (ReGHSOM)
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as a variant of SOM that can cluster multivariate time series with high correlations and
hierarchical dependencies typically found in RUL datasets. Moreover, ReGHSOM is
designed to allow this clustering to evolve dynamically at runtime without imposing
constraints or prior assumptions on the hypothesis spaces of the architectures. The output
of ReGHSOM is fed into Grossberg’s supervised learning layers to make the RUL prediction.
The comprehensive evaluations conducted in this work have demonstrated the ability of the
proposed model to achieve an excellent learning curve and generate the architecture that
can thoroughly uncover the latent features of the given dataset. Moreover, the comparison
of the performance of the proposed model with related works shows that it is able to
achieve an average mean square error of 5.24 and an average score of 293 for the C-MPASS
dataset, which is better than most comparable works. Apart from the benefits of applying a
high accurate RUL in the aerospace industry, this work paves the way for the application
of the counterpropagating algorithm to solve various problems in this industry. Our future
work includes the application of other unsupervised and supervised learning techniques
within the CPN and the use of the full CPN to create a bidirectional mapping for the RULs.
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