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Abstract: Continuous thrust spacecraft in circular orbits have had a great influence on the identi-
fication and cataloging of space targets. Gaussian-type orbital element variational equations are
simplified and approximated. Ground-based radar observation datasets are transformed into orbit
elements datasets. The initial thrust and orbit elements are obtained by optimally solving the spatial
parameter error sum of squares minimization problem with the Levenberg–Marquardt method.
The simulation analysis is carried out under the high-precision orbit model, and the solution er-
ror of tangential acceleration is around 5 × 10−7 m/s2, and that of normal acceleration is around
3 × 10−6 m/s2; the accuracy of the semi-major axis is 350 m, and the accuracy of inclination is 0.095◦.
The method is applicable to the preliminary identification of thrust and orbit elements for circular
orbit continuous thrust spacecraft and can provide reliable initial values for the subsequent precision
orbit determination of such spacecraft.

Keywords: continuous thrust spacecraft; parameter identification; orbit determination; radar observation

1. Introduction

The research and application of continuous thrust spacecraft in circular orbit have
developed rapidly in recent years with the increasing demand for low-orbit giant constel-
lations, LEO to GEO continuous thrust orbit transfer, deep space exploration, and other
space missions [1–3]. Up to now, there are nearly 300 high-orbit satellites applying electric
propulsion technology, and more than 4200 “Starlink” satellites applying commercialized
electric propulsion technology, accounting for nearly half of the world’s total number of
in-orbit spacecraft. SpaceX plans to deploy about 12,000 “Starlink” satellites in near-Earth
space by 2024, and about 42,000 “Starlink” satellites by 2027 [4]; this type of spacecraft has
the advantages of rapid deployment, high precision, and excellent controllability, which
enables it to achieve more complex space missions. As a measure of spacecraft propulsion
technology, the United States, Russia, Japan, Europe, and China have all mounted contin-
uous thrust payloads on spacecraft and achieved good performance. Continuous thrust
spacecraft are also being used in a wider range of applications, which in the future will
include areas such as human spaceflight and interplanetary resource acquisition.

The traditional method of initial orbit determination is to solve the parameter estima-
tion problem for conic curves under perturbation conditions, that is, the spacecraft’s orbit in
space can be approximated as a conic curve [5]. However, for a continuous thrust spacecraft,
its orbit in space cannot be described by a conic curve, the unknown thrust acceleration
increases the dimension of the problem, and the traditional initial orbit determination
algorithm [6] is no longer applicable. JianRong Chen et al. [7] used the simplex method to
solve the orbit determination problem of a continuous small-thrust maneuvering satellite
based on the start and end times of electric propulsion control. However, it uses GPS data
and cannot solve the problem for non-cooperative targets. Gary M. Goff et al. [8] used
extended and traceless augmented Kalman filters, combining multiple models to estimate
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orbital continuity maneuvers at different thrusts, which were shown to be more accurate in
the high-thrust case and less accurate in the low-thrust case. XingYu Zhou [9] proposed an
algorithm that merges LSTM (Long Short-Term Memory Neural Network) and Kalman
filtering. The fitting polynomial is used to represent its continuous maneuver process, but
its higher-order polynomial will bring a higher computational burden. Qinglin Yang [10]
utilized high-precision orbital dynamics models to estimate the velocity and thrust magni-
tude of an orbiting spacecraft in real time through Markov models and volumetric Kalman
filtering. Yong Liu [11] applies an unscented Kalman filtering method to calibrate the
tangential thrust of a spacecraft in circular orbit using GNSS data. In addition, it is also
possible to perform parameter identification of the continuous thrust using spacecraft
attitude information [12–16], but it is not possible to determine the orbit elements from it.

For cooperative targets, thrust parameter identification and orbit elements determi-
nation can improve the precision and accuracy of spacecraft motion control, help the
spacecraft maintain stability in space environments that contain multiple complex per-
turbation forces, and achieve complex motion control tasks. For non-cooperative targets,
mastering their thrust parameters and orbit elements is crucial for tasks such as precision
orbit determination, spacecraft cataloging, and collision warning [5]. For most of the
current continuous thrust spacecraft, both the orbit climbing section and the orbit holding
section are near-circular orbits, and it is of practical significance to carry out the initial
identification of thrust and orbit elements of a circular orbit continuous thrust spacecraft,
which can provide a reliable initial value for the next precision orbit fixing. This is also the
research focus of this paper.

The significance of this study is to achieve orbit determination and thrust parameter
identification of a continuous thrust spacecraft in circular orbit relying only on ground-
based radar observations without any prior information. Section 2 derives the continuous
thrust perturbation equation in a geocentric inertial coordinate system and derives an
approximate solution of the perturbation equation based on the set of thrust and orbit
elements. Section 3 proposes a space parameter conversion method that enables the
interconversion of thrust and orbit elements from radar observations. Section 4 takes
advantage of the coupling relationship between the orbit elements to solve the thrust and
orbit parameters by the least squares method. Section 5 conducts experimental analyses
to verify that the proposed model can achieve the initial identification of thrust and orbit
elements of continuous thrust spacecraft in circular orbit. Section 6 provides a summary
and outlook.

2. Modelling of Orbit Motion
2.1. Thrust and Orbit Elements

In the RCN (Radial Circumferential Normal) reference system, the transverse and
tangential directions of a circular orbit are the same. As shown in Figure 1, the acceleration
in the tangential, radial, and normal directions is noted as [FT , FR, FN ]

T . The tangential
direction is the direction of the spacecraft velocity. The radial direction is the opposite
direction of the “spacecraft to the center of the earth” in the orbit plane. The normal
direction is perpendicular to the orbit plane and is in a right-handed system with the
tangential and radial directions.

The continuous thrust acting on the spacecraft is not a conservative force, and the
corresponding perturbation equations of motion can be established in the form of per-
turbation acceleration components. Compared with the general Lagrange perturbation
equation, the Gaussian perturbation equation is more intuitive in reflecting the influence
of the acceleration component on the change rule of each orbit element, which is helpful
for the subsequent derivation of formulas. The Gaussian variational equations of the orbit
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elements [17] are given to describe the process of continuous thrust orbit maneuver in
circular orbit. 

.
a = 2aFT

v
.
ξ = 2FT cos u

v − FR sin u
v

.
η = 2FT sin u

v + FR cos u
v

.
i = FN cos u

v
.

Ω = FN sin u
v sin i

.
u = n + 2FR

v −
FN sin u
v tan i

(1)

where ξ = e cos ω, η = e sin ω, u = f + ω, a is the semi-major axis, e is the eccentricity, i
is the inclination, Ω is the RAAN, ω is the argument of perigee, M is the mean anomaly,
f is the true anomaly, n is the mean angular velocity, and v is the spacecraft velocity. For
the present space missions applying continuous thrust, the orbits of the mega-constellation
satellites such as Starlink, Oneweb, etc., are mostly maintained in near-circular orbits and
no thrust is applied in the radial direction, which means that a = r and FR = 0. In circular
orbits, where just one single angle element (argument of latitude) is sufficient to describe the
position of the spacecraft in orbit, it is not necessary to consider both the perigee magnitude
and the true perigee angle. Considering the position of the orbit overall in space, the orbital
equations for continuous thrust are simplified.
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Figure 1. Continuous thrust on spacecraft.

.
r = 2FT

n
.
i = cos u

v FN
.

Ω = sin u
v sin i FN

.
u = n− FN sin u

v tan i

(2)

Observation of the above equation shows the following:

(a) The semi-major axis variation is related only to the tangential acceleration and not to
the orbit plane normal acceleration.

(b) The inclination variation is related to the normal acceleration and the spacecraft
velocity. There is a fixed mathematical relationship between the spacecraft velocity
and the half-length axis, so the change in inclination is related to both the normal
acceleration in the expression and the normal acceleration (the term affecting the
change in the semi-major axis).

Combining the above conclusions, as shown in Figure 2, solving for δ = (r, i, Ω, u, FT , FN)
leads to the determination of the thrust and orbital parameters of continuous thrust space-
craft in circular orbit.
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2.2. Approximate Solution of the Perturbation Equations
2.2.1. Continuous Thrust Motion Control Equations

Observing Equation (2), it can be found that if the normal thrust does not change
direction relative to the spacecraft, the change in inclination and RAAN in a period will be
almost zero due to the integration effect of the cosine term cos u and sine term sin u, so the
application of normal thrust will be meaningless. To maximize the change in inclination
or RAAN, the normal thrust needs to change direction at a phase-symmetric position
(u = ±π/2 or u = 0, π).

For an in-orbit spacecraft (mass: 1000 kg, inclination: 60◦, orbit height: 550 km) under
the influence of the J2 term perturbation, the RAAN will progress in a circular orbit [18].
The RAAN progression is different for different semi-major axes, so controlling the semi-
major axis can make RAAN separation [19]. Also, the effect of normal thrust is compared
to RAAN. Let the normal thrust change sign at u = 0, π, so that the integral of sin u in a
period is maximum, at which time the effect of the normal thrust is most obvious. Figure 3
represents the efficiency of separating the RAAN using different semi-major axes and
applying normal thrust, respectively.
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The separation efficiency of J2 term perturbation on RAAN is much larger than the
change efficiency of normal thrust on RAAN, while J2 term perturbation has almost no
effect on inclination. Therefore, in engineering practice, the RAAN is mostly changed by
J2 term perturbation between different orbit heights, and the inclination is changed by
normal thrust. This study focuses on the change in spacecraft orbit height and inclination
by continuous thrust. In this case, the normal thrust changes direction at ±π/2 to obtain
the maximum change in inclination, which is derived as follows. The orbital averaging
method [20] is applied during one period.∫ π/2

−π/2 FN cos udu +
∫ 3π/2

π/2 −FN cos udu
2π

=
2FN

π
(3)
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∫ π/2
−π/2 FN sin udu +

∫ 3π/2
π/2 FN sin udu

2π
= 0 (4)

The average effect of FN sin u over a period is 0 and the average effect of FN cos u over
a period is 2FN/π. Combined with n = v/r, the above equation simplifies to

dr
dt =

2r
v FT

di
dt =

2
πv FN

dΩ
dt = 0

du
dt = v3

µ

(5)

2.2.2. Analytical Model for Semi-Major Axis

The vis-viva equation of circular orbits (r = a) can be simplified as

v2 = µ

(
2
r
− 1

a

)
=

µ

r
(6)

Differential of the above equation, with

dv
dt

=
dv
dr
· dr

dt
= −1

2
µ

1
2 r−

3
2 · dr

dt
= −1

2
µ

1
2 r−

3
2

2r
v

FT = −FT (7)

Then,

v = v0 +
dv
dt

t = v0 − FTt (8)

Deform the radius of the orbit:

dr
dt

=
2r
v

FT =
2µ

v3 FT =
2µFT

(v0 − FTt)3 (9)

Integrate the above equation:

r =
∫ 2µFT

(v0 − FTt)3 dt =
µ

(v0 − FTt)2 + Cr (10)

where Cr is the constant of integration; when t = 0, r = r0 = µ/ν2
0 + Cr, so

Cr = 0 (11)

Then,
r =

µ

(
√

µ
r0
− FTt)

2 (12)

2.2.3. Analytical Model of Inclination

The inclination is derived:

di
dt

=
2FN
πv

=
2FN

π

1
v0 − FTt

(13)

v0 is the initial velocity of the spacecraft. Integrate the above equation:

i =
∫ 2FN

π

1
v0 − FTt

dt (14)
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i = − 2FN

πFT
ln(v0 − FTt) + Ci (15)

where Ci is the constant of integration; when t = 0, i = i0 = − 2FN
πFT

lnv0 + Ci, so

Ci = i0 +
2FN

πFT
ln v0 (16)

Then,

i = i0 +
2FN

πFT
ln(

√
µ

√
µ− FTt

√
r0
) (17)

2.2.4. Analytical Model of Argument of Latitude

Derive the argument of latitude:

.
u = n =

v
r
=

v3

µ
(18)

Then,
du
dt

=
1
µ
(v0 − FTt)3 (19)

Then,

u =
∫ 1

µ
(v0 − FTt)3dt (20)

u = − (v0 − FTt)4

4µFT
+ Cu (21)

where Cu is the Constant of integration; when t = 0, u = u0 = − ν4
0

4µFT
+ Cu, so

Cu = u0 +
v4

0

4µFT
(22)

Then,

u = u0 +

µ2

r2
0
− (
√

µ
r0
− FTt)

4

4µFT
(23)

2.2.5. Analysis of Perturbation Effects

In practical engineering tasks, the influence of perturbation in near-Earth space ca not
be ignored. Among them, the J2 term perturbation is the main influence term; it is of great
practical significance to analyze the orbital motion law under its influence. The J2 term
has almost no influence on the semi-major axis, inclination, and eccentricity. The effect on
RAAN is as follows [21].

.
ΩJ2 = −

3J2a2
E cos i
8

v
r3 = −

3J2a2
E cos i

8µ3 (v0 − FTt)7 (24)

Then,

ΩJ2 = Ω0 +
3J2a2

E cos i
64FTµ3

(v0 − FTt)8 (25)
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The influence of the J2 term on the argument of latitude is as follows:

.
uJ2 = −

3J2a2
E(3− 4 sin2 i)

8
v
r3 = −

3J2a2
E(3− 4 sin2 i)

8µ3 (v0 − FTt)7 (26)

Then,

uJ2 = u0 +
3J2a2

E(3− 4 sin2 i)
64FTµ3

(v0 − FTt)8 (27)

Although the atmosphere in space is already extremely thin, spacecraft travel at speeds
of several kilometers per second and atmospheric drag has a definite effect on spacecraft.
For a spacecraft, the expression for the acceleration of atmospheric drag is

fdrag = −1
2

CD
Sd
m

ρvv (28)

where CD is the drag coefficient, Sd is the windward surface area, m is the spacecraft
mass, S/m is the surface-to-mass ratio, ρ is the atmospheric density, v is the spacecraft
velocity, and v is the spacecraft velocity vector. Recent atmospheric density data pub-
lished by NASA were used [22]. The values of the parameters involved in Equation (28)
are taken: ρ = 1.38 × 10−16 g/cm3 at an altitude of 600 km, CD = 2.2, S/m = 0.02, and
v = 7.56× 103 m/s. The atmospheric drag acceleration is calculated to be 1.736 × 10−7 m/s2

in the opposite direction of the spacecraft velocity. From the performance of existing space
electric thrusters [23], the acceleration produced by the thruster is generally in the range
of 10−3–10−5 m/s2, which will be 2 to 4 orders of magnitude larger than the acceleration
produced by atmospheric drag. The acceleration generated by atmospheric drag in the op-
posite direction of the velocity can be considered when identifying the thrust parameters of a
continuously thrusting spacecraft to compensate for the desired tangential thrust acceleration.

Due to the presence of momentum in photons, sunlight striking the spacecraft gen-
erates a radiation pressure called solar pressure. The expression for solar pressure is

fSRP = −CR
SR
m

psvsis (29)

where CR is the solar pressure coefficient, SR is the equivalent area, m is the spacecraft mass,
ps is the solar pressure constant at the location of the spacecraft, and vs is the sun exposure
coefficient, which is 1 when the spacecraft is illuminated by sunlight, and conversely 0. is
characterizes the direction of the solar pressure perturbation force and is the unit vector
of the spacecraft to the center of the sun. The literature [24] shows that the acceleration
produced by solar pressure on a spacecraft is on the order of 10−7 and hardly affects the
thrust acceleration produced by the electric thrusters.

The Earth’s non-spherical perturbation, atmospheric drag, and solar pressure are
the perturbations that have the greatest impact on near-Earth spacecraft. In addition to
these, there are several other smaller perturbations, such as third-body gravity, Earth
deformation perturbations (oceanic, solid, and atmospheric tides), general relativistic effect
perturbations, and Earth antiradiation pressure, which can usually be ignored in orbital
calculations for general requirements.

In summary, knowing the initial orbital state δ0 = (r0, i0, Ω0, u0), the state of the
spacecraft at time t can be expressed by the following equation.
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

r = µ

(
√

µ
r0
−FT t)

2

i = i0 +
2FN
πFT

ln(
√

µ
√

µ−FT t
√

r0
)

Ω = Ω0 +
3J2a2

E cos i
64FTµ3 (

√
µ
r0
− FTt)

8

u = u0 +

µ2

r2
0
−(
√

µ
r0
−FT t)

4

4FTµ
+

3J2a2
E(3−4 sin2 i)(

√
µ
r0
−FT t)

8

64FTµ3

(30)

The high-precision orbital propagation model in Orekit is selected and used to analyze
the created model in comparison with it, as shown in Figure 4.
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Figure 4. Comparison between the new model and high precision orbit propagation model.

The newly established orbital model has a small error with the high-precision orbit
propagation model, and after one day of continuous thrusting, the error in the semi-major
axis of the orbit between the two is 0.0039 m, the error in the inclination is 0.0006◦, the error
in the RAAN is 0.007◦, and the error in the argument of latitude is 0.0031◦. It is found by
comparison that the established model approximates the error of the model considering the
J2 term perturbation and can satisfy the error requirement of the initial orbit determination.
In particular, the variation of the inclination is strongly influenced by the perturbation short
period term, as shown in Figure 5.
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Multi-arc data were selected for orbit determination and thrust parameter identifica-
tion, and the perturbation of short-period terms had little effect on the results.

3. Transformation of Orbit Elements
3.1. Semi-Major Axis Transformation

From Equation (2), it can be seen that in the continuous maneuver process, the initial
semi-major axis r0 and tangential acceleration FT can affect each parameter. The first
equation in Equation (2) implies that the initial semi-major axis and tangential acceleration
can be solved by studying the change law of the semi-major axis, which can simplify the
process of solving the other parameters in the following. Under the J2000.2 equatorial
reference system (geocentric inertial coordinate system), the radar observation data are
transformed into spacecraft semi-major axis data. The spatial relationship between the
geocenter, the station, and the spacecraft is shown in Figure 6.

Aerospace 2023, 10, x FOR PEER REVIEW 10 of 19 
 

 

Multi-arc data were selected for orbit determination and thrust parameter identifica-

tion, and the perturbation of short-period terms had li�le effect on the results. 

3. Transformation of Orbit Elements 

3.1. Semi-Major Axis Transformation 

From Equation (2), it can be seen that in the continuous maneuver process, the initial 

semi-major axis r0 and tangential acceleration 
TF   can affect each parameter. The first 

equation in Equation (2) implies that the initial semi-major axis and tangential acceleration 

can be solved by studying the change law of the semi-major axis, which can simplify the 

process of solving the other parameters in the following. Under the J2000.2 equatorial ref-

erence system (geocentric inertial coordinate system), the radar observation data are trans-

formed into spacecraft semi-major axis data. The spatial relationship between the geocen-

ter, the station, and the spacecraft is shown in Figure 6. 

 

Figure 6. The spatial relationship between the geocenter, station, and spacecraft. 

r shows the position of the spacecraft, R shows the position of the station, and ρ 

shows the position of the spacecraft relative to the station. 

 r R ρ  (31)

In selecting the reference plane and its principal direction, the effects of exposure to 

differential age chapter movements and geopotential shifts are considered, as described 

in reference [17], and will not be repeated here. 

3.2. Inclination Transformation 

As is shown in Figure 7, a space Cartesian coordinate system in space is established 

with the Earth as the prime (O) and the equatorial plane (E) in the xOy plane, which can 

be expressed as z = 0. 

 

Figure 7. Space motion of continuous thrust spacecraft. 

Figure 6. The spatial relationship between the geocenter, station, and spacecraft.

r shows the position of the spacecraft, R shows the position of the station, and ρ shows
the position of the spacecraft relative to the station.

r = R + ρ (31)

In selecting the reference plane and its principal direction, the effects of exposure to
differential age chapter movements and geopotential shifts are considered, as described in
reference [17], and will not be repeated here.

3.2. Inclination Transformation

As is shown in Figure 7, a space Cartesian coordinate system in space is established
with the Earth as the prime (O) and the equatorial plane (E) in the xOy plane, which can be
expressed as z = 0.



Aerospace 2023, 10, 1012 10 of 18

Aerospace 2023, 10, x FOR PEER REVIEW 10 of 19 
 

 

Multi-arc data were selected for orbit determination and thrust parameter identifica-

tion, and the perturbation of short-period terms had li�le effect on the results. 

3. Transformation of Orbit Elements 

3.1. Semi-Major Axis Transformation 

From Equation (2), it can be seen that in the continuous maneuver process, the initial 

semi-major axis r0 and tangential acceleration 
TF   can affect each parameter. The first 

equation in Equation (2) implies that the initial semi-major axis and tangential acceleration 

can be solved by studying the change law of the semi-major axis, which can simplify the 

process of solving the other parameters in the following. Under the J2000.2 equatorial ref-

erence system (geocentric inertial coordinate system), the radar observation data are trans-

formed into spacecraft semi-major axis data. The spatial relationship between the geocen-

ter, the station, and the spacecraft is shown in Figure 6. 

 

Figure 6. The spatial relationship between the geocenter, station, and spacecraft. 

r shows the position of the spacecraft, R shows the position of the station, and ρ 

shows the position of the spacecraft relative to the station. 

 r R ρ  (31)

In selecting the reference plane and its principal direction, the effects of exposure to 

differential age chapter movements and geopotential shifts are considered, as described 

in reference [17], and will not be repeated here. 

3.2. Inclination Transformation 

As is shown in Figure 7, a space Cartesian coordinate system in space is established 

with the Earth as the prime (O) and the equatorial plane (E) in the xOy plane, which can 

be expressed as z = 0. 

 

Figure 7. Space motion of continuous thrust spacecraft. Figure 7. Space motion of continuous thrust spacecraft.

In near-Earth space, when a spacecraft moves along its orbit from south to north, the
intersection of the orbit with the equatorial plane is called the ascending node, and when it
moves from north to south, the intersection of the orbit with the equatorial plane is called
the descending node. The intersection line between the orbit plane and the equatorial plane
(the line between the ascending and descending nodes) is called the “node line”. From the
third equation of Equation (5), the RAAN is not affected by thrust during the continuous
long-term maneuvers of the spacecraft. However, from Equation (24), under the influence
of the J2 term perturbation, the node line will move, which means that there is an angular
difference between the intersection line l0 and li formed by the intersection of the initial
orbit plane L0 and the plane Li with the equatorial plane E, respectively, and the angular
difference is ∆Ωi. Knowing that the initial RAAN is Ω0, the node line l0 can be expressed as

l0 :
{

y = tan Ω0x
z = 0

(32)

The RAAN at time ti is Ωi = Ω0 + ∆Ωi, and the intersection line li can be expressed as

li :
{

y = tan(Ω0 + ∆Ωi)x
z = 0

(33)

P0 is the position of the continuous thrust spacecraft at the initial moment t0, and Pi
denotes the position of the spacecraft at the moment ti; L0 is the initial orbit plane, Li is
the orbit plane at the moment ti, and the expressions for P0:(x0, y0, z0) and Pi:(xi, yi, zi) are
as follows: {

P0 : (x0, y0, z0)
Pi : (xi, yi, zi)

(34)

The intersection line l0 and the straight line OP0 are both on the initial orbit plane L0
and are not parallel when u 6= 0. The normal vector h0 to the plane L0 is

h0 = l0 ×OP0 (35)

hi = li ×OPi (36)

e is defined as the normal vector of the equatorial plane E. E is the xOy plane in the
space Cartesian coordinate system, so e = (0,0,1). The angle made by the plane L0 and the
equatorial plane E is the initial orbit inclination i0.

i0 = arccos
(

h0 · e
|h0||e|

)
(37)
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As the above derivation, the inclination ii at time ti is

ii = arccos
(

hi · e
|hi||e|

)
(38)

3.3. Argument of Latitude Transformation

The argument of latitude represents the angular distance between the spacecraft and
the ascending node, and the angle between the straight line OPi and the node line li is the
argument of latitude u.

u = arccos
(

OPi · li

|OPi||li|

)
(39)

4. Thrust and Orbit Elements Solving Methods

Ground-based radar observation equipment acquired m sets of noise-containing mea-
surements in distance, azimuth, and elevation:

ỹi = (ti, ρ̃i, Ãzi, Ẽli), i = 1, 2, 3 . . . , m (40)

Define a sequence of observations of the following form:

Ỹ = [ρ̃1, Ãz1, Ẽl1, ρ̃2, Ãz2, Ẽl2, · · · , ρ̃m, Ãzm, Ẽlm] (41)

Let the true value of the observed sequence (without noise, unknown) be

Y = [ρ1, Az1, El1, ρ2, Az2, El2, · · · , ρm, Azm, Elm] (42)

Assuming that the observation errors follow a normal distribution and that the de-
tector line-of-sight errors have a mean squared error of σ2, the statistical properties of the
observations are as follows: 

ρ̃i ∼ N (ρi, σ2
1 )

Ãzi ∼ N (Azi, σ2
2 )

Ẽli ∼ N (Eli, σ2
3 )

(43)

Define the sequence of observations with respect to the semi-major axis, inclination,
and argument of latitude according to Equation (41):

~
Yr = [r̃1, r̃2, · · · , r̃m]
~
Yi = [ĩ1, ĩ2, · · · , ĩm]
~
Yu = [ũ1, ũ2, · · · , ũm]

(44)

The initial semi-major axis and tangential thrust acceleration are denoted by x10 = [r0, FT ].
The initial inclination, RAAN, and normal thrust acceleration are denoted by x20 = [i0, Ω0, FN ].
The initial argument of latitude is denoted by x30 = u0. Based on the analytical model, a set
of theoretical orbital sequences can be obtained:

Y
(
x10) = [r1(x10), r2(x10), · · · , rm(x10)]

Y
(
x20) = [i1(x20), i2(x20), · · · , im(x20)]

Y(x30) = [u1(x30), u2(x30), · · · , um(x30)]

(45)

The sum of the squares of the errors of the theoretical and actual observations charac-
terizes the difference between the theoretical and actual orbits:
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

m
∑

i=1
[ri(x10)− r̃i]

2

m
∑

j=1
[ij(x20)− ĩj]

2

m
∑

j=1
[uj(x30)− ũj]

2

(46)

The orbit determination problem can be described as the following optimization problem:

min
x10

J(x10) =
m
∑

i=1
[ri(x10)− r̃i]

2

min
x20

J(x20) =
m
∑

j=1
[ij(x20)− ĩj]

2

min
x30

J(x30) =
m
∑

j=1
[uj(x30)− ũj]

2

(47)

In solving the above optimization problem, the initial semi-major axis r0, tangential
thrust acceleration FT , initial inclination i0, initial RAAN Ω0, normal thrust acceleration
FN , and initial argument of latitude u0 can be obtained sequentially.

In summary, the problem of identifying the thrust and orbit elements of a continuous
thrust spacecraft is transformed into a least squares problem, which can be solved for
δ0 = (r0, i0, Ω0, u0, FT , FN) by the above process.

5. Simulation Analysis

In order to identify the thrust and orbit elements of a continuous-thrust spacecraft
in circular orbit, a full-model simulation in a real scenario is required, so as to verify the
accuracy of the parameter-solving method in this paper. The thrust parameters are set
in reference to the current Starlink V2.0mini satellite launched by SpaceX, whose mass
is 750 kg, and the thrust of the equipped Hall electric thruster is 170 mN, producing a
combined thrust acceleration of 2.27 × 10−4 m/s2. At this time, the yaw angle is set to
be 30◦, the tangential acceleration is 1.966 × 10−4 m/s2, and the normal acceleration is
1.135 × 10−4 m/s2. All simulation conditions are set as shown in Table 1.

Under the effect of various perturbation forces, the continuously thrusting spacecraft
conducts continuous maneuvers along its orbit, and, in consideration of the actual radar
observation, the radar observable range is limited to 5◦ after the spacecraft exits the station
horizon and 5◦ before the inbound station horizon. Figure 8a shows the geometric schematic
of ground-based radar visibility, with the orange area as the observable area. Figure 8b
shows the ground-based radar visibility time window schematic (the grey area is the
observable window period); the low-orbit satellite orbit cycle is short and can be observed
in more windows, but the observation time of each window is short, which is generally
about 10 min. In the simulation, the sampling step is set to be 60 s, and each sampling time
is determined according to the length of the observation window, and all the observable
windows in the time from 2020.04.02 00:00:00 UTC to 2020.04.04 00:00:00 UTC are sampled
for the observation, with a time span of 48 h and a total of 154 groups of observational data,
which are recorded as i = 1, 2, . . ., 154.

Equation (47) is a typical nonlinear least squares problem. In this paper, the Levenberg–
Marquardt algorithm (LM algorithm) is used for least squares parameter estimation. This
method combines the most rapid descent method and the Gauss–Newton method. At the
beginning of the iteration, it is approximately equivalent to the most rapid descent method,
which can gradually approach the optimal solution in the case of bad initial values; at the
end of the iteration, it is approximately equivalent to the Gauss–Newton method, which
can quickly converge to the optimal solution on the basis of better estimates. Applying the
LM algorithm to this problem, the optimal values of orbit elements and thrust parameters
can be found quickly.
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Table 1. Simulation parameter settings.

Project Parameter

Initial epoch time 2023.04.02 04:46:39 UTC

Initial orbit [r, i, Ω, u] = [6933.5345 km, 65.011◦, 14.372◦, 28.728◦]

Initial acceleration
[
FT , FN

]
=
[
0.0001966 m/s2, 0.0001135 m/s2]

Station coordinates [−2852.90 km, 3399.95 km, 4565.25 km]

Three body gravity Sun, moon, and major planets: JPL DE405

Observation error
(Gaussian distribution) [σ1, σ2, σ3] = [0.03km, 0.1

cos(El)
◦, 0.1◦]

Tide Solid tide: IERS Conventions 2003

Non-spherical gravitational field Gravity model: EGM2008
Degree:21; order:21

Relativity IERS Conventions 2003

Solar pressure
Shadow model: Dual Cone

Light pressure coefficient: 1.00
Area–mass ratio: 0.02 m2/kg

Atmospheric drag
Density model: Jacchia–Roberts

Drag coefficient: 2.20
Area–mass ratio: 0.02 m2/kg
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The proposed model does not require high accuracy of the initial values in problem
solving. For the semi-major axis, inclination, RAAN inclination, and argument of latitude,
the sampled data at the initial moment are taken as the initial value. The thrust acceleration
generated by the Hall electric thrusters carried by the existing on-orbit spacecraft does not
exceed the order of 10−4 [20], so the tangential acceleration and normal acceleration can be
taken as 0, which is the initial value when simulation analysis is performed. The solution
results are shown in Table 2.

Using the above method to calculate the thrust and orbit elements, a total of 1000 Monte
Carlo simulations were carried out; the relative error of the spacecraft tangential acceler-
ation solution is about 5 × 10−7 m/s2, and the relative error of the normal acceleration
solution is about 3 × 10−6 m/s2. The error of the semi-major axis is about 0.35 km, the
error of solving the inclination is about 0.095◦, and the error of the RAAN and argument of
latitude are about 0.74◦ and 0.83◦, respectively. Figure 9 shows the solution error of tangen-
tial acceleration, normal acceleration, semi-major axis, inclination, RAAN, and argument
of latitude.
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Table 2. Solution results (UTC: 2023.04.02–2023.04.04).

Orbit Parameter Simulation Value Solution Result Error

Tangential acceleration (m/s2) 0.0001966 0.0001961 0.0000005

Normal acceleration (m/s2) 0.0001135 0.0001106 0.0000029

Semi-major axis (km) 6933.534519 6933.885632 0.351

Inclination (◦) 65.011 64.916 0.095

RAAN (◦) 14.372 13.629 0.743

Argument of latitude (◦) 28.728 27.894 0.834
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From the above results, the estimation accuracy of spacecraft thrust acceleration
parameters is high and can be applied to engineering practice. Due to the observation error
and system error, the estimated orbital elements have some errors. The estimated orbital
elements can be used as reliable initial values for precise orbit determination of continuous
thrust spacecraft. Next, the simulation is set to explore the thrust parameter identification
ability of the proposed method.

At present, Hall electric thrusters are the thrusters most commonly carried by continuous-
thrust spacecraft, and the thrust that Hall electric thrusters can provide to satellites is in the
range of 5 mN–1 N. The thrust was set to 1 N, 500 mN, 100 mN, 20 mN, 5 mN, and 1 mN
for simulation, the satellite mass was set to 500 kg, and the thrust yaw angle was set to
60◦ (refer to Table 2 for other parameter settings). The simulation was carried out under
different thrust forces, and the results are shown in Table 3.

Table 3. Results of simulation.

Thrust 1 N 500 mN 100 mN 20 mN 5 mN 1 mN

Acceleration (m/s2) 2 × 10−3 1 × 10−3 2 × 10−4 4 × 10−5 1 × 10−5 2 × 10−6

Simulation tangential
acceleration (m/s2) 1 × 10−3 5 × 10−4 1 × 10−4 2 × 10−5 5 × 10−6 1 × 10−6

Solution tangential
acceleration (m/s2) 1.000 × 10−3 5.000 × 10−4 0.999 × 10−4 2.033 × 10−5 4.645 × 10−6 0.486 × 10−6

Simulation normal
acceleration (m/s2) 1.732 × 10−3 8.660 × 10−4 1.732 × 10−4 3.464 × 10−5 8.660 × 10−6 1.732 × 10−6

Solution normal
acceleration (m/s2) 1.738 × 10−3 8.624 × 10−4 1.622 × 10−4 2.682 × 10−5 5.890 × 10−6 1.223 × 10−5

The comparison between the simulation values and solutions values is shown in
Figure 10.
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The solution errors for different thrusts are shown in Figure 11.
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From the simulation results, the tangential acceleration and normal acceleration have
high identification accuracy when the thrust is greater than 5 mN. When the thrust is about
1 mN, the proposed method is able to identify the magnitude of the tangential acceleration,
while the normal acceleration will not be identified. This is because the change in the orbit
elements caused by the thrust is too small, resulting in the error in the identification of the
thrust parameters within a short observation time.

6. Conclusions

An analytical method using geometrical parameter transformations is proposed, which
can perform the solution of thrust and orbit elements of a continuously thrusting spacecraft
during climb deployment, orbit maintenance, continuous orbital maneuvers, and re-entry
segments. It has the following features:

(1) The adoption of the analytical orbit model can reflect the relationship between the
elements more clearly, and, at the same time, simplify the calculation and quickly
solve the problem.

(2) The decoupling of tangential thrust and normal thrust parameters can simplify the
solving process, and the solving accuracy of tangential acceleration and normal
acceleration can reach the order of 10−6 and 10−5 m/s2, which can be directly applied
to engineering practice.

(3) In the process of solving the RAAN and argument of latitude, only the long-term
effect of the spacecraft by the J2 term perturbation is considered, and its short-term
effect with the thrust acceleration is not considered, so the solution accuracy is lower,
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but it can be used as the initial value to be substituted into the next step of the precise
orbit determination.

This study aims to achieve the fast pre-identification of thrust parameters and orbit
elements, with the purpose of solving the rough position of the spacecraft in near-Earth
space from the short-arc data of the multi-segment single-station radar observation, which
can provide the initial value for the next step of the precision orbit determination for
the continuous-thrust spacecraft. The near-circular orbit is regarded as a circular orbit,
and the eccentricity and perigee angle are neglected in the process, which causes an
acceptable error in the solution of the orbit elements. At the same time, there are some
constraints in the research work, as the propulsion strategy with fixed acceleration in
the near-circular orbit can only satisfy most of the continuous-thrust spacecraft operating
conditions and cannot cope with the time-varying thrust conditions. The final parameter
solution model does not consider the effects of atmospheric drag and solar pressure. The
next step of the research focuses on the use of filtering methods to describe the variation of
thrust parameters of spacecraft in real time, as well as the precision orbit determination of
continuous-thrust spacecraft.
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