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Abstract: Neural networks have been widely used as compensational models for aircraft control
designs and as surrogate models for other optimizations. In the case of tiltrotor aircraft, the total
number of aircraft states and controls is much greater than that of both traditional fixed-wings
and helicopters. This requires, in general, a huge amount of training data for the network to
reach a satisfactory approximation precision and makes the network size rise considerably. To
solve the practical problem of reducing the size of the approximating network, efforts have to be
made in the efficient utilization of the limited amount of training data. This work presents the
methodology of optimizing the sample pattern of the training data set by adopting the metaheuristic
algorithm of the particle swarm optimizer improved by the fourth-order Runge–Kutta algorithm.
A 6-degree-of-freedom nonlinear flight dynamics model of the tiltrotor aircraft is derived, along
with its approximation radial basis function neural network. An example case of approximating a
highly nonlinear function is studied to illustrate the principle and main parameters of the optimizer,
and the approximation performance of the time-domain response of the unstable nonlinear system
is revealed by the study of a Van der Pol oscillator. Then, the presented method is applied to the
modeled tiltrotor aircraft for its early and late conversion modes. The optimization scheme shows
great improvement in both cases, as the function approximation error is reduced significantly.

Keywords: tiltrotor aircrafts; neural networks; metaheuristic algorithms; swarm intelligence
optimization; model approximation

1. Introduction

In the controller design of rotorcrafts, especially in that of the configurations that
have varying flight dynamic characteristics and multiple controls on the same axis like
tiltrotor aircrafts, time-varying features, nonlinearities, and model uncertainties are of major
concern for the development personnel. With the process of development and exploration,
neural networks (NNs) have shown their merits in approximating nonlinear functions
with arbitrarily small errors under the condition of a sufficient number of neurons. This
advantage has been adopted by authors in the development of nonlinear controllers along
with the techniques of feedback linearization control since the end of the last century.
The approach was then developed for systems of multi-input multi-output (MIMO) with
unmodeled dynamics. A network of a single hidden layer was adopted to cancel modeling
errors. For approaches buttressed by similar principles, the offline-trained NN plays a
central role as an inverse model for the cancellation of the dynamics of the original model,
thus linearizing and decoupling the system. A network-based model reference adaptive
control scheme has been utilized in control problems of the rotorcrafts under situations
of saturations [1]. Regarding the Mars rotorcraft blade design, a neural network was also
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adopted with the optimization of a genetic algorithm [2]. For helicopters in vertical flight,
robust NN improved flight control was provided, with a flight dynamic of the nonlinear
nonaffine model, to ensure tracking accuracy [3]. NNs are also capable of combining several
modern control techniques of adaptive schemes, such as adaptive sliding mode control,
model reference adaptive control (MRAC), and model prediction control (MPC), mainly
applied to compensate the specific modeling, unmodeled dynamics, and nonlinearity.
In [4], an adaptive sliding mode controller was presented for attitude control and position
control of the quadrotors. The NN was used for the adaptive tuning of the slide manifold
parameters. A hybrid controller of MRAC and MPC for tiltrotors was provided in [5]
with a compensational NN to cancel the error between a linear reference model and the
nonlinear plant.

Besides the application of controller synthesis, NNs have also been utilized extensively
as a surrogate model in structural and aerodynamic design and optimization. Yu and Hes-
thaven [6] presented a novel approach to reconstructing the flow field using an artificial NN.
To improve the training effectiveness of an NN surrogate model of high-fidelity and high-
dimension, an adaptive sampling method based on the Gaussian process was proposed
and applied in the aerodynamic design of the prediction of the airfoil lift-to-drag ratio [7].
For structural designs, a deep convolutional NN-based surrogate model was proposed to
perform topological optimization for two dimensional and three dimensional structures [8].
Other works considering the optimization of the design of rotorcrafts and propeller-driven
aircrafts include handling-quality-enhancement-oriented PID optimizations [9] and ro-
torcraft configuration optimization [10]. Studies on the analysis of aerodynamics and
the performance of the helicopters and rotorcrafts also involved the high-fidelity flight
dynamics model of the vehicle [11–13].

For the application of a specific NN, either as an inverse model for flight controller
implementation or as a surrogate model for complicated system optimization, as long as an
offline-trained network is involved, the requirement of a proper training set is of undoubted
necessity. In this case, the demand for the optimization of the training set will emerge on a
natural basis. Generally, the behavior of the process of the network training effectiveness
(considering training time, computational memory required, and training error) under
different data sets will be nonconvex and of great complexity, which makes the problem
usually very hard to be solved by a parametric deterministic algorithm. With the recent
boost of metaheuristic algorithms, swarm intelligence algorithms have been adopted for
problems of this category. Mimicking the behavior of a large population or the evolution of
some natural phenomena, recent metaheuristic algorithms can be classified into several
categories: (1) the imitation of the group behavior of animal foraging or the evolutionary
process of a plant, such as the Sparrow Search Algorithm (SSA) [14], the Mayfly Optimiza-
tion Algorithm (MA) [15], Bald Eagle Search (BES) [16], and Hybrid Rice Optimization
(HRO) [17]; (2) the inspiration by human cognition, decision, and biogenetics processes, for
instance, the Brain Storm Optimization (BSO) [18], the Collective Decision Optimization
Algorithm (CDOA) [19], and the Volleyball Premier League Algorithm (VPLA) [20]; (3) the
simulation of natural phenomena, such as the Equilibrium Optimizer (EO) [21] and the
Thermal Exchange Optimization (TEO) [22]. These algorithms involve swarm intelligence
and all have incorporated some stochastic operators, thus making them capable of not
being trapped by the local minima in nonconvex optimization tasks.

As was summarized above, a wide class of NNs is used either to approximate the sys-
tem dynamic or as a surrogate model of a complicated model. These cases can be addressed
as an issue of the universal approximation of a multivariable function. With the increasing
number of function input variables, the scale of the specific NN will grow considerably.
For tiltrotor aircraft, there are much more states and controls than a traditional fixed-wing
aircraft or a helicopter. If an NN is adopted to represent to tiltrotor aircraft flight dynamics
model, a huge amount of data will be needed to obtain a desirable NN with adequate
precision. To solve this issue practically and thus make the usage of NNs more feasible
in engineering practices, a novel approach is presented in this work. The basic idea is to
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exploit the limited number of training sets to a better degree by finding a certain optimized
sample pattern of the training set. This paper, driven by the above purpose, is organized
as follows. The nonlinear flight dynamics model of the tiltrotor aircraft is presented first.
The radial basis function neural network (RBFNN) approximation of the plant is addressed.
The problem is then parameterized as finding a training set distribution pattern by which
an RBFNN with minimized mean square error can be trained. An improved differential
evolutionary particle swarm optimizer based on the fourth-order Runge–Kutta algorithm
is adopted to solve for the optimum pattern. The presented optimization scheme is applied
to an example case of the approximation of a relatively complicated nonlinear function to
show the principle and effectiveness of the methodology. The provided scheme is then
generalized to the application of the tiltrotor aircraft model approximation. Early and
late stages of its conversion mode, represented by the tiltrotor nacelle angle of 30 deg and
70 deg, respectively, are considered in this work. The longitudinal model of the aircraft,
i.e., the field of the derivative of pitching angular velocity with respect to the helicopter
rotor control and fixed-wing control surface deflection, is studied as the objective of the
RBFNN. Results of both the example case and the application to tiltrotors show the applica-
tional readiness, effectiveness, and high performance of the approximation accuracy of the
presented method.

2. Approximation of Flight Dynamics Model
2.1. Flight Dynamics Model of a Small-Scaled Tiltrotor Aircraft

The flight dynamics model of the aircraft is of great importance in its flying quality
analysis, control design, and flight simulation, especially in the domain of rotorcraft design.
In this work, model fidelity is improved by adopting a set of 6 degree-of-freedom (DoF)
nonlinear motion equations, a blade element theory (BET)-based rotor aerodynamics
model with non-uniform rotor inflow, and quasi-steady blade flapping. The airframe
aerodynamics is implemented by table-lookup of the wind tunnel data.

2.1.1. Rotor Aerodynamic Forces and Moments

The Euler angle representation of the 6 DoF nonlinear model of the tiltrotor aircraft
is adopted as the object of research of this paper. The two main rotors verified both
experimentally and computationally in [23] are modeled by BET with a truncated quasi-
steady version of the Pitt–Peters dynamic inflow model. The rotor aerodynamic forces and
moments can be represented as follows:

T = Nb
K ∑

K

∫ r1
r0

dFp cos β

H = Nb
K ∑

K

∫ r1
r0

(
dFt sin ψ− dFp sin β cos ψ

)
S = Nb

K ∑
K

∫ r1
r0

(
−dFt cos ψ− dFp sin β sin ψ

)
L = Nb

K ∑
K

∫ r1
r0
−rdFp sin ψ

M = Nb
K ∑

K

∫ r1
r0
−rdFp cos β

Q = Nb
K ∑

K

∫ r1
r0

r cos βdFt

(1)

in which T, H, S, L, M, and Q denote the rotor thrust, in-plane forces pair, aerodynamic
rolling and pitching moments, and aerodynamic torque, respectively. The Nb, K, r0, and
r1 are the number of blades, azimuth stations, blade root cutout, and tip loss, respectively.
Angles β and ψ are blade flapping and azimuth angles. Components dFp and dFt are the
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blade element perpendicular and tangential force elements, which can be represented by
the element lift and drag as

dFp = l cos ϕi − d sin ϕi

dFt = l sin ϕi + d cos ϕi

ϕi = arctan
(
Up/Ut

) (2)

in which Up and Ut denote the velocity in-plane and normal components seen by the rotor.
These components can be evaluated by the advance ratio and inflow ratio. The rotor inflow
ratio (i.e., dimensionless induced velocity) is governed by the quasi-steady version of the
Pitt–Peters’ dynamic in-flow model. The inflow ratio at each station of the rotor disk is
expanded as the base and first harmonic term as follows:

λ = λ0 + rλ1s sin ψ + rλ1c cos ψ (3)

and the governing equation is  λ0
λ1s
λ1c

 = Lnl

 CT
CLa
CMa

 (4)

The Lnl is related to the rotor wake angle α, the hub total velocity VT, the advancing
ratio µ, and the resultant inflow λm − µz as follows:

Lnl =


1/2 0 − 15π

64

√
1−sin α
1+sin α

0 4
1+sin α 0

15π
64

√
1−sin α
1+sin α 0 4 sin α

1+sin α

·
 VT 0 0

0 V 0
0 0 V

−1

V = µ2+(2λm−µz)(λm−µz)
VT

(5)

The rotor blade flapping motion is governed by the following equation:

β′′ +

(
1 +

Kβ

IβΩ2

)
β = 2

[(
p + q

2

)
cos ψ−

(
q + p

2

)
sin ψ

]
+

ρca0R4

2Iβ

∫ 1
0

(
U2

Tθ + UTUP

)
rbdrb

(6)

in the above equation, β′′ denotes the derivative with respect to the azimuth angle, vari-
ables with a bar denote the normalization by the blade tip speed ΩR. The p and q are
dimensionless quantities of the hub rolling and pitching angular velocity components in
the hub-wind axis. The rotor flapping motion caused by its gyroscopic acceleration is also
taken into consideration by the first term on the right side of the above equation. This
equation is then transformed into Multi-Blade Coordinates (MBC) by defining the variables
in the MBC (i.e., the collective flap β0, the longitudinal flap β1c, and the lateral flap β1s)
according to the following relations:

β IBC = TββMBC (7)

in which flapping angles in each coordinate are β IBC , [β1, β2, β3]
T and βMBC , [β0, β1c, β1s]

T.
The transformation matrix Tβ is obtained by the definition of the collective and first har-
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monic flapping angles. By concatenating the flapping motion equations of each blade, the
rotor flapping equation in MBC takes the following form:

β”
MBC + Γβ’

MBC + ΠβMBC = Σ (8)

Again, due to flapping angular velocity and accelerations being less significant in
nature for flight dynamics analysis and to reduce the number of system states, the derivative
terms are truncated from the equation, and only quasi-steady flapping motion is considered.
This leaves the above equation as

ΠβMBC = Σ (9)

in which Π is affected mainly by the rotor rotational centripetal acceleration and center-
spring stiffness, while Σ is the result of the aerodynamics and hub motion.

Rotor aerodynamic forces and moments are then converted to the airframe body axis
by the rotor nacelle tilting angle δIS. The total rotor aerodynamic forces and moments on
the airframe center of gravity are the sums of those produced by the left and right rotors.

2.1.2. Airframe Forces and Moments

The airframe forces and moments are computed in the wind axis by the corresponding
dimensionless coefficients:

D = 1
2 ρv2SrCD

Y = 1
2 ρv2SrCY

L = 1
2 ρv2SrCL

l = 1
2 ρv2SrbrCl

m = 1
2 ρv2SrcrCm

n = 1
2 ρv2SrbrCn

(10)

in which the longitudinal forces and moments coefficients (CD, CL, Cm) and the lateral
forces and moments coefficients (CY, Cl, Cn) are functions of the fuselage states and controls,
which can be written as

Clon, f orce = Clon, f orce

(
xlon, f uselage, ulon, f uselage

)
Clat, f orce = Clat, f orce

(
xlat, f uselage, ulat, f uselage

)
Clon,moment = Clon,moment

(
xlon, f uselage, ulon, f uselage

)
Clat,moment = Clat,moment

(
xlat, f uselage, ulat, f uselage

)
(11)

The fuselage states and controls are

xlat, f uselage =
[

β,
.
β, ϕ, p, r

]T

ulat, f uselage = [δail , δrud]
T

xlon, f uselage =
[
u, α,

.
α, θ, q

]T
ulon, f uselage = [δele]

T

(12)

Forces and moments acting on the airframe center of gravity are obtained by converting
the above relations to the body axis.
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2.1.3. Nonlinear Equations of Motion

The total forces and moments are obtained by adding those produced by the rotors
and the fuselage. When incorporated in the 6-DoF Euler angle-based representations, the
equations governing the aircraft motion areXrotor + Xair f rame

Yrotor + Yair f rame
Zrotor + Zair f rame

 =

 m
( .
u + qw− rv

)
+ mg sin θ

m
( .
v + ru− pw

)
−mg cos θ sin ϕ

m
( .
w + pv− qu

)
−mg cos θ cos ϕ


 Lrotor + Lair f rame

Mrotor + Mair f rame
Nrotor + Nair f rame

 =

 .
pIx − Ixz

(
pq +

.
r
)
+ qr

(
Iz − Iy

)
.
qIy − rp(Ix − Iz) +

(
p2 − r2)Ixz.

rIz − Ixz
( .

p− qr
)
+ pq

(
Iy − Ix

)



.
ϕ
.
θ
.
ψ

 =

p + tan θ(q sin ϕ + r cos ϕ)
q cos ϕ− r sin ϕ

sec θ(q sin ϕ + r cos ϕ)


(13)

where [u, v, w]T are the airframe body axis velocities, [p, q, r]T are the body axis angular
velocities, and [ϕ, θ, ψ]T are the Euler angles. Ii, (i = x, y, z, xz) denotes the components of
the airframe inertia tensor.

2.2. Aircraft Model Approximation Using a Neural Network

Mathematical representations of nonlinear dynamic systems, in general, are intrinsi-
cally a set of nonlinear ordinary differential equations. By the analysis of the above sections,
the nonlinear system of the tiltrotor aircraft can be represented in the following form:

.
x = f(x) + g(x)u
.
y = C

.
x = F(x, u)

(14)

in which the state vector containing nine fuselage stats is x = [p, q, r, ϕ, θ, ψ, u, v, w]T ∈ R9,
the control vector is u = [δcol , δdcol , δlat, δlon, δdlon, δail , δele, δrud, δIS]

T ∈ R9, including rotor
controls (i.e., collective pitch, differential collective pitch, lateral cyclic pitch, longitudinal
cyclic pitch, and differential longitudinal cyclic pitch), fixed-wing control surface deflections
(i.e., aileron, elevator, and rudder deflection), and the nacelle tilting angle, the output vector
y is often a selection of state variables of particular interest, and the matrix C is of proper
size and time-invariant.

Surrogate models are widely used throughout the aircraft design procedure, from
parametric design and optimization and aerodynamic interference modelling to flight
control law design. Specifically, extensively adopted methodologies in rotorcraft control
law synthesis including dynamic inversion control often utilize the help of an inverse
model of the plant to cancel out the modeled dynamic nonlinearities. The use of the inverse
model is of a certain form of a surrogate model. Under this circumstance, neural networks
come into play with their universal approximation property.

In this work, the nonlinear mapping to be approximated by the network is the mapping
from the state and control vector pair to the state time derivatives, i.e., the mapping F of
Equation (14). A radial basis function neural network (RBFNN) is adopted to accomplish
the work in this paper. The network structure is shown in Figure 1.
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The network can be represented as

.
y = fsNN(x, u) = WT

sNN · h(x, u) (15)

hj(x, u) = exp

(
−
∥∥[x, u]− c:,j

∥∥2

2bj

)
, j = 1, 2, . . . , m (16)

in which the network input is the state-control vector pair [x, u] = [p, . . . , ϕ, . . . , u, . . . ,
δcol , . . . , δail , . . . , δIS]

T ∈ R18, and the network output is the selected state variables of
particular interest, which in the application of inner-loop RCAH controller design is the
angular rate derivatives

.
y = [

.
p,

.
q,

.
r]T ∈ R3. The hj is the output of the j’s Gaussian basis

function, c:,j ∈ R17×1 and bj ∈ R are the respective center coordinates and the width of
the j’s basis function, and WT

sNN ∈ R3×m is the time-invariant network weight matrix.
The network should be trained offline by the data covering the desired flight envelope
derived from the flight dynamics model of the tiltrotor aircraft obtained from previous
sections. It is worth noting that the training data should cover all of the valid ranges of
each control deflection.

In this work, to study the model approximation of a tiltrotor aircraft during conversion
mode, the dynamic tilting of the rotor nacelles is of great importance. In this case, two
typical nacelle angles will be selected. Considering the dynamic tilting, although these two
cases are fixed nacelle angles, the model to be approximated is by no means static. The
training data of the network are obtained from the dynamics models rather than trimmed
static models. This can be explained by the non-zero state derivatives, i.e., the output of the
network contains all possible values of the pitching rate. In the meantime, under practical
applications, the input of the actual network will not contain only discrete points of nacelle
angles but rather a continuous range from 0 deg to 90 deg. The choice of these two angles
is for the convenience of illustrating the basic idea of the article.

3. Optimization of the Neural Network Sample Distribution Pattern

With a uniformly distributed sample pattern, the total number of training set data
points would be as many as 95 for each network output under the condition that only
five points are selected for each flight state and control. This would be challenging for
both the computer memory size and the total training time. As a result, in order to save
computational resources and reduce the total CPU time, it is desirable to exploit the limited
number of sample points.

On closer inspection of the resultant mapping of Section 2.2, one can find the char-
acteristics of the ‘response surface’, which is the curvature of the surface that is often not
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identical throughout the domain. This resulted in the fact that each aerodynamic compo-
nent of the aircraft is modelled with a different mathematical complexity. For example,
helicopter rotor forces and moments intrinsically nonlinearly depend on its rotor controls,
while forces and moments produced by the fixed-wing control deflections are linearly
modelled by factors of control effectiveness. This, under a point of view of regarding the
aircraft model as its state-derivative field (i.e., F(x, u) in Equation (14)) in a vector space of
its state-control pair, will lead to the fact that the gradient field of F is non-uniform. Under
this circumstance, in order to obtain an optimum result of network training, sample points
should be distributed densely in the region where ∇F(x, u) varies drastically. In the region
where the gradient is nearly uniform, fewer sample points should be adequate to obtain a
desirable network Mean Square Error (MSE).

3.1. Problem Formularization and Methodology

Through the above statement, the subject can be considered to find the optimum
distribution pattern of the sample points, that is to say, the best combination of network
input variables through which one can obtain a trained network with a minimized MSE,
and this can be formulated by a non-convection optimization problem as follows:

minimize fMSE[AsNN(D)]

D =

{([
x(n), u(n)

]T
,

.
y(n)

)}N

n=1

x(n) = [x(n)1 , . . . , x(n)9 ]
T

u(n) = [δ
(n)
1 , . . . , δ

(n)
9 ]

T

.
y(n)

= F
(

x(n), u(n)
)

subject to ximin ≤ x(n)i ≤ ximax, i = 1, . . . , 9

δjmin ≤ δ
(n)
j ≤ δjmax, j = 1, . . . , 9

(17)

in which the optimization objective is the MSE of the trained network provided by the
training algorithm AsNN(•), D is the set of training samples of size N, x(n) and u(n) are the

sampled network inputs, and
.
y(n) is the corresponding output.

The particle swarm optimization (PSO) algorithm proposed by Eberhart and Kennedy [24],
as one of the most well-regarded swarm intelligence algorithms, was inspired by the
foraging of bird flocks. With the following rules, i.e., (1) each bird flies toward the individual
closest to itself and avoids collision; (2) the flock flies toward a food source; and (3) every
bird tends to the center of the flock, the PSO algorithm searches the global optimum of
every iteration. Like other metaheuristic algorithms, this scheme avoids being trapped
by the local optima through a stochastic operator on each individual’s velocity vector,
specifically by randomly altering the ratio of its social learning and self-recognition factors
(CSR and CSL, respectively):

vN+1
i = CIWvN

i + CSRrandSR
(
PN

ibest − PN
i
)
+

CSLrandSL

(
PN

gbest − PN
i

) (18)
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In this work, instead of the standard PSO algorithm, an improved differential evo-
lutionary particle swarm optimizer based on the fourth-order Runge–Kutta algorithm
(DPSORK) is adopted to accomplish the above sample pattern optimization task. The
scheme is derived from the general differential PSO model:

.
vi = (CIW − 1)vi −ΦPi +

(
ΦSRPib + ΦSLPgb

)
.
Pi = CIWvi −ΦPi +

(
ΦSRPib + ΦSLPgb

)
ΦSR = CSRrandSR

ΦSL = CSLrandSL

Φ = ΦSR + ΦSL

(19)

In the above model,
.
vi and

.
Pi are the velocity and position of the ith individual at the

current time (iteration), CIW, CSR, and CSL are the respective inertia weight, self-recognition,
and social learning factors, rand is the uniformly distributed random number between
[0,1], and Pib and Pgb are the optima encountered by the individual itself and by the flock
in history (global optimum). Viewed as ordinary differential equations, the above model
can be solved by several different numerical methods, which results in variants of schemes.
A fourth-order Runge–Kutta method is adopted for its relatively high order of truncation
error. Thus, the scheme with a step size of h can be represented as

vN+1
i = vN

i + h
6 (K1 + 2K2 + 2K3 + K4)

PN+1
i = PN

i + h
6 (L1 + 2L2 + 2L3 + L4)

K1 = (CIW − 1)vN
i −ΦPN

i + ΦSRPib + ΦSLPgb

L1 = CIWvN
i −ΦPN

i + ΦSRPib + ΦSLPgb

K2 = (CIW − 1)
(

vN
i + h

2 K1

)
−Φ

(
PN

i + h
2 L1

)
+ ΦSRPib + ΦSLPgb

L2 = CIW

(
vN

i + h
2 K1

)
−Φ

(
PN

i + h
2 L1

)
+ ΦSRPib + ΦSLPgb

K3 = (CIW − 1)
(

vN
i + h

2 K2

)
−Φ

(
PN

i + h
2 L2

)
+ ΦSRPib + ΦSLPgb

L3 = CIW

(
vN

i + h
2 K2

)
−Φ

(
PN

i + h
2 L2

)
+ ΦSRPib + ΦSLPgb

K4 = (CIW − 1)
(
vN

i + hK3
)
−Φ

(
PN

i + hL3
)
+ ΦSRPib + ΦSLPgb

L4 = CIW
(
vN

i + hK3
)
−Φ

(
PN

i + hL3
)
+ ΦSRPib + ΦSLPgb

(20)

In the above scheme, for a better and rapid convergence, parameters CIW, CSR, and
CSL of the optimizer are incorporated with the following time-varying form:

Cj =
(

Cj,i − Cj, f

)Nmax − N
Nmax

+ Cj, f , j = IW, SR, SL (21)

The procedure of optimization of the network training set sample distribution pattern
is shown as Figure 2.
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Figure 2. Flow chart of the DPSORK optimization of the RBF network sample pattern.

3.2. Case Studies
3.2.1. Approximation of a Nonlinear Function

To further explain the principle of the methodology presented in the previous section,
an example case is discussed by the approximation of the objective function:

z = x · exp
(
−x2 − (y− 20)2

)
(22)

The function plot is shown in Figure 3. The neighborhoods of its two maxima (the
two ‘spikes’ on the function plot) are the primary concern indicating the optimization
results where the distribution pattern should condense its samples. A total sample number
is confined to 40 points in this task. The parameters of the optimizer are summarized
in Table 1.
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Table 1. Parameters of the DPSORK scheme.

Parameter Value

Total number of sample points 40
Total number of particles 20

Nmax 200
CIW,i 0.9
CIW,f 0.5
CSR,i 2.5
CSR,f 0.5
CSL,i 0.5
CSL,f 2.5

The convergence history of the elite from each generation is presented in Figure 4.
Colored dots on the shaded plane denote the best sample points of each generation. From
the right-sided details of the first twenty generations, one can find from the evolution
process that the distribution pattern indicates an obvious tendency of the concentration of
sample points from a uniformly random distribution on the XY plane to the two ‘spikes’
of the objective function. These ‘spikes’ are exactly where the gradient varies drastically.
On the contrary, from the region where the surface is relatively ‘flat’, fewer sample points
are selected.
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Figure 4. Elite convergence history.

The network trained from the optimum sample pattern was simulated, and the result
is shown by Figure 5. The true values obtained by sampling the objective function are
shown by the colored surface, while the network prediction at the same sample points is
shown by the mesh grid. As a result, the pattern optimized by DPSORK can be used to
obtain an RBF network approximating the example function with relatively high accuracy.
The global network square error (SE) distribution is shown in Figure 6.



Aerospace 2023, 10, 1006 12 of 24

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 4. Elite convergence history. 

The network trained from the optimum sample pattern was simulated, and the result 
is shown by Figure 5. The true values obtained by sampling the objective function are 
shown by the colored surface, while the network prediction at the same sample points is 
shown by the mesh grid. As a result, the pattern optimized by DPSORK can be used to 
obtain an RBF network approximating the example function with relatively high accuracy. 
The global network square error (SE) distribution is shown in Figure 6. 

 
Figure 5. Network simulation result of the optimum sample pattern. Figure 5. Network simulation result of the optimum sample pattern.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 6. Optimum network global SE distribution. 

In the meantime, a comparative network trained by randomly selected samples uni-
formly distributed on the problem domain is simulated in Figure 7. Obvious error can be 
seen between the predicted value and true value. From the global SE distribution shown 
in Figure 8, one can find that the large values of SE are primarily around the two ‘spike’ 
regions of the objective function domain because of a lack of adequate amount of sample 
points allocated to these regions. 

 
Figure 7. Network simulation result based on randomly distributed sample points. 

 
Figure 8. Random network global SE distribution. 

Figure 6. Optimum network global SE distribution.

In the meantime, a comparative network trained by randomly selected samples uni-
formly distributed on the problem domain is simulated in Figure 7. Obvious error can be
seen between the predicted value and true value. From the global SE distribution shown
in Figure 8, one can find that the large values of SE are primarily around the two ‘spike’
regions of the objective function domain because of a lack of adequate amount of sample
points allocated to these regions.
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3.2.2. Parameter Analysis for Searching the Particle Number and Sample Number

To reveal the impact of algorithm parameters including searching the particle number
and sample number, repeated averaging simulations were performed. First, the particle
number was fixed at 20, and the sample points increased from 10 samples to 140 samples.
Every case was repeated 30 times to exclude the randomness of performance. The results
are shown in Figure 9. The left part indicates the convergence history of the elite population
of each generation. Different colors indicate result from different sample point numbers
on the graph. The right part of the figure is the average and dispersion of the elite fitness
of the last generation, and the averages are indicated by the diamond marker while the
error bars showed the maximum and minimum values of the 30-repeated simulations. As a
result, under the same amount of searching particles, the sample point number has a major
impact on the convergence performance, and after 40 samples, the influence of the sample
point number can be regarded as negligible.
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Figure 9. Elite Convergence under a Fixed Particle Number and Varying Sample Number.

Secondly, the sample point number was fixed at 40 to study the impact of searching
particle numbers. With the same procedure, the searching particle number increased from
5 to 45, and each case (the same number of particles) was repeated 30 times. The results are
shown in Figure 10. From the convergence history below, one can find that the searching
particle number has a minor influence on the overall precision after convergence. Both
average fitness and dispersion are affected weakly by the particle number, especially for
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those cases with a particle number greater than 10. As a result, a combination of 40 sample
points with 20 searching particles was selected in this work.

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 10. Elite Convergence under a Fixed Sample Number and Varying Particle Number. 

3.2.3. Time Domain Response Performance 
To illustrate the approximation performance of the presented optimization algorithm 

for an unstable nonlinear multi-variable dynamic system, this subsection selects a Van der 
Pol oscillator as the example, and the time-response of the system is shown. The Van der 
Pol oscillator is a representative nonlinear autonomous dynamic system with two states. 
The system equations can be written as 

( )
1 2

2
2 1 1 2

;

0.02 1

x x

x x x x

=

= − − −





 
(23) 

A total number of 10 sample points on the state space was restricted to this task. The 
comparative results of the network-approximated Van der Pol system derivatives are 
shown in Figures 11–14. The global MSE of these networks with multiple outputs is the 

sum of all outputs, i.e., state derivatives. The 1x  field of the Van der Pol oscillator is a flat 
surface with respect to its two states, which can be seen from the system equation, so the 
approximation precision can be relatively high even under the random sample case (seen 

in Figure 13). The approximation of the 2x  field, however, shows a low performance if 
the training set has not been optimized (see Figures 12 and 14). 

 
Figure 11. Field of optimized Van der Pol approximation. 

0 50 100 150

Generations

10 -5

10 -4

10 -3

El
ite

 F
itn

es
s o

f E
ac

h 
G

en
er

at
io

n

Number of Sample Points =40

5

10

15

20

25

30

35

40

45

N
um

be
r o

f P
ar

tic
le

s

5 10 15 20 25 30 35 40 45

Number of Particles

10 -5

10 -4

10 -3

El
ite

 F
itn

es
s o

f t
he

 L
as

t G
en

er
at

io
n

Figure 10. Elite Convergence under a Fixed Sample Number and Varying Particle Number.

3.2.3. Time Domain Response Performance

To illustrate the approximation performance of the presented optimization algorithm
for an unstable nonlinear multi-variable dynamic system, this subsection selects a Van der
Pol oscillator as the example, and the time-response of the system is shown. The Van der
Pol oscillator is a representative nonlinear autonomous dynamic system with two states.
The system equations can be written as

.
x1 = x2;
.
x2 = −x1 − 0.02

(
1− x2

1
)
x2

(23)

A total number of 10 sample points on the state space was restricted to this task.
The comparative results of the network-approximated Van der Pol system derivatives are
shown in Figures 11–14. The global MSE of these networks with multiple outputs is the
sum of all outputs, i.e., state derivatives. The

.
x1 field of the Van der Pol oscillator is a flat

surface with respect to its two states, which can be seen from the system equation, so the
approximation precision can be relatively high even under the random sample case (seen
in Figure 13). The approximation of the

.
x2 field, however, shows a low performance if the

training set has not been optimized (see Figures 12 and 14).
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Figure 14.
.
x2-Field of random sample Van der Pol approximation.

Simulation was performed on the optimum network obtained by the presented algo-
rithm, the random set-trained network, and the true system, and a fixed-step Runge–Kutta
solver with a 0.01 s time step was adopted. Results are shown in Figures 15 and 16;
Figure 15 depicts the time response of the two state variables, and the system phase por-
traits are shown in Figure 16. From these results, the optimized approximation system
coincided with the actual system, and the nonlinearity and unstableness were reconstructed
well by the optimized neural network.
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4. Sample Distribution Pattern Optimization for the Flight Dynamics Model of a
Tiltrotor Aircraft
4.1. Results of the Early-Stage Conversion Mode

The research aircraft of this work is the Bell XV-15 tiltrotor aircraft. Three views are
shown in Figure 17 below. The parameters of the vehicle are summarized in Table 2.

Table 2. Parameters of the XV-15 tiltrotor aircraft.

Parameter Value

Aircraft mass 5896 Kg

Rotor radius 3.81 m

Rotor solidity 0.09

Rotor blade Lock Number 3.8

Rotor speed 565 rpm

Airframe length 12.8 m

Airframe width 2.9 m

Wing span 9.81 m

Wing area 15.71 m2

MAC 1.6 m

Horizontal tail area 4.67 m2

Vertical tail area 4.69 m2
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Figure 17. The Bell XV-15 tiltrotor aircraft.

The early stage of the tiltrotor conversion mode, represented by a 30 deg nacelle tilting
angle, is considered. Since the primary control of the longitudinal channel in this stage is
the helicopter rotor longitudinal cyclic pitch, the first model to be approximated by the
neural network is the dependence of the longitudinal body axis pitching acceleration,

.
q,

on the longitudinal control and airspeed. An available rotor cyclic pitch range of −15 deg
to 15 deg and an airspeed range of 37.9 m/s to 79.6 m/s (within the conversion corridor)
are selected for simulation. The conversion corridor is obtained by the lower and upper
boundaries of the trimmed airspeed-tilting angle scheme, in which the lower boundary
represents the fixed-wing stall. An upper engine power boundary is obtained by manually
selecting a maximum airspeed since the engine is not modeled in this work, which is not of
great importance in clarifying the approach of this work.

The following Figure 18 depicts the
.
q-field with respect to the above stated variables.

The true values directly sampled from the flight dynamics by a data set of an interval of
1 deg longitudinal and that of 1 m/s are depicted by the colored surface. The network is
trained by an optimum sample pattern obtained by 200-generations DPSORK searching
(shown by the green dots on the

.
q = −4 rad/s2 plane) in which a total number of

nine sample points is confined and is then sampled by a set with the same interval as
above, shown by the red mesh grid. From the simulated network, the MSE is as low as
9.9 × 10−4. The global SE distribution of the optimum network is shown in Figure 19. The
elite fitness values from 200 generations are shown in Figure 20, from which one can find
rapid convergence within the first 10 generations.
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As a comparison, a network trained by nine randomly selected sample points uni-
formly distributed on the problem domain is also simulated, with results shown in
Figures 21 and 22. A relatively low performance is revealed by the random sample network,
as the global MSE is 0.018. From the result of the random sample network, one can find that
large deviation occurs in the region where the gradient varies drastically (i.e., high airspeed
with a negative longitudinal cyclic pitch), and the sample points are relatively sparse.
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4.2. Results of the Late-Stage Conversion Mode

The training sets of the late stage of the tiltrotor are sampled under a condition of a
70 deg nacelle tilting angle. In the late stage of the conversion mode, the aircraft exhibits
characteristics closer to those of the fixed-wing airplane. The same longitudinal

.
q-field

is considered. The primary control in the longitudinal channel is the fixed-wing elevator
deflection, whereas the rotor longitudinal cyclic control is the redundant control. For the
dependence of

.
q on the airspeed, the airspeed range is chosen from 64 m/s to 90 m/s,

within the conversion corridor.
The simulation results of the optimum network-approximated

.
q-field with respect to

airspeed and elevator deflection are shown in Figure 24. The
.
q-field dependency on the

elevator deflection and longitudinal cyclic pitch is depicted in Figure 25. Relatively good
results are obtained by the optimum sample network.
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The searching loci of the last task are shown in Figure 26, from which the two important
stages of metaheuristic algorithms can be seen: the exploration phase and the exploitation
phase. Four typical particles are chosen, including the one that has reached the optimum
location (see Figure 26c, global best location at its 199th generation). Colored scatter
points on the plot denote the particle position for each generation (searching loci), with the
generation number depicted by color. Points marked by red circles denote the locations of
the initial searching points of each particle. The grey-scale color bar shows the score of each
generation of particle corresponding to the generation bar on its left. The particle score is
calculated by its fitness value normalized by the global best and worst values and then
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scaled by the common logarithm; black denotes the worst fitness, and white denotes the
best fitness. The advantage of not being trapped in local minima can be seen in Figure 26a,
in which a local minimum is marked by the arrow beside the grey score bar. The algorithm
is able to jump out of the local minimum stochastically, which is shown by some sharp
turns on the searching loci (marked by the arrows). The final convergence of the searching
process, however, cannot be guaranteed by the initial closeness to the global optimum locus
of a single particle. As shown in Figure 26b, the particle is relatively close to the optimum
in the first generation, but it deviates from the best location after the 160th generation. This
is also attributed to the stochastic nature of the DPSORK. In general, the overall searching
process shows different searching patterns, as can be seen in Figure 26c,d, in which particle
No. 4 shows a predominant effect of inertia by its relatively ‘straight’ locus whereas particle
No. 20 exhibits more stochastic behavior by its scattered distribution of search points in a
relatively large search area. This behavior can be found in both cases of different particles
and within one single particle, see Figure 26a.
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4.3. Time-Domain Response Simulation

To illustrate the time response performance of the approximated model, this subsection
takes a longitudinal short-period approximation of the tiltrotor as an example. The flight
state variables considered are the body axis velocity w and angular rate q, with the control
variable longitudinal cyclic pitch δlon. The truncated longitudinal short-period nonlinear
model can be represented as

.
w = fw(w, q) + gw(δlon)
.
q = fq(w, q) + gq(δlon)

(24)
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The training data of the nonlinear state functions fw, fq, and control functions gw, gq are
sampled from the full-state nonlinear tiltrotor model under its conversion mode of a 30 deg
nacelle tilting angle. The forward velocity u = 59 m/s, which is considered to remain nearly
constant during short-period oscillation. All of the lateral state and control variables are
fixed at zero, as well as the redundant controls in the longitudinal channel. The simulation
is started under a non-equilibrium flight condition. The control signal of a bipolar square
wave of longitudinal cyclic control is imposed at simulation time t = 2 s, see Figure 27.
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Figure 27. Longitudinal cyclic control signal.

Figure 28 shows the longitudinal truncated short-period mode time response under the
above command. Optimized and random networks are both trained by a set of 17 sample
points, in the state-control space of −10 m/s ≤ w ≤ 17 m/s, −3 rad/s ≤ q ≤ 3 rad/s,
and −15 deg ≤ δlon ≤ 15 deg, with derived networks with 16 neurons in the radial basis
layer. From the simulation results below, the optimum trained network coincides better
with the actual tiltrotor model, which shows a much better time response performance than
the random sample network. This verifies the availability and effectiveness of the presented
method applied to the approximation of a nonlinear rotorcraft flight dynamics model.

Aerospace 2023, 10, x FOR PEER REVIEW 24 of 26 
 

 

 
Figure 27. Longitudinal cyclic control signal. 

Figure 28 shows the longitudinal truncated short-period mode time response under 
the above command. Optimized and random networks are both trained by a set of 17 

sample points, in the state-control space of 10 m/s 17 m/sw− ≤ ≤  , 3 rad/s 3 rad/sq− ≤ ≤  , 

and 15 deg 15 deglonδ− ≤ ≤  , with derived networks with 16 neurons in the radial basis 
layer. From the simulation results below, the optimum trained network coincides better 
with the actual tiltrotor model, which shows a much better time response performance 
than the random sample network. This verifies the availability and effectiveness of the 
presented method applied to the approximation of a nonlinear rotorcraft flight dynamics 
model. 

 
Figure 28. Time-domain longitudinal short-period bipolar square wave control response compari-
son. 

5. Discussion and Conclusions 
Against the background of the extensive use of neural networks to approximate a 

flight dynamics model in the design process of tiltrotor aircraft, this paper presented, with 
the aid of a swarm intelligence algorithm, the methodology to solve the practical problem 
faced by network training, that is, the requirement of a tremendous amount of training set 
data points in order to obtain a satisfactory training result. Constrained by the hardware 
computing power at hand, the total number of training set data points is limited to some 
extent. In this case, the major problem solved by this article is addressed by how to exploit 
the limited number of training data points. The results of this work can be summarized as 
follows: 
(1) For the function approximation problem, this work presented a novel methodology, 

that is, to use the metaheuristic optimization algorithm to search the optimum sam-
ple pattern of the training set, revealing its effectiveness and benefits. In the example 
case of approximating a highly-nonlinear function with two inputs, the RBF neural 
network trained by the optimum data set obtained by the DPSORK algorithm 
showed a significantly improved performance, with a network MSE decrease from 2 
× 10−3 to 3 × 10−5 (65 times lower) compared to the results of the random sample net-
work. 

0 2 4 6 8

time / s

-4
-2
0
2
4
6
8

lo
n

 / 
(

°)

0 2 4 6 8

5

10

15

w
  /

 (m
/s

)

Optimized
Random
True

0 2 4 6 8

time / s

-0.2

0

0.2

q
  /

 (r
ad

/s
)

Figure 28. Time-domain longitudinal short-period bipolar square wave control response comparison.

5. Discussion and Conclusions

Against the background of the extensive use of neural networks to approximate a
flight dynamics model in the design process of tiltrotor aircraft, this paper presented, with
the aid of a swarm intelligence algorithm, the methodology to solve the practical problem
faced by network training, that is, the requirement of a tremendous amount of training set
data points in order to obtain a satisfactory training result. Constrained by the hardware
computing power at hand, the total number of training set data points is limited to some
extent. In this case, the major problem solved by this article is addressed by how to exploit
the limited number of training data points. The results of this work can be summarized
as follows:

(1) For the function approximation problem, this work presented a novel methodology,
that is, to use the metaheuristic optimization algorithm to search the optimum sample
pattern of the training set, revealing its effectiveness and benefits. In the example
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case of approximating a highly-nonlinear function with two inputs, the RBF neural
network trained by the optimum data set obtained by the DPSORK algorithm showed
a significantly improved performance, with a network MSE decrease from 2 × 10−3

to 3 × 10−5 (65 times lower) compared to the results of the random sample network.
(2) The DPSORK-optimized RBF neural network was applied to the flight dynamics

model approximation of the pitching angular acceleration field of the tiltrotor aircraft.
Examples of the early (30 deg nacelle tilting angle) and late stage (70 deg nacelle tilting
angle) of its conversion mode were studied. The methodology presented in this work
showed its generality and readiness of solving practical problems.

(3) Although the overall error of the approximated network has been reduced by the
presented algorithm, there are still certain deviations in each case (for example, the
MSE of 8.7 × 10−4 for control response at the late tilting stage). Since an RBF network
is able to converge on a result with an arbitrarily small deviation with adequate
neurons, the remaining problem would be to decrease the deviation under a neuron
number as low as possible. Future work should study all of the parameters (including
that of self-recognition and social learning factors) analytically and formulate the
optimum of these parameters with respect to the studied cases.
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