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Abstract: Aiming at the attack and defense game problem in the target-missile-defender three-body
confrontation scenario, intelligent game strategies based on deep reinforcement learning are proposed,
including an attack strategy applicable to attacking missiles and active defense strategy applicable to
a target/defender. First, based on the classical three-body adversarial research, the reinforcement
learning algorithm is introduced to improve the purposefulness of the algorithm training. The action
spaces the reward and punishment conditions of both attack and defense confrontation are considered
in the reward function design. Through the analysis of the sign of the action space and design of the
reward function in the adversarial form, the combat requirements can be satisfied in both the missile
and target/defender training. Then, a curriculum-based deep reinforcement learning algorithm is
applied to train the agents and a convergent game strategy is obtained. The simulation results show
that the attack strategy of the missile can maneuver according to the battlefield situation and can
successfully hit the target after avoiding the defender. The active defense strategy enables the less
capable target/defender to achieve the effect similar to a network adversarial attack on the missile
agent, shielding targets from attack against missiles with superior maneuverability on the battlefield.

Keywords: target-missile-defender engagement; three-body game; curriculum learning; deep
reinforcement learning; intelligent game; active defense

1. Introduction

In recent years, with the development of weapons technology, offensive and defensive
confrontation scenarios have become increasingly complex. The traditional one-to-one
game problem is also difficult to keep up with the trend of battlefield intelligence. In various
new studies, both sides of the confrontation continuously adopt new game strategies
to gain battlefield advantages. Among them, the target-missile-defender (TMD) three-
body engagement triggered by active target defense has attracted increasing research
interest [1–7]. In a typical three-body confrontation scenario, three types of vehicles are
involved: the target (usually a high-value vehicle such as an aircraft or ballistic missile),
an attacking missile to attack the target, and a defender missile to intercept the attacking
missile. This combat scenario breaks the traditional pursuit-evasion model with greater
complexity and provides more possibilities for battlefield games.

The early classical studies of the three-body confrontation problem mainly started
from the spatial-geometric relationship. The researchers achieved the goal of defending the
target by designing the spatial position of the defender with the target and the attacking
missile (e.g., in the middle of the target and the missile). From the line-of-sight (LOS) guid-
ance perspective, a guidance strategy for a defender guarding a target was investigated
that enables the defender to intercept an attacking missile at a speed and maneuverability
disadvantage [8]. Triangle intercept guidance is also an ingenious guidance law based on
the idea of LOS command guidance [9]. In order to avoid the degradation of system perfor-
mance or the need for additional high-resolution radar assistance due to reduced angular
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resolution at longer distances, a simpler gain form of the LOS angular rate was derived
by optimal control, reducing the capability requirements of the sensing equipment [10,11].
Nonlinear control approaches, such as sliding mode control, can also achieve the control of
LOS rotation [12].

The more dominant research idea for the three-body problem is by means of optimal
control or differential game. The difference between the two is that the guidance law
based on the optimal control theory needs to know the opponent’s control strategy in
advance. Although the reliance on a priori information for one-sided optimization can
be reduced by sharing information between the target and the defender [13], there are
problems such as difficulties in applying numerical optimization algorithms online. In
contrast, differential game has received more widespread attention as it does not require
additional assumptions about the opponent’s strategy [14,15]. The differential game can
obtain the game strategy of the two opponents by finding the saddle point solution, and
under the condition of accurate modeling, it can guarantee the optimality of the strategy
against the opponent’s arbitrary maneuver [16–18]. Considering the drawback that the
control of linear quadratic differential game guidance law may go beyond the boundary,
the bounded differential game is proposed and verified on a two-dimensional plane and
in three-dimensional space [19,20]. The differential game approach can also be applied
to analyze the capture and escape regions and the Hamilton–Jacobi–Isaacs equation can
be solved to demonstrate the consistency of the geometric approach with the optimal
control approach [21–24]. Based on the analysis of the capture radius, the game can be
divided into different stages and the corresponding control strategies can be proposed
and the conditions of stage switching are analyzed [25,26]. In addition, in order to be
closer to the actual battlefield environment, recent studies have considered the existence
of strong constraint limits on capability boundaries [27], state estimation under imperfect
information through Kalman filtering [28], the existence of the relative intercept angle
constraints on attacking requirements [17,29,30], cooperative multi-vehicle against an
active defense target [17,31], weapon-target-allocation strategies [32], and so on.

The existing studies basically must use the model’s linearization and order reduction
as the basis to derive a guidance law that satisfies certain constraints and performance
requirements. To simplify the derivation, the vehicles are often assumed to possess ideal
dynamics [33,34]. However, as participating vehicles adopt more advanced game strate-
gies, the battlefield becomes more complex and the linearization suffers from significant
distortion under intense maneuvering confrontations.

Deep reinforcement learning (DRL) developed in recent years has good adaptability
to complex nonlinear scenarios and shows strong potential in the aerospace field [35],
such as applying DRL to the attitude control of hypersonic vehicles [36], design of missile
guidance laws [37,38], asteroid landing [39,40], vehicle path planning [41], and other issues.
In addition, there have been many studies applying DRL to the pursuit-evasion game
or TMD engagement. The problem of the cooperative capture of an advanced evader by
multiple pursuers was studied in [42] using DRL, which is difficult for differential game or
optimal control in such a complex uncertain environment. In [43], the researchers applied
reinforcement learning algorithms to a particle environment where the attacker was able to
evade the defender and eventually capture the target, showing better performance than
traditional guidance algorithms. The agents in [42] and [43] all have ideal dynamics with
fewer constraints relative to the real vehicle. In [44], from the perspective of the target,
reinforcement learning was applied to study the timing of target launching defenders,
which has the potential to be solved online. Deep reinforcement learning was also utilized
for the ballistic missile maneuvering penetration and attacking stationary targets, which
can also be considered as a three-body problem [6,45]. In addition, adaptive dynamic
programming, which is closely related to DRL, has also attracted extensive interest in
intelligent adversarial games [46–50]. However, the system models studied so far are
relatively simple and few studies are applicable to complex continuous dynamic systems
with multiple vehicles [51,52].
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Motivated by the previous discussion, we apply DRL algorithms to a three-body
engagement and obtain intelligent game strategies for both offensive and defensive con-
frontations, so that both an attacking missile and target/defender can combine evasion and
interception performance. The strategy for the attacking missile ensures that the missile
avoids the defender and hits the target; the strategy for the target/defender ensures that
the defender intercepts the missile before it threatens the target. In addition, the DRL-based
approach is highly adaptable to nonlinear scenarios and, thus, has outstanding advantages
in further solving more complex multi-body adversarial problems in the future. However,
there also exists a gap between the simulation environment and the real world when ap-
plying DRL approaches. Simulation environments can improve sampling efficiency and
alleviate security issues, but difficulties caused by the reality gap are encountered when
transferring agent policies to real devices. To address this issue, research applying DRL
approaches to the aerospace domain should focus on the following aspects. On the one
hand, sim-to-real (Sim2Real) research is used to close the reality gap and thus achieve
more effective strategy transfer. The main methods currently being utilized for Sim2Real
transfer in DRL include domain randomization, domain adaptation, imitation learning,
meta-learning, and knowledge distillation [53]. On the other hand, in the simulation phase,
the robustness and generalization of the proposed methods should be fully verified. In the
practical application phase, the hardware-in-the-loop simulation should be conducted to
gradually improve the reliability of applying the proposed method to real devices.

In order to assist the DRL algorithm to converge more stably, we introduce curriculum
learning into the agent training. The concept of curriculum learning was first introduced at
the top conference International Conference on Machine Learning (ICML) in 2009, which
caused a great sensation in the field of machine learning [54]. In the following decade,
numerous studies on curriculum learning and self-paced learning have been proposed.

The main contributions of this paper are summarized as follows.

(1) Combining the findings of differential game in the traditional three-body game with
DRL algorithms enables agent training with clearer direction, while avoiding inaccura-
cies due to model linearization, and better adapts to complex battlefield environments
with stronger nonlinearity.

(2) The three-body adversarial game model is constructed as a Markov Decision Pro-
cess suitable for reinforcement learning training. Through analysis of the sign of
the action space and design of the reward function in the adversarial form, the
combat requirements of evasion and attack can be balanced in both missile and
target/defender training.

(3) The missile agent and target/defender agent are trained in a curriculum learning
approach to obtain intelligent game strategies for both attack and defense.

(4) The intelligent attack strategy enables the missile to avoid the defender and hit the
target in various battlefield situations and adapt to the complex environment.

(5) The intelligent active defense strategy enables the less capable target/defender to
achieve an effect similar to network adversarial attack on the missile agent. The
defender intercepts the attacking missile before it hits the target.

The paper is structured as follows. Section 2 introduces the TMD three-body engage-
ment model and presents the differential game solutions solved on the basis of linearization
and order reduction. In Section 3, the three-body game is constructed as a Markov Decision
Process with training curricula. In Section 4, the intelligent game strategy for the attacking
missile and the intelligent game strategy for the target/defender are solved separately using
curriculum-based DRL. The simulation results and discussion are provided in Section 5, an-
alyzing the advantages of the proposed approach. Finally, some final remarks are provided
as a conclusion in Section 6.
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2. Dynamic Model of TMD Engagement
2.1. Nonlinear Engagement Model

The TMD three-body engagement involves an offensive and defensive confrontation,
including an attacking missile (M) on one side and a target (T) and a defender (D) on
the other side. The mission of the missile is to attack the target, but the defender will be
launched by the target or other platforms to intercept the missile, so the missile is required
to evade the defender by maneuvering before attempting to hit the target. The mission of
the target/defender is the opposite. In general, the target is weak in maneuvering and has
difficulty avoiding being hit by the missile through traditional maneuvering strategies, so
the target adopts an active defense strategy of firing the defender to intercept the missile and
survive in the battlefield. The engagement geometry of the TMD three-body confrontation
in the inertial coordinate system XIOYI is shown in Figure 1.
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Figure 1. Three-body confrontation engagement geometry.

As shown in Figure 1, the nonlinear engagement model of missile-target and missile-
defender can be represented as{ .

rM i = −Vi cos(γi + λM i)−VM cos(γM − λM i).
λM i =

Vi sin(γi+λM i)−VM sin(γM−λM i)
rM i

(1)

where M stands for the missile and i represents the target or defender, i.e., i ∈ {T, D}.
The rate of change of flight path angle can be expressed as

.
γj =

aj

Vj
, j ∈ {M, T, D} (2)

The dynamics model of each vehicle can be represented by a linear equation of arbitrary
order as

xj = Ajxj + Bjuj, j ∈ {M, T, D}
aj = Cjxj + djuj, j ∈ {M, T, D} (3)

where xj represents the internal state variables of each vehicle and uj is the corresponding
control input.
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2.2. Linearization and Zero-Effort Miss

The three-body engagement generally occurs in the end-game phase, when the relative
speeds of the offensive and defensive confrontations are large, the engagement time is short,
and the speed of each vehicle can be approximated as a constant. According to [55], by
linearizing the engagement geometry near the initial lines of sight and applying differential
game theory, the optimal control of each vehicle under a quadratic cost function can be
found as 

u∗T = NT1
t2
go1

Z1(t) +
NT2
t2
go2

Z2(t)

u∗D = ND1
t2
go1

Z1(t) +
ND2
t2
go2

Z2(t)

u∗M = NM1
t2
go1

Z1(t) +
NM2
t2
go2

Z2(t)

(4)

where Z1(t) is the zero-effort miss of missile and target and Z2(t) is the zero-effort miss
of defender and missile. The coefficients Nj1 and Nj2 (j ∈ {M, T, D}) represent the ef-
fective navigation gains. The time-to-go between the missile/target pair and the de-
fender/missile pair are donated by tgo1 and tgo2, respectively. The time-to-go can be
calculated by tgo1 = t f 1 − t and tgo2 = t f 2 − t, where the interception time is defined as.{

t f 1 = rMT0/[VM cos(γM0 + λMT0) + VT cos(γT0 − λMT0)]
t f 2 = rMD0/[VM cos(γM0 + λMD0) + VD cos(γD0 − λMD0)]

(5)

We assume that the engagement of the attacking missile M with the defender D
precedes the engagement of the attacking missile M with the target T, i.e., t f 1 and t f 2 satisfy
t f 1 − t f 2 > 0 in the timeline. This is because, once the missile hits or misses the target, it
means that the game is over and the defender no longer needs to continue the engagement.

To derive the expression for the zero-effort miss in Equation (4), we assume that the
dynamics of the vehicle in Equation (3) are modeled as a first-order system with a time
constant of τi. Therefore, choosing the state variables as x = [yMi,

.
yMi, ai, aM]

T , the equation
of motion for the missile to engage the target or defender can be expressed as

.
x=Ax+Bui + CuM, i ∈ {T, D} (6)

where

A =


0 1 0 0
0 0 cos θMi − cos θi
0 0 −1/τi 0
0 0 0 −1/τM


B =

[
0 0 1/τi 0

]T

C =
[

0 0 0 1/τM
]T

(7)

In Equation (7), the angles between the acceleration and the lines of sight are donated
by θMi and θi, which can be expressed by the flight path angle and the line of sight angle.
Using the terminal projection transformation of the linear system, the zero-effort miss Z1
and Z2 can be expressed as

Z1(t) = LΦ(t f 1, t)x
Z2(t) = LΦ(t f 2, t)x

(8)

where L =
[
1 0 0 0

]
is the coefficient matrix and Φ(t f , t) = L−1

[
(sI−A)−1

]
is the

state transition matrix. The derived zero-effort miss will be used for the training of the
DRL agents, the details of which are presented in Section 3. Up to this point, the only
undetermined quantity left in Equation (4) is the effective navigation ratios, which will
become the optimization variable for DRL.
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3. Curriculum-Based DRL Algorithm

Applying the deep reinforcement learning algorithm to the TMD engagement scenario
consists of the following steps. First, the engagement environment is constructed based on
the dynamics model, which was outlined in Section 2. Next, the environment is constructed
as a Markov decision process, which includes action selection, redirection shaping, and
observation selection. This needs to be carefully designed taking full account of the
dynamics of the missile and the target/defender. Finally, there is a learning curriculum to
ensure training stability.

3.1. Deep Reinforcement Learning and Curriculum Learning

Reinforcement learning, as a branch of machine learning, has received a lot of attention
from researchers in various fields in recent years. Classical reinforcement learning is used
to solve the Markov Decision Process (MDP) of dynamic interaction between an agent and
the environment, which consists of a quintuple < S, A, P, R, γ >, where S and A denote the
state space and action space, P : S× A→ S denotes the probability matrix of state transfer,
R : S× A× S→ [rmin, rmax] denotes the immediate reward, and γ ∈ [0, 1] denotes the
reward discount factor. In the MDP, the immediate reward and the next state only depend
on the current state and action, which is called Markov property. The solving process of a
dynamic system through the integral is essentially consistent with the MDP.

Benefiting from the rapid development of deep learning, reinforcement learning has
achieved abundant achievements in recent years and developed into deep reinforcement
learning. However, DRL is often plagued by reward sparsity and excessive action-state
space in training. In the TMD engagement, we are concerned with the terminal miss
distance and not with the intermediate processes. Therefore, the terminal reward in the
reward function dominates absolutely, which is similar to the terminal performance index
in the optimal control problem. Thus, the reward function in the guidance problem is
typically sparse, otherwise the dense intermediate reward may lead to speculative strategies
that the designer does not expect. Furthermore, despite the clear problem definition and
optimization goals, the nearly infinite action-state space and the huge random initial
conditions still pose obvious difficulties for the agent training. In particular, random
conditions such as the position, speed, and heading error of each vehicle at the beginning
of the engagement add uncertainty to the training.

To solve this problem, we use a curriculum learning approach to ensure the steady
progress of training. The learning process of humans and animals generally follows a
sequence from easy to difficult and curriculum learning draws on this learning idea. In
contrast to the general paradigm of indiscriminate machine learning, curriculum learning
mimics the process of human learning by proposing that models start with easy tasks
and gradually progress to complex samples and knowledge [56,57]. Curriculum learning
assigns different weights to the training samples of different difficulty levels according
to the difficulty of the samples. Initially, the highest weights are assigned to the easy
samples and, as the training process continues, the weights of the harder samples will be
gradually increased. Such a process of dynamically assigning weights to samples is called a
Curriculum. Curriculum learning can accelerate training and reduce the training iteration
steps while achieving the same performance. In addition, curriculum learning enables the
model to obtain better generalization performance, i.e., it allows the model to be trained to
a better local optimum state. We will start with simple missions in our training, so that the
agent can easily obtain the sparse reward at the end of an episode. Then, the random range
of the initial conditions will be gradually expanded to enable the agent to eventually cope
with the complex environment.

In the following, we will construct an MDP framework for the TMD engagement,
consisting of action selection, reward shaping, and observation selection. The formulation
requires adequate consideration of the dynamic model properties, as these have a significant
impact on the results.
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3.2. Reward Shaping

For the design of the reward function, consider the engagement as the process of the
confrontation game between the missile and the target/defender and the advantage of
one side on the battlefield is correspondingly expressed as the disadvantage of the other
side. Therefore, the reward function should reflect the combat intention of both sides of the
game, including positive rewards and negative penalties and, accordingly, the rewards and
penalties of one side show the punishments and rewards of the other side. We design the
following two forms of reward functions:

f1(x) = e−β1|x| + e−β2|x|

f2(y) = α[(y ≤ R1) + (y ≤ R2) + (y ≤ R3)]
(9)

where f1 is assigned to indicate an intermediate reward or penalty in an episode and
f2 is assigned to indicate a terminal reward or penalty near the end of an episode. The
function f1 adopts an exponential form that rises exponentially as x approaches zero. The
parameters β1 and β2 regulate the rate of growth of the exponential function. The general
idea is to obtain continuously varying dense rewards through the exponential function.
However, this results in a poor differentiation of the cumulative rewards between different
policies and thus affects policy updates. We eventually set the reward to vary significantly
as x approaches 0, meaning that this will be a sparse reward. The basis of the differential
game formulation reduces the difficulty of training and ensures that the agent completes
training with sparse rewards. For both the missile and the target/defender, x can be chosen
as either the distance or the zero-effort miss. Note that using the zero-effort miss in the
reward function imposes no additional requirements on the hardware equipment of the
guidance system, as this is only used for off-line training. The function f2 adopts a stairs
form and R1, R2, and R3 are the quantities associated with the kill radius.

3.3. Action Selection

According to the derived Equation (4), when training the missile agent, the action is
chosen as a two-dimensional vector [NM1, NM2]; when training the target/defender agent,
the action is chosen as a four-dimensional vector [NT1, NT2, ND1, ND2].

Further analysis of Equation (4) reveals that each term in the control law is precisely
in the form of the classical proportional navigation guidance law [58]. Thus, each of the
effective navigation gains have the meaning in Table 1. Beyond the effective time, that is,
after the engagement between the missile and the defender, the corresponding gains are set
to zero.

Table 1. Meanings of the effective navigation gains.

Gain Meaning Effective Time

NM1 Responsible for pursuing the target, i.e., decreasing Z1(t) t < t f 1
NM2 Responsible for avoiding the defender, i.e., increasing Z2(t) t < t f 2
NT1 Responsible for avoiding the missile, i.e., increasing Z1(t) t < t f 1
NT2 Responsible for assisting the defender in pursuing the missile, i.e., decreasing Z2(t) t < t f 2
ND1 Responsible for assisting the target in avoiding the missile, i.e., increasing Z1(t) t < t f 1
ND2 Responsible for pursuing the missile, i.e., decreasing Z2(t) t < t f 2

To further improve the efficiency and stability of the training, we further analyze the
positive and negative of the effective navigation gains. From the control point of view, the
proportional navigation guidance law can be considered as a feedback control system that
regulates the zero-effort miss to zero. Therefore, only a negative feedback system can be
used to avoid the divergence, as shown in Figure 2a. The simplest step maneuver is often
utilized to analyze the performance of a guidance system; the conclusion that the miss
distance converges to zero with increasing flight time is provided in [58].
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Establish the adjoint system of the negative feedback guidance system, as shown
in Figure 2b. For convenience, we allow N

s G(s) to be replaced by W(s) and, from the
convolution integral, we can obtain

H(τ) =
1
τ

∫
W(x)[δ(τ − x)− H(τ − x)]dx (10)

Converting Equation (10) from time to the frequency domain, we obtain

−dH(s)
ds

= W(s)[1− H(s)] (11)

Next, integrating the preceding equation yields

1− H(s) = c exp
(∫

W(s)ds
)

(12)

When the guidance system is a single-lag system, which means that

W(s) =
N

s(1 + sT)
(13)

we can finally obtain the expression for the miss distance of the negative feedback guidance
system in the frequency domain as

MNT−
nT

(s) =
1− H(s)

s3 =
1
s3

[
s/
(

s +
1
T

)]N
(14)

Applying the final value theorem, when the flight time increases, the miss distance
will tend to zero:

lim
t→∞

MNT−
nT

(t) = lim
s→0

s
MNT−

nT
(s) = 0 (15)

which means that the guidance system is stable and controllable. Similarly, we can find the
expression of the miss distance for the positive feedback guidance system in the frequency
domain as follows

MNT+

nT
(s) =

1
s3

(
T(1 + sT)

s

)N
(16)

Again, applying the final value theorem, it can be found that the miss distance does
not converge with increasing flight time, but instead diverges to infinity

lim
t→∞

MNT+

nT
(t) = lim

s→0
s

MNT+

nT
(s) = ∞ (17)

This conclusion is obvious from the control point of view, since positive feedback
systems are generally not adopted because of their divergence characteristics. Therefore,
positive feedback is never used in proportional navigation guidance systems and the
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effective guidance gain is never set to be negative. However, now we are faced with a
situation where NM1 wants to decrease Z1, NT2 and ND2 want to decrease Z2, but NM2
wants to increase Z2 and also NT1 and ND1 want to increase Z1. Therefore, combining the
properties of negative and positive feedback systems, we set the actions NM1, NT2, and
ND2 to be positive and NM2, NT1, and ND1 to be negative.

3.4. Observation Selection

During the flight of a vehicle, not all states are meaningful for the design of the
guidance law, nor all states can be accurately obtained by sensors. Redundant observations
not only complicate the structure of the network, thus increasing the training difficulty, but
also ignore the prior knowledge of the designer. Through radar and filtering technology,
information such as distance, closing speed, line-of-sight angle, and line-of-sight angle rate
can be obtained, which are also commonly required in classical guidance laws. Therefore,
the observation of the agent is eventually selected as

O =
{

Rk,
.
Rk, λk,

.
λk

}
, k ∈ {MT, MD} (18)

It should be noted that both in training the missile agent and in training the tar-
get/defender agent, the selected observation is the O in Equation (18). The observation
does not impose additional hardware equipment requirements on the vehicle that are
capable of interfacing with existing weapons.

In addition, although the TMD engagement is divided into two phases, 0 < t < t f 2
and t f 2 < t < t f 1, the observations associated with the defender are not set to zero during
t f 2 < t < t f 1 in order to ensure the stability of the network updating.

3.5. Curricula for Steady Training

Considering the difficulty of training directly, the curriculum learning approach was
adopted to delineate environments of varying difficulty, thus allowing the agent to start
with simple tasks and gradually adapt to the complex environment. The curricula are
set to a different range of randomness for the initial conditions. The randomness of the
initial conditions is reflected in the position of the vehicle (both lateral x and longitudinal
y), the velocity V, and the flight path angle γ including the pointing error. The greater
randomness of the initial conditions implies greater uncertainty and complexity of the
environment. If the initial conditions are generated from a completely random range at the
beginning, it will be difficult to stabilize the training of the agent. The curricula are set up
to start training from a smaller range of random initial conditions and gradually expand
the randomness of the initial conditions.

Assuming that the variable σ belongs to
[
σ0, σf

]
, when the total training step reaches

s, the random range of the variable is

σ ∈
[

σf + σ0

2
+

σf − σ0

2
tanh

(
− s

sn

)
,

σf + σ0

2
+

σf − σ0

2
tanh

(
s
sn

)]
(19)

where sn is the scheduling variable for the curricula difficulty. The training scheduler is
depicted in Figure 3, from which it can be seen that the random range keeps expanding,
and, by the time the training step reaches 3sn, the random range has basically coincided
with the complete environment.

The growth rate of the range of random initial conditions is related to the difficulty
of the environment. For more difficult environments, sn is required to be larger. This
involves a trade-off between the training stability and training time consumption. For
scenarios with difficult initial conditions, the probability distribution of random numbers
can be designed to adjust the curricula. In the next training, we will choose the uniform
distribution for initialization.
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3.6. Strategy Update Algorithm

With the MDP constructed, the reinforcement learning algorithm applied to train
the agents is selected. In recent years, along with the development of deep learning,
reinforcement learning has evolved into deep reinforcement learning and has made break-
throughs in a series of interactive decision problems. The algorithms that have received
wide attention include the TD3 algorithm (Twin Delayed Deep Deterministic Policy Gra-
dient) [59], the SAC algorithm (Soft Actor Critic) [60], and the PPO algorithm (Proximal
Policy Optimization) [61]. In this study, we adopt the PPO algorithm, which is insensitive
to hyperparameters, stable in the training process, and suitable for training in dynamic
environments with continuous action spaces.

At any moment t, the agents perform actions at ∈ A based on the current observation
from sensors and the embedded trained policy πθ(at|st) , driving the dynamic system to
the next state st+1 ∈ S, and receiving the corresponding reward rt ∈ R. The interaction
process exists until the end of the three-body game, which is called an episode. The agent
and environment concurrently engender a sequence {s0, a0, r1, s1, a1, r2, s2 · · ·}, which is
defined as a trajectory.

The goal of the agent is to solve the optimal policy π?
θ to maximize the expected

cumulative discount reward, which is usually formalized by the state-value function Vπ(s)
and the state-action value function Qπ(s, a):

Vπ(s) = Eπ [
T
∑

t=0
γtR(st)

∣∣s0 = s]

Qπ(s, a) = Eπ [
T
∑

t=0
γtR(st, at)

∣∣s0 = s, a0 = a]
(20)

The advantage function is also calculated to estimate how advantageous an action is
relative to the expected optimal action under the current policy:

Aπ(s, a) = Qπ(s, a)−Vπ(s) (21)

In the PPO algorithm, the objective function expected to be maximized is repre-
sented as

LCLIP
θk

(θ) = Êt
τ∼πθk

[
min

(
rt(θ)Â

πθk
t , clip(rt(θ), 1− ε, 1 + ε)Â

πθk
t

)]
(22)
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where ε is a hyperparameter to restrict the size of policy updates and the probability ratio
is rt(θ) =

πθ(at |st)
πθk

(at |st)
. Equation (22) implies that the advantage function will be clipped if the

probability ratio between the new policy and the old policy falls outside the range (1− ε)
and (1 + ε). The probability ratio measures how different the two policies are. The clipped
objective function ensures that excessive policy updates are avoided through clipping the
estimated advantage function.

To further improve the performance of the algorithm, a value function loss term LVF(θ)
for the estimation accuracy of the critic network and an entropy maximum bonus LS(θ) for
encouraging exploration are introduced into the surrogate objective

JPPO(θ)= Ê
τ∼πθk

[
LCLIP

θk
(θ)− cv f LVF(θ) + csLS(θ)

]
(23)

where cv f and cs are corresponding coefficients. The purpose of the algorithm is to update
the parameters of the neural network to maximize the surrogate objective with respect to θ.

4. Intelligent Game Strategies
4.1. Attack Strategy for the Missile

The mission of an attacking missile is to evade the defender in flight and ultimately
hit the target. Therefore, it is important to balance the needs of both evasion and attack
during the training process, during which favoring either side will result in mission failure.

The reward function of training missile agent is designed as

rM = f1(Z1)− f1(RMD) · (Vc
MD > 0)− f2(RMD) · (Vc

MD > 0) (24)

where Vc
MD indicates the closing speed between the missile and the defender; when

Vc
MD < 0, it indicates that the distance is increasing, meaning that the confrontation be-

tween the missile and defender is over. This means that the penalty due to the defender’s
proximity to the missile is no longer available after t > t f 2.

The exponential form f1 in Equation (9) is employed as a reward to guide the missile
agent to control the zero-effort miss with the target to zero. The vehicle cannot directly measure
the zero-effort miss during flight, but choosing Z1 as the variable for the reward function does
not impose additional requirements on the detection hardware equipment. This is because
the reward function is only utilized for offline training and not for online implementation.

In addition, f1 is combined with the stairs form f2 as a penalty to guide the missile
agent to avoid the defender’s interception. The variable chosen for the penalty is the
distance between the missile and the defender RMD rather than the zero-effort miss Z2.
This is because the maneuver moment has a direct effect on the terminal miss. The missile
does not have to start maneuvering prematurely when Z2 is close to zero, which tends
to cause an unnecessary waste of energy while creating additional difficulties for later
attacking targets. A better evasion can be achieved by maneuvering when the defender
is approaching.

Using β1 = 0.05 and β2 = 0.1, the first two terms of the reward function can be plotted
as Figure 4. When the defender is far from the missile, the reward function encourages the
missile to shorten its distance from the target. As RMD decreases, the overall reward also
decreases to become negative, which means that the penalty dominates, so the missile’s
mission at this time is mainly to evade the defender. Furthermore, using α = 100, R1 = 15,
R2 = 10, and R3 = 5, the agent will receive a decisive penalty when the defender is close to
intercepting the missile.

4.2. Active Defense Strategy for the Target/Defender

The target and defender share the common mission of intercepting the incoming mis-
sile with the defender, thus ensuring the target’s successful survival. The target-defender
cooperative strategy also consists of two parts: on the one hand, the defender attempts to
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hit the incoming attacking missile and, on the other hand, the target attempts to cause the
incoming missile to miss the target as much as possible by maneuvering.
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The reward function of training target/defender agent is designed as

rTD = f1(Z2)− f1(Z1)− f2(Z1) (25)

For the target/defender, the zero-effort miss is more appropriate for the reward
function than the distance. For the defender, the purpose of the guidance is to cause the
zero-effort miss Z2 to be zero, while, for the target, the purpose of evasion is to maximize
the zero-effort miss Z1. Using β1 = 0.05 and β2 = 0.1, the first two terms of the reward
function will be the same as in Figure 4, except that Z1 is replaced by Z2 and RMD is
replaced by Z1. When Z1 is small, it means that the target and the missile are already in
the intercept triangle, which is extremely detrimental to the target’s survival, so the overall
reward then decreases to a negative value. When Z1 is relatively large, it means that the
target is safe and the purpose of the training is to improve the accuracy of the defender to
intercept the missile. Since the zero-effort miss converges faster than the distance, α = 10,
while R1, R2, and R3 are the same as in the case of training missile agent.

5. Simulation Results and Analysis
5.1. Training Setting

The random initial conditions for training are set as listed in Table 2. The initial
positions of the target and defender are randomly generated within a certain airspace and
the defender is closer to the missile than the target, thus satisfying the timeline assumption
t f 2 < t f 1. The initial position of the defender is before the target, which can be considered
as a missile launched by other platforms or as a missile launched by the target at long-
range entering the end guidance phase. The initial position of the missile is fixed because
the absolute position of each vehicle is not directly involved in the training, but only its
relative position is considered. The data for the initial conditions are samples drawn from a
uniform distribution. In other words, any value within a given interval is equally likely
to be drawn uniformly. We implement sampling via the uniform function in Python’s
random library. In terms of the capabilities of each vehicle, the attacking missile has the
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greatest available overload and the fastest response time, while the defender and target
have weaker maneuvering capabilities than the missile.

Table 2. Initial parameters for training.

Parameters Missile Target Defender

Lateral position/m 0 [3000,4000] [1500,2500]
Longitudinal position/m 1000 [500,1500] [500,1500]

Max load/g 15 5 10
Time constant 0.1 0.2 0.3

Flight path angle/(◦) λMT ± 20 0 λMD ± 20
Velocity/(m · s−1) [250,300] [150,200] [250,300]

Kill radius/m 5 — 5

The training algorithm adopts the PPO algorithm with Actor-Critic architecture; the
relevant hyperparameters and neural network structure are listed in Table 3.

Table 3. Hyperparameters for training.

Hyperparameters Value

Ratio clipping ε 0.3
Learning rate αLR 10−4

Discount rate γ 0.99
Buffer size ND 1012

Actor network for M 8-16-16-16-2
Critic network for M 8-16-16-16-1

Actor network for T/D 8-16-16-16-4
Critic network for T/D 8-16-16-16-1

First, the missile agent is trained with a curriculum-based learning approach. As the
randomness of the initial conditions increases, the complexity of the environment and
the difficulty of the task grows. The target against the missile agent adopts a constant
maneuver of random size and the defender employs proportional navigation guidance
law. Then, based on the obtained attack strategy of the missile, the missile agent is utilized
to train the active defense strategy of the target/defender. That is, the target/defender
is confronted with an intelligent missile that has the ability to evade the defender and
attack the target from the beginning of the training. All the training and simulations are
carried out on a computer with an Intel Xeon Gold 6152 processor and a NVIDIA GeForce
RTX 2080 Ti GPU. The environment and algorithm are programmed in Python 3.7 and the
neural network is built by using the PyTorch framework. Both the actor network and the
critic network for the missile and the target/defender contain three hidden layers with
16 neurons each. The activation function of the network adopts the ReLU function. If
the number of multiplication and addition operations in network propagation is used to
characterize the time complexity, the complexity of the actor network for the missile can
be calculated as 672, the complexity of the actor network for the target/defender as 704,
and the complexity of the two critic networks as 656. It can be seen that these networks
have relatively simple architectures, occupy little storage space, are fast in operations (each
computation lasting about 0.4–0.5 ms on average on a 2.1 GHz CPU), and, therefore, have
the potential to be employed onboard.

It should be noted that the rise of the cumulative reward curve will not be accepted as
a criterion for training success, since the evolution of the curricula from easy to difficult
determines whether the agent can complete easy missions and thus earns high return at
the beginning of the training.
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5.2. Simulation Analysis of Attack Strategy for Missile
5.2.1. Engagement in Different Scenarios

In order to verify the effectiveness of the attack strategy of the trained missile agent,
we set up different scenarios to assess the agent, with the simulation conditions presented
in Table 4. The defender adopts a proportional navigation guidance law with an effective
navigation ratio of 4. The target adopts a constant maneuver with random direction and
magnitude. The simulation results for different target positions and different defender
positions are presented in Figure 5.

Table 4. Initial parameters for training.

Parameters Missile Target Defender

Lateral position/m 0 3500 2500
Longitudinal position/m 1000 1300/1000/700 1300/1000/700

Velocity/(m · s−1) 250 150 250
Kill radius/m 5 — 5

Aerospace 2023, 10, x FOR PEER REVIEW  15  of  22 
 

 

The relative positions of the target and defender cover most typical scenarios, so the 

simulation results are representative. Regardless of whether the missile faces a target at 

high altitude, a target at low altitude, or a target at a comparable altitude and regardless 

of the direction from which the defender intercepts, the missile can avoid the defender 

and eventually hit the target. The missile with an intelligent attack strategy will aim at the 

target in the primary direction, but rapidly maneuvers when the defender threatens itself, 

causing the defender to fail to intercept the missile. 

     
(a)  (b)  (c) 

(d)  (e)  (f) 

     
(g)  (h)  (i) 

Figure 5. Engagement trajectories of assessing missile agent under different simulation conditions, 

i.e., different target longitudinal position  Ty   and defender longitudinal position  Dy : (a) Longitu‐

dinal position  1300Ty m ,  1300Dy m ; (b) Longitudinal position  1000Ty m ,  1300Dy m ; 

(c)  Longitudinal  position  700Ty m ,  1300Dy m ;  (d)  Longitudinal  position  1300Ty m , 

1000Dy m ;  (e)  Longitudinal  position  1000Ty m ,  1000Dy m   ;  (f)  Longitudinal  position 

700Ty m ,  1000Dy m ; (g) Longitudinal position  1300Ty m ,  700Dy m ; (h) Longitudinal 

position  1000Ty m ,  700Dy m ; and (i) Longitudinal position  700Ty m ,  700Dy m . 

5.2.2. Analysis of Typical Engagement Process 

By further analyzing the engagement process in Figure 5a, we can obtain more in‐

sight into the intelligent attack strategy obtained based on DRL. The moment when the 

defender misses the missile has been marked in Figure 5a as 5.16 s with the miss distance 

of 40.20 m, which is safe for the missile. The moment the missile finally hit the target is 

9.77 s and the off‐target amount is 1.13 m, completing the combat mission. 

As shown in Figure6a, the missile quickly maneuvers between capability boundaries 

as the defender approaches itself and poses a threat, which is a bang‒bang form of control 

Figure 5. Engagement trajectories of assessing missile agent under different simulation conditions,
i.e., different target longitudinal position yT and defender longitudinal position yD: (a) Longitudinal
position yT = 1300 m, yD = 1300 m; (b) Longitudinal position yT = 1000 m, yD = 1300 m;
(c) Longitudinal position yT = 700 m, yD = 1300 m; (d) Longitudinal position yT = 1300 m,
yD = 1000 m; (e) Longitudinal position yT = 1000 m, yD = 1000 m; (f) Longitudinal position
yT = 700 m, yD = 1000 m; (g) Longitudinal position yT = 1300 m, yD = 700 m; (h) Longitudinal
position yT = 1000 m, yD = 700 m; and (i) Longitudinal position yT = 700 m, yD = 700 m.
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The relative positions of the target and defender cover most typical scenarios, so the
simulation results are representative. Regardless of whether the missile faces a target at
high altitude, a target at low altitude, or a target at a comparable altitude and regardless
of the direction from which the defender intercepts, the missile can avoid the defender
and eventually hit the target. The missile with an intelligent attack strategy will aim at the
target in the primary direction, but rapidly maneuvers when the defender threatens itself,
causing the defender to fail to intercept the missile.

5.2.2. Analysis of Typical Engagement Process

By further analyzing the engagement process in Figure 5a, we can obtain more insight
into the intelligent attack strategy obtained based on DRL. The moment when the defender
misses the missile has been marked in Figure 5a as 5.16 s with the miss distance of 40.20 m,
which is safe for the missile. The moment the missile finally hit the target is 9.77 s and the
off-target amount is 1.13 m, completing the combat mission.

As shown in Figure 6a, the missile quickly maneuvers between capability boundaries
as the defender approaches itself and poses a threat, which is a bang-bang form of control
law. The sudden and drastic maneuver of the missile does not allow the defender enough
time to change the direction of flight and, thus, the interception to the missile fails. As can
be seen from the zero-effort miss in Figure 6b, the defender’s zero-effort miss for the missile
increases at the last moment due to the missile’s maneuver. Then, the missile rapidly
changes its acceleration direction after evading the defender, thus compensating for the
deviation in aiming at the target caused by the previous maneuver. The zero-effort miss of
the missile to the target eventually converged to zero, although it experienced fluctuations
due to the missile’s maneuvers.
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Figure 6. Engagement process in Figure 5a. (a) The overload of each vehicle; (b) The zero-effort miss
Z1 and Z2.

5.2.3. Performance under Uncertainty Disturbances

When transferring the trained policy to the practical system, it faces various uncer-
tainty disturbances, among which the observation noise and the inaccurate model used for
training can negatively affect the performance of the agent. We count the success rate of
the missile agent in the face of disturbances and the results are listed in Table 5. The initial
conditions are initialized stochastically and noise disturbances are added to the observation.
As for the model uncertainty, the response time constant bias and the higher-order system
bias are considered. The higher-order system adopts the binomial form that is commonly
adopted in guidance system evaluation, i.e., the third-order system is represented as

G(s) =
1(

1 + s τM
3
)3 (26)
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Table 5. Success rate under uncertainty disturbances.

Observation Noise τM = 0.1 τM = 0.3 Third Order τM = 0.1 Third Order τM = 0.3

5% 89.2% 79.1% 88.4% 76.5%
15% 89.0% 76.4% 86.5% 75.3%
25% 82.5% 75.5% 78.5% 75.1%
35% 75.0% 74.1% 79.0% 74.2%

As shown from the simulation results, the trained policy is able to maintain a high
success rate for a certain range of disturbances. The error of the response time is more
important than the observation noise and the order of the model.

5.3. Simulation Analysis of Active Defense Strategy for Target/Defender
5.3.1. Engagement in Different Scenarios

In the same scenario as for validating the missile agent, we further assess the effec-
tiveness of the intelligent active defense policy for the target/defender agent obtained
from DRL training. Considering that the maximum overload and dynamic response of
the missile, i.e., maneuverability and agility, are far superior to the target, it is difficult
for the target to survive on its own maneuvering next if the defender fails to intercept
the attacking missile in time. If the defender fails to intercept, then the target-missile
engagement becomes a one-to-one pursuit-evasion game problem, which has been studied
in many examples in the literature [62–64].

The simulation results for different engagement scenarios are illustrated in Figure 7.
The missile utilizes the DRL-based intelligent attack strategy and the target/defender
adopts the intelligent active defense strategy trained with the missile agent. In all scenarios,
the defender successfully intercepts the missile. Unlike the missile facing a defender
employing the proportional navigation guidance law, the missile in these cases does not
adopt timely and effective maneuvers to evade the defender. The attack strategy of the
missile agent, which is essentially a neural network, seems to be paralyzed. This suggests
that the cooperative actions of the target/defender perform an effect similar to network
adversarial attack, a widely noticed phenomenon in deep learning classifiers where the
researcher can add a little noise to the network input thereby disabling the trained deep
network [65,66].
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Figure 7. Engagement trajectories of assessing target/defender agent under different simulation
conditions, i.e., different target longitudinal position yT and defender longitudinal position yD:
(a) Longitudinal position yT = 1300 m, yD = 1300 m; (b) Longitudinal position yT = 1000 m,
yD = 1300 m; (c) Longitudinal position yT = 700 m, yD = 1300 m; (d) Longitudinal position
yT = 1300 m, yD = 1000 m; (e) Longitudinal position yT = 1000 m, yD = 1000 m; (f) Longitu-
dinal position yT = 700 m, yD = 1000 m; (g) Longitudinal position yT = 1300 m, yD = 700 m;
(h) Longitudinal position yT = 1000 m, yD = 700 m; and (i) Longitudinal position yT = 700 m,
yD = 700 m.

The reinforcement learning agent relies on observation to output action, so the tar-
get/defender can maneuver to influence the missile agent’s observation, thus causing the
missile agent output to be an invalid action. In the simulation results of Figure 7, (e) is rather
special. The target does not maneuver, resulting in a direct head-on attack of the missile
and, consequently, the defender intercepts the missile easily. It is because the network
inputs to the missile agent are all zero or constant values, which reflects an unexpected
flaw of the intelligent strategy obtained from DRL training. The intelligent strategies based
on neural networks may be tricked and defeated by very simple adversaries, which should
attract sufficient attention in future research.

5.3.2. Analysis of Typical Engagement Process

By further analyzing the engagement process in Figure 7a, we can obtain more insight
into the intelligent active defense strategy obtained based on DRL. The moment when
the defender intercepts the missile has been marked in Figure 7a as 5.09 s with the miss
distance of 1.83 m.

As shown in Figure 8, the missile does not maneuver to its maximum capability as the
defender approaches and the timing of the maneuver lags and is eventually intercepted
by the defender. Besides, the curves of the zero-effort miss show that the defender has
locked the missile on the intercept triangle at about 2 s, while the missile is late in locking
the target, which also reflects the failure of the missile attack strategy.
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5.3.3. Performance under Uncertainty Disturbances

As in Section 5.2.3, we validate the robustness of the target/defender agent’s policy
in the face of observation noise and model inaccuracy. As shown in Table 6, the tar-
get/defender agent’s policy is more robust to uncertainty disturbances and achieves a
higher success rate in general compared to the missile. This is because the difficulty of the
attack is inherently higher than the difficulty of defense and the target/defender’s policy is
a targeted adversarial attack training for the missile’s policy.

Table 6. Success rate under uncertainty disturbances.

Observation Noise

C-DRL CLQDG

τT = 0.2
τD = 0.3

τT = 0.3
τD = 0.45

Third Order
τT = 0.2
τD = 0.3

Third Order
τT = 0.3

τD = 0.45

τT = 0.2
τD = 0.3

Third Order
τT = 0.2
τD = 0.3

5% 98.4% 87.2% 93.5% 82.2% 70.0% 67.3%
15% 94.5% 86.6% 94.0% 81.0% 68.0% 66.7%
25% 95.0% 87.0% 92.5% 79.8% 53.3% 50.1%
35% 93.4% 85.7% 93.7% 79.6% 38.2% 37.3%

Besides, in Table 6, we compare the curriculum-based DRL approach (C-DRL) with
the cooperative linear quadratic differential game (CLQDG) guidance law, which is a
classical guidance law in the TMD scenario [55]. The gains of the CLQDG guidance law
do not involve response time, so we only analyze the effect of input noise and system
order. Since ideal dynamics are assumed in the derivation of the gains, the effect of the
order of the system is more pronounced. Facing the input noise, the performance of the
C-DRL approach decreases insignificantly and the robustness of CLQDG is not as strong as
that of the C-DRL approach. In addition, for complex three-dimensional multi-body game
problems, the differential game approach to derive an analytic guidance law may not work,
so the reinforcement learning approach has greater potential for development.

6. Conclusions

For the scenario of target-missile-defender three-body offensive and defensive con-
frontation, intelligent game strategies using curriculum-based deep reinforcement learning
are proposed, including an attack strategy for attacking missiles and active defense strategy
for target/defense. The results of the differential game are combined with deep rein-
forcement learning algorithms to provide the agent training with clearer direction and
enable it them to better adapt to the complex environment with stronger nonlinearity. The
three-body adversarial game is constructed as MDP suitable for reinforcement learning
training by analyzing the sign of the action space and designing the reward function in
the adversarial form. The missile agent and target/defender agent are trained with a
curriculum learning approach to obtain the intelligent game strategies. Through simulation
verification, we can draw the following conclusions.

(1) Employing the curriculum-based DRL trained attack strategy, the missile is able to
avoid the defender and hit the target in various situations.

(2) Employing the curriculum-based DRL trained attack strategy, the less capable tar-
get/defender is able to achieve an effect similar to network adversarial attack against
the missile agent. The defender intercepts the missile before the it hits the target.

(3) The intelligent game strategies are able to maintain robustness in the face of distur-
bances from input noise and modeling inaccuracies.

In future research, three-dimensional scenarios with multiple attacking missiles, mul-
tiple defenders, and multiple targets will be considered. The battlefield environment is
becoming more complicated and the traditional differential game and weapon-target as-
signment methods will show more obvious limitations, while the intelligent game strategy
based on DRL has better adaptability for complex scenarios. A motion analysis in three
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dimensions can be conducted utilizing vector guidance laws or by decomposing the game
problems into two perpendicular channels and solving in the plane, as has been proven to
be possible in previous research. Combined with DRL, more complex multi-body game
problems are expected to be solved. Technologies such as self-play and adversarial attack
will also be applied to the generation and analysis of game strategies. In addition, consider-
ing the difficulty of obtaining battlefield observations, the training algorithm needs to be
improved to adapt to the scenarios with imperfect information.
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