
Citation: Fu, W.; Chen, Z.; Luo, J.

Aerodynamic Uncertainty

Quantification of a Low-Pressure

Turbine Cascade by an Adaptive

Gaussian Process. Aerospace 2023, 10,

1022. https://doi.org/10.3390/

aerospace10121022

Academic Editor: Dries Verstraete

Received: 23 October 2023

Revised: 30 November 2023

Accepted: 6 December 2023

Published: 9 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Aerodynamic Uncertainty Quantification of a Low-Pressure
Turbine Cascade by an Adaptive Gaussian Process
Wenhao Fu , Zeshuai Chen and Jiaqi Luo *

School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China; wenhaofu@zju.edu.cn (W.F.);
zeshuai.chen@zju.edu.cn (Z.C.)
* Correspondence: jiaqil@zju.edu.cn

Abstract: Stochastic variations of the operation conditions and the resultant variations of the aero-
dynamic performance in Low-Pressure Turbine (LPT) can often be found. This paper studies the
aerodynamic performance impact of the uncertain variations of flow parameters, including inlet
total pressure, inlet flow angle, and turbulence intensity for an LPT cascade. Flow simulations by
solving the Reynolds-averaged Navier–Stokes equations, the SST turbulence model, and γ− R̃eθt

transition model equations are first carried out. Then, a Gaussian process (GP) based on an adaptive
sampling technique is introduced. The accuracy of adaptive GP (ADGP) is proven to be high through
a function experiment. Using ADGP, the uncertainty propagation models between the performance
parameters, including total pressure-loss coefficient, outlet flow angle, Zweifel number, and the
uncertain inlet flow parameters, are established. Finally, using the propagation models, uncertainty
quantifications of the performance changes are conducted. The results demonstrate that the total
pressure-loss coefficient and Zweifel number are sensitive to uncertainties, while the outlet flow
angle is almost insensitive. Statistical analysis of the flow field by direct Monte Carlo simulation
(MCS) shows that flow transition on the suction side and viscous shear stress are rather sensitive
to uncertainties. Moreover, Sobol sensitivity analysis is carried out to specify the influence of each
uncertainty on the performance changes in the turbine cascade.

Keywords: uncertainty quantification; low-pressure turbine; Gaussian process; adaptive sampling;
statistical analysis; Sobol analysis

1. Introduction

Affected by component mismatching and the variations of the flight environment,
the inlet flow conditions of compressors and turbines often change in the real world. For
different cruising altitudes, the inlet total pressure and Reynolds number of Low-Pressure
Turbines (LPTs) fluctuate a lot. As flight attitude changes, flow distortion with varied total
pressure and boundary layer can be commonly found at the inlet of the compressor. Under
the influence of combustion instability, the inlet flow of a high-pressure turbine exhibits
strong uncertainties, further exerting uncertainty impact on the downstream LPT [1,2]. In
such situations, performance in service of the blades designed by deterministic methods,
i.e., neglecting the effects of uncertainties, inevitably deviates from the design objective.
Such design results in not only a decrease in mean performance but also in an increase
in performance dispersion. To improve the mean performance and reduce the dispersion,
robust design optimization has attracted wide attention. Ghisu et al. [3] found that the
probability of compressor stall is considerable if considering the effects of stochastic inlet
flow variations, especially under operation conditions with low rotational speed. They
then performed robust design optimization by regarding the statistical performance as
the objective and successfully decreased the probability of compressor stall. Luo et al. [4]
found that the impact of stochastic variations of inlet flow angle on flow loss of a turbine
cascade is severe under off-design operation conditions. They then performed robust
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design optimization and successfully improved the robustness by reducing the variance
of flow loss. For robust design optimization, the evaluation of the uncertainty impact and
calculation of the statistical performance is an issue. Usually, a large number of uncertainty
quantifications are needed to conduct robust design optimization, which results in a great
cost of computing resources. Therefore, the method of quantification is desired to be
efficient and accurate at the same time.

With the development of computational fluid dynamics (CFD), more and more
researchers have conducted uncertainty quantification (UQ) investigations of turbine
cascades [5,6]. Different quantification methods have been developed [7], which are mainly
divided into two categories, one based on sensitivity analysis and the other based on
model methods. The sensitivity-based UQ analysis method is suitable for the case where
nonlinear dependence between the output and input uncertainties is not strong. Putko
et al. [8] used the method of moment (MM) to propagate the uncertainties of geometric
changes and flow changes in quasi-one-dimensional flows. Luo et al. [9] and Xu et al. [10]
evaluated performance changes using sensitivity-based UQ methods. Using this method,
the computational cost for statistical analysis is significantly reduced. However, it cannot
be used for strongly nonlinear uncertainty problems.

UQ methods based on surrogate models have been widely studied and applied. The
polynomial chaos (PC) model is a popular method that constructs the model through the
expansion of multiple sets of orthogonal random processes. Compared with Monte Carlo
simulation (MCS), fewer samples are required by the PC method, while the prediction
accuracy is high, making it more attractive [11]. Hosder et al. [12] applied the non-
intrusive polynomial chaos (NIPC) method to a three-dimensional wing flow in which the
stochastic variations of free flow Mach number and angle of attack are taken into account.
Simon et al. [13] used a sparse PC method to study the transonic unsteady flow of airfoil
under geometric uncertainty. Guo et al. [14] used the NIPC to evaluate the performance
changes in a compressor cascade under the influence of installation angle and contour
errors. Chen et al. [15] used the adaptive NIPC method to study the performance of
a transonic compressor blade under the influence of uncertain inlet flow angle changes.
Emory et al. [16] investigated the influence of the compounded variations of inlet total
pressure, inlet turbulence intensity, and wall temperature on the performance changes in a
turbine blade using NIPC. Moreover, Gopinathrao et al. [17] utilized the NIPC method to
analyze the influence of stochastic variations of inlet total pressure on the changes in total
pressure ratio and adiabatic efficiency of NASA Rotor 37. Tang et al. [18] constructed a
Kriging model, which is a specific case of Gaussian process (GP) for performance prediction
of a centrifugal compressor, in which the effects of stochastic variations of inlet flow
angle, tip clearance, etc. are considered. In recent years, rapidly developed machine-
learning methods have been widely used in various disciplines [19]. By machine learning,
surrogate models can be constructed through supervised learning. Hu et al. [20] applied
support vector regression to model construction, which was then used for predicting the
aerodynamic performance of a transonic compressor. Wang et al. [21], He et al. [22],
and Cao et al. [23] investigated the impact of uncertainties on performance changes in
compressors using artificial neural networks (ANNs).

However, it is time-consuming for the training of ANN models that numerous hy-
perparameters, including the number of hidden layers and neurons on each hidden layer,
etc., need to be optimized. By contrast, GP is more flexible without much fine-tuning of
the hyperparameters due to its non-parametric features [24]. Additionally, GP exhibits
higher accuracy compared to the NIPC method, which is also investigated in this study.
Generally, it is necessary to construct a surrogate model with high response accuracy using
as few training samples as possible. GP with adaptive sampling is a good choice. GP
was originally developed as a probability theory concept by Wiener and Kolmogorov in
the 1940s. It originated as a regression tool in geostatistics by Krige [25] and later found
applications in spatial statistics [26], general regression [27], computer experiments [28],
and machine learning [29]. In the context of machine learning, GP is applied in nonlinear
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regression and classification [29]. GP not only predicts the mean response of test points
but also estimates the variance within the sampling space. This unique capability makes
it easier to conduct adaptive sampling using the variance, resulting in a decrease in the
number of training samples for model training. Due to these characteristics, GP has become
popular in various applications [24,30].

From the aforementioned literature working on the performance impact of stochastic
variations of inlet flow, the effects of inlet flow angle, inlet total pressure, and inlet turbu-
lence intensity were considered in most cases. In the present study, uncertainty impact on
the performance parameters, such as total pressure-loss, outflow angle, and Zweifel lift
coefficient of an LPT cascade, will be investigated. It is well known that the changes in inlet
flow angle and inlet total pressure should influence the lift of the turbine cascade, which
subsequently changes the Zweifel lift coefficient and flow deviation at the outlet, while
the change in inlet turbulence intensity usually has a strong impact on flow transition of
LPT. Thus, the effects of inlet flow angle, inlet total pressure, and turbulence intensity are
considered in the study; meanwhile, the adaptive Gaussian process (ADGP) is used for
performance prediction. The organization of this paper is as follows. Flow simulations are
first carried out, and the impacts of each uncertainty on performance changes are analyzed.
The principles of ADGP are then introduced, and the method is verified and validated
through a series of function experiments. The surrogate models of performance parameters
with respect to the uncertainties are learned by ADGP. Using the models, performance
changes in the LPT cascade are finally quantified. MCS-based statistical analysis of the flow
fields is performed to reveal the impact mechanisms of uncertainties. Moreover, the results
of the Sobol sensitivity analysis are given to illustrate the contribution of each uncertainty
to performance changes.

2. Numerical Simulation

The two-dimensional cascade of the first rotor in a two-stage LPT of a small aero engine is
utilized in the study. The uncertain effects of inlet flow angle α, inlet total pressure Pt,in, and
inlet turbulence intensity Tu on the cascade flow are considered. The flow simulation adopts
an in-house program, which solves the Reynolds-averaged Navier–Stokes (RANS) equations,
SST turbulence model, and γ− R̃eθt transition model equations. LU-SGS time-marching is
used. Multigrid and local time step techniques are used to accelerate convergence.

In this paper, the total pressure-loss coefficient ζ, outlet flow angle β, and Zweifel
number Zw of the turbine cascade are calculated. The total pressure-loss coefficient and
Zweifel number are defined as:

ζ =
Pt,in − Pt,out

Pt,out − Pout
(1)

Zw =

∫ 1
0 (Pp − Ps)d( x

cx
)

Pt,in − Pout
(2)

where Pt and P are total pressure and static pressure, respectively; the subscripts in and
out represent inlet and outlet, respectively; the subscripts p and s represent pressure side
and suction side, respectively; x and cx are the distance from the leading edge and axial
chord, respectively.

Specifications of the turbine cascade are given in Table 1, where the inlet total pressure
Pt,in, inlet total temperature Tt,in, inlet flow angle α, turbulence intensity Tu and outlet back
pressure Pout are given. The inlet total pressure and temperature are uniformly distributed
in the circumferential direction, and a mass-averaged calculation is performed to obtain the
outlet back pressure and angle. Figure 1 presents the cascade geometry and the topology of
multi-block grids. Four sets of grids are used for flow simulations, the resolutions of which
are 5× 104, 6× 104, 7.2× 104, 8.6× 104, respectively. Figure 2 shows the flow solutions of ζ,
β, and Zw of the four different grids, where N is the serial number of the grids, w/w4 is a
scaled function representing the performance parameters, where the reference w4 is the one
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for the fourth grid. It is evident that as the grid resolution increases, all the performance
parameters approach those of the fourth grid. The results of the third and fourth grids are
almost the same. The grid-independent flow solutions, including ζ, β, and Zw, are also
given in Table 1. In the following study, the third grid is utilized.

Table 1. Specifications of the turbine cascade.

Parameter Value

inlet total pressure Pt,in 294,679.4 Pa
inlet total temperature Tt,in 1238.9 K

inlet flow angle α 33.50°
inlet turbulence intensity Tu 0.025

outlet static pressure Pout 201,017 Pa
axial chord cx 0.0165 m

total pressure-loss coefficient ζ 0.0317
outlet flow angle β −61.20°

Zweifel number Zw 0.8682

Figure 1. Mesh of the cascade.

Figure 2. Grid-independent flow solutions.

To demonstrate the effects of inlet flow parameters on the aerodynamic performance
changes, inlet total pressure Pt,in and inlet flow angle α are perturbed in the interval
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[−10%, 10%], while the turbulence intensity Tu is perturbed in the interval [−60%, 60%].
The relative variations of the inlet flow parameters are defined as

∆ f =
f − fre f

fre f
(3)

where f is a universal function representing Pt,in, α, and Tu, and the subscript re f denotes
the reference value. Figure 3 presents the relative variations of performance parameters
versus the relative variations of inlet flow parameters. Generally, the impact of inlet flow
variations on the changes in ζ are considerable. At the interval boundaries, more than
2% variations in ζ can be found. It is obvious that the increase of inlet flow angle and
turbulence intensity induce more flow losses to the turbine cascade, while the increase of
inlet total pressure is effective in reducing the flow loss. By contrast, the impact of inlet flow
parameters on outlet flow angle is rather weak since the maximum relative variation of β is
about 0.4%. Moreover, β is almost independent of the variations of inlet flow angle and
turbulence intensity. Similar results can be found for the variations of the Zweifel number,
as shown in Figure 3c. Besides the inlet total pressure, the inlet flow angle also changes
Zweifel number obviously. It is known that both outlet flow angle and Zweifel number
are closely dependent on the lift of the turbine cascade. The increase of inlet flow angle
and inlet total pressure has been well recognized to be effective in increasing blade loading,
which undoubtedly results in increased Zweifel number and increased flow-turning angle.
It should be noticed that in Figure 3b, as ∆α increases, the negative relative change in outlet
flow angle is attributed to the increased inlet flow angle, although the flow-turning angle
increases. Moreover, as shown in Figure 3c, the decrease of Zweifel number resulting from
inlet total pressure increase is attributed to the increase of Pt,in, as shown in Equation (2).

Figure 3. Performance parameter changes versus inlet flow parameter variations: (a) ∆ζ; (b) ∆β; (c) ∆Zw.

It is well known that the occurrence of laminar flow transition on the suction side of
the turbine cascade can usually be found, which immediately and significantly changes
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the flow loss. To further understand the impact mechanisms of inlet flow variations on
the changes of total pressure-loss coefficient, the contours of intermittency factor in the
boundary layer of the suction side of the turbine cascade are given in Figure 4. Figure 4b–d
are the contours with maximum absolute variations of inlet flow angle, inlet total pressure,
and turbulence intensity, respectively. From Figure 4b,d it can be observed that when ∆α
and ∆Tu are 10% and 60%, respectively, flow transition on the suction side moves upstream
compared with the contour as shown in Figure 4a. When ∆α and ∆Tu are −10% and −60%,
respectively, flow transition on the suction side moves downstream, resulting in reduced
flow losses. However, as shown in Figure 4c, the movements of flow transition on the
suction side under varied inlet total pressure are opposite compared with those given in
Figure 4b,d. In such situations, ∆ζ with respect to ∆Pt,in exhibits totally different variations
compared with those with respect to ∆α and ∆Tu, as shown in Figure 3a.

Figure 4. Contours of intermittency factor: (a) Ref; (b) ∆α; (c) ∆Pt,in; (d) ∆Tu.
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3. Adaptive Gaussian Process
3.1. Gaussian Process

In probabilistic statistical theory, GP is an important branch of the stochastic process,
which is defined as a Gaussian process, which is a collection of random variables, any finite
number of which have a joint Gaussian distribution [29]. From the perspective of function
space, GP can be described succinctly. GP is completely specified by its mean function and
covariance function. The mean function m(x) and the covariance function k(x, x′) for a
real-valued Gaussian process f (x) are defined as follows:

m(x) = E[ f (x)] (4)

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))] (5)

GP f (x) can be written as:
f (x) ∼ GP(m(x), k(x, x′)) (6)

Usually, for notational simplicity, the mean function is assumed to be zero, although
this does not need to be done. The random variable in the definition represents the function
value f (x). x can be either time or a multidimensional parameter.

Covariance functions are also called kernel functions, which define nearness or sim-
ilarity between data points. There are many choices for specifying the kernel functions,
such as squared exponential functions, quadratic rational functions, Matern-class functions,
etc. In the present study, the squared exponential function is used as the kernel function:

k(xp, xq) = σαexp(−
n

∑
l=1

(xp
l − xq

l )
2

2σ2
l

) (7)

where σα is the output length scale, xl is the l-th component of the input vector, σl is the
feature-length scale on the dimension l. Given a training set (X, Y), where X is the set of
input variables, and Y is the set of corresponding output values, the output values at the
test points X∗ satisfy the following joint Gaussian distribution:[

Y
f ∗

]
∼ N(0,

[
K(X, X) + σ2

n K(X, X∗)
K(X∗, X) K(X∗, X∗)

]
) (8)

where σ2
n is the observed noise variance. Then the conditional distribution of f∗ can be

determined as:
f∗|X, Y, X∗ ∼ N( f∗, cov( f∗)) (9)

f∗ = K(X∗, X)[K(X, X) + σ2
n I]−1Y (10)

cov( f∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
n I]−1K(X, X∗) (11)

The hyperparameters σ2
n , σ2

l and σα can be determined by maximizing the marginal
likelihood function. The expression of the marginal likelihood function is given by
Equation (11), where K(X, X) is simplified to K:

logp(Y|X) = −1
2

YT(K + σ2
n I)−1 − 1

2
log|K + σ2

n I| − n
2

log2π (12)

Fitting the optimal value of the hyperparameters is essentially one kind of optimization
problem, which can be quickly achieved using the ADAM gradient-based method [31].
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3.2. Adaptive Sampling

The accuracy of the GP regression model depends largely on the selection of training
samples. Training samples can be selected by manual one-time selection (such as random
or uniform sampling in the sample space) or adaptive sampling. The GP regression model
can predict the mean and variance of any test point in the sampling space. The variance
represents the uncertainty of output, which can be used for adaptive sampling.

In the iterative sampling process, the ADGP determines the new required training
samples according to the position of the maximum uncertainty. The new training samples
are further included in the training set. The hyperparameter optimization is carried out in
each interaction. In such a way, the accuracy of the model will be improved step by step,
which is more scientific and efficient than manual one-time selection.

The standard ADGP usually produces only one sample per iteration. To improve sampling
efficiency, this paper adopts the batch sampling method, which can add multiple samples per
iteration. The GP based on batch sampling also has a disadvantage, i.e., the newly sampled
points may be clustered within a certain range. To avoid this situation, after obtaining the first
newly sampled point with the largest uncertainty in each iteration, the covariance matrix of
GP is updated using the renewed samples directly without retraining the model, and then
sampling for selecting the second new sample point [32].

The key point of adaptive sampling is the sampling criterion. In the study, the standard
deviation predicted by the model is used as the acquisition function to guide the sampling.
A convergence threshold is given to stop the adaptive sampling. The acquisition function
is as follows:

facq(x) = σ(x) (13)

Figure 5 gives the flowchart of ADGP. The processes can be briefly described as
follows.

Step 1: The initial training sets are prepared for GP training, and a batch of test sets
are prepared for prediction.

Step 2: Train the GP model by hyperparameter optimization, which is then used for
function predictions of the test sets.

Step 3: Calculate the acquisition function facq at each test point and determine the
maximum facq,max, which is then compared with the threshold.

Step 4: If facq,max ≤ ε, model training can be completed, where ε is the threshold.
If facq,max > ε, the current GP model does not meet the accuracy requirement. The first
selected test point is added to the training sets. Calculate the facq for the second time and
determine the maximum facq,max, which is then compared with the threshold.

Step 5: If facq,max ≤ ε, model training can be completed. If facq,max > ε, the second
selected test point is added to the training sets and goes to Step 2.

It should be noted that after adding the first selected test point to the training sets, it is not
necessary to train the GP model following Step 2, while only the covariance matrix needs to be
updated. In this way, two new training samples can be selected per each iteration.

3.3. Function Test

To verify the prediction accuracy of ADGP and the computational cost of model train-
ing, three different function experiments are presented. Moreover, GP without adaptive
sampling and the widely used adaptive NIPC method are also used, and the results are
compared. The functions are given as follows.

Himmelblau function (2-d) [33]:

f (x) = (x2
1 + x2 − 11)2 + (x2

2 + x1 − 7)2, x1, x2 ∈ [−3, 3] (14)
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Four-dimension function (4-d) [34]:

f (x) =
2
3

ex1+x2 − x4 sin(x3) + x3, x1, x2, x3, x4 ∈ [0, 1] (15)

Six-dimension function (6-d):

f (x) = 0.05 ∗ (
6

∑
i=1

(xi + x2
i + x3

i + x4
i ) +

5

∑
i=1

6

∑
j=i+1

xixj) + 0.5 (16)

where x = (x1, x2, x3, x4, x5, x6) and xi ∈ [−1, 1], i = 1, · · · , 6.

Figure 5. Procedures of adaptive Gaussian process.

In the domain of function definition, initial training samples of ADGP are obtained
by the Latin Hypercube Sampling (LHS) method. The numbers of initial training samples
and the thresholds for the three function experiments are given in Table 2, where n0 and nt
are the numbers of initial and total training samples, respectively. Figure 6 presents the
convergence history of the maximum acquisition function facq,max, where N means the iter-
ation counter. Starting from the initial training samples, facq,max decreases, demonstrating
the exploitation phase of adaptive sampling and that the prediction accuracy of ADGP is
gradually improved.

Table 2. Parameters of the function experiments.

n0 ε nt

2-d 6 0.02 36
4-d 12 0.05 66
6-d 16 0.15 66
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Figure 6. Convergence history of the maximum acquisition function.

To compare the prediction accuracy of different surrogate models, for each function
experiment, the same number of training samples are generated by LHS for static GP and
adaptive NIPC. The principles and procedures of an adaptive NIPC based on a sparse grid
sampling technique have already been introduced in previous studies [15,35]. In the study,
after trying polynomials of different orders, seven-order polynomials are used, and the
numbers of total samples are maintained with those of ADGP. Moreover, a large number of
points are selected in the function domain and used as the test samples for assessing the
prediction accuracy of surrogate models. The prediction accuracy is measured by mean
absolute percentage error (MAPE), the definition of which is given as

MAPE =
1
n

n

∑
i=1

∣∣∣∣ fi,model − fi,exact

fi,exact

∣∣∣∣× 100% (17)

where fi is the prediction of i-th sample, n is the number of test samples, the subscripts
model and exact represent model prediction and exact values, respectively.

Table 3 shows the MAPE of the three models, where GP and ANIPC are static GP and
adaptive NIPC, respectively. It is obvious that compared with static GP and ANIPC, the
prediction accuracy of ADGP is higher in all three function experiments using the same
number of training samples. Moreover, the prediction accuracy of both static GP and ADGP
is higher than that of ANIPC, demonstrating that machine learning is useful in improving
the prediction accuracy of the surrogate models.

Table 3. MAPE of different function experiments by the surrogate models.

2-d 4-d 6-d

GP 10.594 8.873 4.933
ADGP 1.764 4.248 3.760
ANIPC 216.7 683.2 194.2

To better distinguish the difference of sample distributions in the same function
domain, Figure 7 shows the original two-dimensional function and the distributions of
training samples. Compared with the sample distribution of both static GP and ADGP,
the samples of adaptive NIPC are concentrated in the adjacent region of maximum value.
That is because the new sparse grids are produced by a simple interpolation method,
and more grids are required to reduce the interpolation error near the maximum value.
In Figure 7d, the red and black points are the initial and adaptively generated training
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samples, respectively. Compared with the agglomerative sample distribution of adaptive
NIPC, the samples of ADGP are more uniformly distributed on the boundaries.

Figure 7. Sample distributions of the 2-d function experiments: (a) function; (b) static GP; (c) adaptive
NIPC; (d) ADGP.

3.4. ADGP for Aerodynamic Parameters

In the following, ADGP will be used for predicting the aerodynamic performance of
the turbine cascade, as shown in Figure 1. The compounded effects of inlet flow angle,
inlet total pressure, and turbulence intensity are taken into account. For each performance
parameter of total pressure-loss coefficient ζ, outflow angle β, and Zweifel number Zw,
the corresponding surrogate model based on ADGP will be trained. Following the same
procedures as shown in Figure 5, eight initial training samples are used. The threshold of
the acquisition function is 0.1 for ζ and β, while it is 0.01 for Zw. Notice that all the training
samples are generated in the same space as mentioned before, i.e., the uncertainty is 10%
for inlet total pressure and inlet flow angle, and it is 60% for inlet turbulence intensity.

Figure 8 shows the convergence histories of facq,max for the three performance pa-
rameters. After 10, 4, and 3 iterations, the maximum acquisition function of ζ, β and Zw,
respectively, decreases to below the corresponding threshold. The total sample numbers
are 28, 16, and 14 for training the ADGP models of ζ, β and Zw, respectively. The samples
necessary for training the ADGP models of β and Zw are much less than those of ζ. It is
mainly attributed to the more weakened nonlinear dependence of β and Zw on the inlet
flow variations, as shown in Figure 3b,c. As shown in Figure 3a, ζ is nonlinearly dependent
on the inlet flow variations. It thus requires more training samples for model training.
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Figure 8. Convergence history of the maximum acquisition function.

Again, the prediction accuracy of the ADGPs is evaluated by several test samples. Four
thousand test samples agreeing with the following Gaussian distribution are generated,
which will also be used in the following UQ studies.

f (ξ) =


1√
2π

exp(− ξ2

2
), ξ ∈ [−E, E]

0, otherwise
(18)

where E is the truncation boundary and E = 2.0 in the study, ξ is the scaled uncertainty
variable satisfying the normal Gaussian distribution with the definition:

ξ =
x− xre f

σx
(19)

where x is the universal uncertainty variable considered in the study (inlet flow angle, inlet
total pressure, inlet turbulence intensity), xre f is the reference value under the baseline
operation condition, which equals the statistical mean of x, σx represents the standard
deviation of uncertainty variable x. In the present study, the standard deviations are
5, 5, and 30 for the relative variations of inlet flow angle, inlet total pressure, and inlet
turbulence intensity, respectively. In such situations, the maximum relative variations of
inlet flow angle, inlet total pressure, and inlet turbulence intensity are 10%, 10%, and 60%,
respectively.

Performance parameters of each test sample are predicted by the corresponding ADGP.
Then MAPE is calculated and shown in Table 4. The prediction accuracy of all ADGPs is
high enough, and they can be used in the following UQ studies.

Table 4. MAPE of performance prediction by ADGP.

Parameter MAPE(%)

ζ 0.2420
β 0.0062

Zw 0.0089
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4. Results and Discussion
4.1. Uncertainty Quantification and Statistical Analysis

Due to the limitations of long-term experimental measurement, no exact distribution
can be found so far to describe the inlet flow variations in the real world. In this study, the
inlet flow variations of the turbine cascade are assumed to meet the Gaussian distribution,
as shown by Equation (18).

Before assessing the performance changes due to inlet flow variations using ADGPs,
statistical analysis using MCS is conducted, by which the exact statistical mean and standard
deviation can be obtained. The group of 4000 test samples used for calculating MAPE, as
shown in Table 4, is used in the present MCS-based statistical analysis. Figure 9 shows the
convergence history of MCS-based statistics including the mean µ and standard deviation
σ of ζ, β and Zw. When the number of test samples exceeds 3000, the statistics remain
almost unchanged. The converged statistics obtained by MCS will be regarded as the exact
ones in the following study.

Figure 9. Convergence history of MCS-based statistics: (a) ζ; (b) β; (c) Zw.

Using the ADGPs trained by the samples as shown in Figure 8, the performance
parameters of all the four thousand test samples can be rapidly calculated, and the statistical
mean and standard deviation of ζ, β and Zw can be subsequently determined. Table 5
gives the statistics µ∆ f and σ∆ f of performance changes, where ∆ f represents the relative
variation of performance parameter. Meanwhile, the relative deviations between the ADGP-
based statistics and the MCS-based ones, εµ and εσ, are also calculated and given in the
table. The relative deviations of all statistics are small, demonstrating satisfied prediction
accuracy of ADGPs for the quantifications of performance changes in the turbine cascade.
Moreover, it can be concluded that the outflow angle is rather insensitive to inlet flow
variations because the statistical mean and standard deviation of outflow angle change
are almost zero. The total pressure-loss coefficient and Zweifel number are comparatively
more sensitive to inlet flow variations. As we know, the standard deviation is widely used
to evaluate the dispersion of performance parameters. From the results, it can be known
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that the Zweifel number is the most dispersive, while the outlet flow angle is the most
assembled.

Table 5. Statistics obtained by ADGP and the relative deviation from the MCS results.

Parameter µ∆ f (%) σ∆ f (%) εµ(%) εσ(%)

ζ 4.943 × 10−2 1.759 −3.797 × 10−2 2.403
β −4.656 × 10−3 0.162 7.602 × 10−4 −2.231

Zw 1.112 × 10−1 3.080 3.747 × 10−4 0.178

Figure 10 gives the probability density function (PDF) of performance parameters
determined from the four thousand test samples. Meanwhile, the Gaussian distributions
with the same statistical mean and standard deviation are also given in the figures. From
the distributions, it can be observed that the PDFs of ∆ζ and ∆β obtained by ADGP are
slightly left skewed, demonstrating weak nonlinear dependence of total pressure-loss
coefficient and outlet flow angle on inlet flow variations. By contrast, the PDF of ∆Zw
obtained by ADGP is close to the Gaussian distribution, demonstrating that the Zweifel
number is almost linearly dependent on inlet flow variations. In fact, the linear dependence
of Zweifel number on inlet flow parameters can also be found in Figure 3c, where Zw
exhibits linear variations in the variation ranges of inlet flow angle, inlet total pressure, and
turbulence intensity.

Figure 10. PDF distributions of: (a) ζ; (b) β; (c) Zw.

Statistical analysis of the flow field has been proven to be able to further uncover the
sources of uncertainty performance impact and the impact mechanisms [36,37]. In the
study, the flow fields of the four thousand test samples are collected, based on which the
means and standard deviations of all the interested flow variables of the turbine cascade
can be obtained. Most of the time, the statistics of the relative variations of flow variables
compared to the flow field under the reference flow conditions are useful to uncover the
impact mechanisms.
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From the results shown in Figure 4, it can be observed that flow transition on the
suction side of the turbine cascade is sensitive to the inlet flow variations, which is quite
possibly the main source of the uncertain variations of flow losses. Figure 11 illustrates
the contours of the statistical mean and standard deviation of the relative variation of
intermittency factor ∆γ, the definition of which is:

∆γ =
γ− γre f

γre f + δ
× 100% (20)

where δ is a tiny number, and the subscript re f denotes the reference value. The figures
clearly show that the suction flow transition is indeed the most sensitive to inlet flow
variations because the standard deviation near the wall of the suction side is much higher,
as shown in Figure 11b. Moreover, as shown in Figure 4a, flow transition occurs at the
position downstream x = 0.188(x/cx = 0.73). Figure 11a shows that the mean flow
transition slightly moves upstream when considering uncertainty impact, which results in
the increase of flow losses.

Figure 11. Contours of the statistics of relative variation of intermittency factor: (a) mean; (b) standard
deviation.

To further uncover the impact mechanisms, the variations of flow solutions on the
suction side of the turbine cascade are given in Figure 12. This figure gives the distributions
of statistical mean and standard deviation of the relative variation of viscous shear stress
∆τ, the definition of which is:

∆τ =
τ − τre f

τre f + δ
× 100% (21)

Figure 12. Distributions on the suction side of the statistics of the relative variation of viscous shear stress.
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Because of the variation of inlet angle, the cascade meets the strike from a different
direction of the flow, which obviously influences the flow acceleration at the leading edge
and results in a small peak of the statistics of ∆τ near the leading edge. It can be found
that on the suction side, the statistics of ∆τ rapidly increase on the portions downstream
x/cx = 0.6 (x = 0.186) and reach the peaks at about x/cx = 0.9 (x = 0.191). The results
shown in Figures 11 and 12 demonstrate that the inlet flow variations have a strong impact
on the variations of flow transition and, thus, viscous shear stress.

4.2. Sobol Sensitivity Analysis

In the above UQ studies, the compounded influence of three different inlet flow
parameters is considered. To distinguish the influence of each inlet flow parameter on
performance changes in the turbine cascade, Sobol sensitivity analysis [38] is carried out.
The principle of Sobol sensitivity analysis is briefly introduced in the following.

Suppose Y is a scalar output depending on the input x = (x1, x2, · · · , xnd).

Y = f (x1, x2, · · · , xnd) (22)

where nd is the dimensionality of the input. By calculating Vxi (Ex∼i (Y|xi)), we can obtain
the first-order effect about xi, where x∼i means the input vector without the i-th component
and V means the variance. Correspondingly, the first-order sensitivity index of xi is:

Si =
Vxi (Ex∼i (Y|xi))

V(Y)
(23)

The total sensitivity index of xi consists of the sum of the first and higher order
sensitivities about xi. In addition, the coupled effects of two components, xi and xj, can be
evaluated using a second-order sensitivity index.

Sij =
1

V(Y)

[
Vxixj(Ex∼ij(Y|xi, xj))−Vxi (Ex∼i (Y|xi))−Vxj(Ex∼j(Y|xj))

]
(24)

The sensitivities satisfy the following relationships:

STi = Si +
nd

∑
j 6=i

Sij + · · ·+ S1,2,i,...,nd (25)

nd

∑
i=1

Si +
nd

∑
i<j

Sij + · · ·+ S12...nd = 1 (26)

Figure 13 shows the total sensitivities (STs) of performance parameters to each inlet
flow parameter. For the total pressure-loss coefficient, the contributions of the three inlet
flow parameters to performance change are similar, indicating that the performance impact
of each inlet flow parameter needs to be considered. For the outflow angle, the total
sensitivity to inlet total pressure is close to 1.0, indicating that the variation of inlet total
pressure plays a dominant role in influencing the outflow angle. In Figure 13c, similar
results can be found for the Zweifel number. The variation of Zw is dominantly attributed
to the inlet total pressure variation. Moreover, the impact of the inlet flow angle on Zw
variation also needs to be considered.
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Figure 13. Total sensitivity index: (a) ζ; (b) β; (c) Zw.

Further understanding of the approximately equivalent impact of inlet flow angle,
inlet total pressure, and inlet turbulence intensity on the variations of ζ can be found in
Figure 3a. In the relative variation range of each inlet flow parameter, ζ exhibits evident
monotonic variation. Considering the impact of inlet flow angle and inlet total pressure,
the absolute maximum relative change in ζ is about 3.5%, while it is about 3% considering
the effects of inlet turbulence intensity. These results illustrate that the contributions of the
three inlet flow parameters to the variations of ζ are almost the same. To better understand
the discrepant STs as shown in Figure 13b,c, Figure 14 presents the pressure distributions
on the blade. It is the most distinct that even considering the effects of maximum relative
variations of inlet turbulence intensity, i.e., ∆Tu = ±60%, the pressure distributions are
almost duplicates of those under the reference condition, indicating that, under the inlet
turbulence intensity variation, it is hard to significantly change the outflow angle and
Zweifel number. That is why the STs of β and Zw with respect to Tu are almost zero.
Moreover, in the case of ∆Pt,in = +10%, the loading is significantly higher than that under
the reference condition, while it is significantly lower in the case of ∆Pt,in = −10%. The
results demonstrate that the inlet total pressure variation can significantly change the
outflow angle and Zweifel number. That is why the STs of β and Zw with respect to Pt,in
are the largest. Moreover, Figure 14a illustrates the moderate influence of inlet flow angle
variation on loading change, from which it is known that the ST of Zw with respect to α is
also moderate, as shown in Figure 13c. However, the ST of β with respect to α is almost
zero, which requires further investigation.

Figure 14. Pressure distributions on the blade considering the effects of: (a) α; (b) Pt,in; (c) Tu.
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Figure 15 shows the second-order sensitivities (S2s) of performance parameters to
pairwise inlet flow parameters, such as α-Pt,in, α-Tu, Pt,in-Tu. From Figure 15a,b, it is known
that the coupled effects of Pt,in-Tu on total pressure-loss coefficient and outlet flow turning
are strong, although Tu alone has almost no impact on outlet flow turning. The results
demonstrate that when the impact of inlet total pressure and turbulence intensity are
considered simultaneously, the variation of outlet flow angle is considerable. Moreover,
although Pt,in alone has a strong impact on outlet flow angle and Zweifel number, the cou-
pled effects of α-Pt,in on the variations of outlet flow angle and Zw are weak. Furthermore,
the coupled effects of Pt,in-Tu on the variation of Zw are almost invisible.

Figure 15. Second-order sensitivity index: (a) ζ; (b) β; (c) Zw.

5. Conclusions

The paper investigates the performance impact of uncertain inlet flow variations of an
LPT cascade using an adaptive Gaussian process. First, flow simulations of the LPT cascade
are conducted by solving the RANS equations, SST turbulence model, and transition
equations. Through a careful grid-independent study, the converged flow solutions and
the grid are specified. Then, the principles of the ADGP are introduced, and the prediction
performance is verified and validated. These methods are used in the uncertainty impact
study. The main conclusions are as follows:

(1) By comparing the methods of adaptive NIPC and GP with static sampling, the pre-
diction accuracy of ADGP introduced in the study is proved to be higher through a
function experiment. The machine-learning-based model training can find the optimal
hyperparameters. The ADGP is then further verified and validated by accurately
predicting the performance parameters of an LPT cascade.

(2) For this LPT cascade, the total pressure-loss coefficient and Zweifel number are
sensitive to the uncertain variations of inlet flow parameters, while the outlet flow
angle is almost insensitive to the uncertainties. Statistical analysis of the flow field
demonstrates that flow transition on the suction side of the LPT cascade and the
viscous shear stress are rather sensitive to uncertainties, which can be regarded as the
main sources of the increased mean flow losses and performance dispersion.

(3) By the Sobol method, the effects of each uncertainty on performance changes are quan-
tified by sensitivities. The contributions of each inlet flow parameter variation to the
changes in the total pressure-loss coefficient are almost the same. However, most of
the changes in outlet flow angle and Zweifel number are attributed to the variation of
inlet total pressure. For this LPT cascade, the contributions of the pairwise uncertain-
ties to performance changes are quite different. The impact on performance changes
may be strengthened or weakened, considering the effects of pairwise uncertainties.
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NIPC non-intrusive polynomial chaos
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