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Abstract: In this work, a dynamic model is proposed to simulate the drilling and steering process of
an autonomous burrowing mole to access scientific samples from the deep subsurface of the Moon.
The locomotive module is idealized as a rigid rod. The characteristic parameters are considered,
including the length, cross-section diameter, and centroid of a cylindrical rod. Based on classical
Lagrangian mechanics, a 3-DOF dynamic model for the locomotion of this autonomous device is
developed. By introducing resistive force theory, the interaction scheme between the locomotive
body and the lunar regolith is described. The effects of characteristic parameters on resistive forces
and torques are studied and discussed. Proportional-derivative control strategies are introduced
to calculate the tracking control forces following a planned trajectory. The simulation results show
that this method provides a reliable manipulation of a mole-type robot to avoid obstacles during
the tracking control process in layered sediments. Overall, the proposed reduced-order model is
able to simulate the operating and controlling scenarios of an autonomous burrowing robot in lunar
subsurface environments. This model provides intuitive inputs to plan the space missions of a drilling
robot to extract subsurface samples on an extraterrestrial planet such as the Moon or Mars.

Keywords: lunar sampling; directional drilling; Lagrangian mechanics; drilling robot-soil interaction;
reduced-order modeling; tracking control

1. Introduction

Extraterrestrial subsurface drilling and sampling is the core of near-Earth exploration
missions, including the Moon, Mars, asteroids, etc. [1–3]. Typically, the surface of an
extraterrestrial planet, such as the Moon, is covered by regolith, which consists of dust, fine
granular particles, and agglutinates along the depth direction [4,5]. For scientific purposes,
it is necessary to reach the subsurface destination and obtain geology samples with high
scientific values [6]. Subsurface exploration equipment, including coring machines or
robots, are the primary tools for providing insights into the evolutionary history of the
solar system [2,7].

In recent space science projects, the concepts of underground mole-like robots or
probes have been proposed [8,9]. For example, InSight’s HP3-Mole has been deployed to
measure the internal heat flow of Mars [10]. This type of autonomous burrowing device
is able to dive or steer itself to reach the desired target at suitable depths with tethered
or autonomous communication. It might be a low-cost and high-efficient solution for a
future space mission on the Moon or Mars [11]. Previous research has focused on the
bio-inspired locomotion of animals or insects and developed robots that crawl, swim, and
burrow [12,13] in fluid-like granular medium by mimicking the mechanisms of inchworms,
earthworms, wood wasps, or gophers. For example, the inchworm robots, such as IDDS
(Inchworm Deep Drilling System of NASA/Honeybee) [14] and IBR (Inchworm Boring
Robot of CAST) [15], operate in a set of sequential actions of anchoring and drilling, in the
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same manner as worms. The wood wasp robots [16] simulate a reciprocating motion of two
halves with backwards-facing teeth to shear and dig into the soil. The auto-gopher [17],
a wireline drilling system, removes fragments discontinuously by running in a hole and
conducting the coring operation repeatedly [18]. However, these technologies are all
designed to penetrate along the orientation of robot bodies, without steering capacity. This
capacity enables directional drilling and is a major enhancement of the existing drilling or
coring methods. Although some conceptual designs and prototypes for lunar subsurface
exploration have been developed, the locomotion in granular medium is still a challenging
subject, and it remains a problem that requires investigation [1,7].

During the drilling process, resistive force is produced along the interaction between
the robotic body and granular substances. Constructing a mathematical model of under-
ground locomotion is the key to analyzing and maneuvering the robots in the downhole.
There are several approaches to deal with such complex interactions between drilling robots
and soils. For example, to treat the regolith as a fluid-like medium, the locomotion in the
regolith can be modeled as a swimming movement at low Reynolds numbers [19,20]. The
interaction between the intruder and the media is phenomenologically described by the
hydrostatic pressure and fluid viscosity. However, the complexity of flow behaviors under
different conditions are difficult to define via a unified form and group of parameters.
Therefore, the regolith is most commonly viewed as granular particles. The empirical Resis-
tive Force Theory (RFT) [21] and modified Archimedes’ Law Theory (MALT) [22] have been
introduced to estimate the forces on objects moving at a constant speed within the particles
of sand or soils. Considering the hydrostatic and viscosity terms of RFT, this calculation
relies on the experimental calibration of specific parameters, while the treatments of both
fluid mechanics and granular mechanics are sensitive to the geometry and penetrating
velocity of intruder as well as the physical properties of regolith or soils [23].

Among numerical schemes, the Discrete Element Method (DEM) [24] is the widely
used method to solve the kinematics of granular particles with sufficient microscopic
details [25]. Kawamoto et al. [26] used DEM to simulate the macroscopic behaviors of
granular materials influenced by particle shapes. Khademian et al. [27] simulated the
mechanical behaviors of irregularly shaped lunar soils under triaxial tests. In the context
of continuum mechanics, the Finite Element Method (FEM) resorts to the mathematical
equation of contact behaviors to model the soil–tool interaction. Askari and Kamrin [28]
used FEM to simulate the parametric geometries of an intruder moving in a granular
media and revealed that the frictional yielding is the dominant factor in producing the
resistive force in cohesionless media. However, to model the process of locomotion requires
characterization of the complex constitutive properties or suitable criterions in order to
describe the behaviors of granular matter, including nonlinearity, history-dependence, and
nonlocality [29]. Thus, to model the locomotion in such “flowable” terrestrial materials
is crucially depended on the invention of ingenious and complex constitutive equations,
which is still an open problem in the literature [12,29,30].

For theoretical research and engineering application, some problems are solved and
investigated via the simplified model, which is often used to describe the actual physical
phenomenon. Winkler et al. [31] and Pasternak et al. [32] developed the classical models of
a beam on an elastic foundation to solve the problems in the civil engineering field. In these
models, soil–beam interaction is proposed mathematically, represented by a set of linear
springs. Richard and Detournay et al. [33,34] built a dynamic model of rotational drill
strings. In this dynamic model, drill strings are treated as an elastic beam, and the contact
of drill strings and soil are described by linear or torsional springs, which represents the
effects of weight on bit and torque, respectively. This method is also widely used in solving
structure-oriented or dynamics-oriented problems [35,36].

In general, for a steerable burrowing robot, the drilling unit contains two major
modules: excavating module to make an axial locomotion and steering module to make
a deflection in the granular medium, respectively. To model this robot with sufficient
details by a three-dimensional (3D) multi-physical FEM or DEM is very time-consuming.
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Therefore, to develop a simplified model is highly demanded in order to accelerate the
development of steerable robots for the subsurface exploration of planetary bodies. In
practice, the prediction of drilling forces and torques are strongly demanded in order to
facilitate the robotic design and the development of a navigation algorithm. A reduced-
order model is a practical way to model this complicated drilling device. This is beneficial in
both the early design phase as a trade-off study toolbox and in the mission decision-making
stage as a core in building a physics-based digital twin [37,38].

In this work, a rigid body dynamics model is proposed to simulate the operating
and controlling scenarios of an autonomous robot steering in the lunar subsurface. The
mole-type burrowing robot is idealized as a rigid intruder steering in the granular block
with thick stacks of sediments, which represents the stratigraphic profiles of the geological
structures of the Moon. The robotic locomotion is described by a 3-DOF rigid rod based on
Lagrangian mechanics. The interaction between the locomotive body and lunar regolith is
mathematically described as a contact model with both normal and shear stiffnesses. The
effect of characteristic parameters on resistive forces and torques is studied and discussed
through numerical experiments. To estimate the requirements of axial and lateral thrust
by trajectory tracking, proportional-derivate (PD) control strategies are introduced and
implemented into the dynamic equations.

The structure of the paper is organized as follows: first, the simplified model of a mole-
type burrowing robot is introduced, and the proposed reduced-order model of locomotion
is described. The numerical procedures are discussed for different parameters, including
the driving forces, gravity, and time stepping, etc. Then, the dynamic behaviors of robotic
locomotion are simulated and discussed via numerical experiments. Finally, its steerability
and stability in the layered formations with PD control are discussed in detail.

2. Modeling Methods

The lunar subsurface within about 10 m in depth [39] consists of igneous regolith and
disturbed materials from diverse causes, such as magmatic evolution, ejection blankets, and
meteorite impacts [40,41]. The regolith or fragmental breccia consists of dust, fine granular
particles, medium sized agglutinates, and bulky rocks along the horizontal direction. In
addition, it contains a large number of basaltic rocks. Considering the internal geological
surfaces formed by sedimented layers in a 3D lunar terrain domain [42], the steering
locomotion to overcome distributed obstacles and hard formations is highly demanding
for drilling and exploration in the lunar subsurface. For navigation purposes, the specified
trajectory can be generated by subsurface imaging techniques using lunar penetrating radar
(LPR) [43].

Therefore, the locomotion of an autonomous burrowing robot in the lunar regolith is
designed to steer away from obstacles. Self-burrowing locomotion needs two fundamental
mechanisms: the excavating unit creates the penetration and the steering unit controls the
burrowing direction by adjusting the extension of the pushing pads to supply lateral thrust,
as shown in Figure 1.
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Figure 1. Conceptual diagram of self-burrowed steering locomotion in the lunar subsurface. 
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The autonomous burrowing robot is assumed to be a rigid cylindrical rod, because it 
is relatively stiffer than the lunar regolith. This type of assumption is widely accepted in 
the geotechnical field [33,44,45]. The fundamental problem is actually simplified as the 
dynamic interaction of the rigid rod with the elastic response of lunar regolith. Further-
more, the resistive interactions in the axial, lateral, and rotational direction are modeled 
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vates and transports the regolith and rocks onto the ground. In this proposed model, this 
excavating process is not considered and only the drilling process is described. 

The cylindrical rod is described by its body length, 𝐿𝐵, cross-sectional diameter, 2R, 
and a uniformly distributed mass, m. To describe the rotation, the rotational center, 𝑆𝑖 (in 
the i-th state of the numerical step), is assigned at a position as the distance of a from the 
bottom, and b from the top, as shown in Figure 2. In steering mode, the deflection of the 
drilling rod is driven by the lateral thrust, 𝐹(𝑡), which acts on the position with a distance 
of 𝑙𝐹 from the center of rotation. The axial thrust force drives the forward motion along 
the axial orientation of the drilling rod, denoted as 𝑃(𝑡). The weight on the bit (WOB) is 
the reaction force of the resisted drilling rod moving forward, which is mathematically 
simplified as the axial stiffness in the contact model. Similarly, the lateral reaction and 
anti-rotational torques are represented by two lateral and torsional contact springs. The 
friction force around the cylindrical rod is symbolled as 𝑓. Therefore, the resistive forces 
and torques can be estimated by the contact stiffness of the regolith. 

Figure 1. Conceptual diagram of self-burrowed steering locomotion in the lunar subsurface.

2.1. Model Description

As illustrated in Figure 1, a wireline mole-like underground burrowing robot can
realize locomotion in a granular medium. In this work, the drilling motion is simplified
and decoupled into two in-plane translations and one in-plane rotation, representing the
direction of moving advance. A 3D model may be developed on the basis of this work in the
future to consider the out-of-plane deviation of this plane by the coordinate transformation.

The autonomous burrowing robot is assumed to be a rigid cylindrical rod, because
it is relatively stiffer than the lunar regolith. This type of assumption is widely accepted
in the geotechnical field [33,44,45]. The fundamental problem is actually simplified as the
dynamic interaction of the rigid rod with the elastic response of lunar regolith. Furthermore,
the resistive interactions in the axial, lateral, and rotational direction are modeled as the
axial, lateral spring, and torsional springs [46]. The underground locomotion excavates and
transports the regolith and rocks onto the ground. In this proposed model, this excavating
process is not considered and only the drilling process is described.

The cylindrical rod is described by its body length, LB, cross-sectional diameter, 2R,
and a uniformly distributed mass, m. To describe the rotation, the rotational center, Si (in
the i-th state of the numerical step), is assigned at a position as the distance of a from the
bottom, and b from the top, as shown in Figure 2. In steering mode, the deflection of the
drilling rod is driven by the lateral thrust, F(t), which acts on the position with a distance
of lF from the center of rotation. The axial thrust force drives the forward motion along
the axial orientation of the drilling rod, denoted as P(t). The weight on the bit (WOB) is
the reaction force of the resisted drilling rod moving forward, which is mathematically
simplified as the axial stiffness in the contact model. Similarly, the lateral reaction and
anti-rotational torques are represented by two lateral and torsional contact springs. The
friction force around the cylindrical rod is symbolled as f . Therefore, the resistive forces
and torques can be estimated by the contact stiffness of the regolith.
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(a) free body diagram; (b) equivalent stiffness representation of granular medium. 
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Figure 2. Free body diagram of the in-plane locomotion of the burrowing robot with a finite length:
(a) free body diagram; (b) equivalent stiffness representation of granular medium.

2.2. Dynamic Equations

Two coordinate systems are introduced here: an Eulerian one fixed in the global space
and a Lagrangian one attached to the rigid beam, as shown in Figure 3. The Eulerian
global system is introduced by a Cartesian coordinate to record the location (x,y) of the
rotating center. A spatial variable of θ is defined to record the deflection of the 2D body
corresponding to the current location (x,y). A full kinematic history of locomotion (x,y,θ) is
recorded in the global coordinate system.
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Figure 3. Illustration of the kinematic relation of a moving rod in the granular medium.

The local coordinate system is attached to the rigid beam with a Cartesian coordinate.
The origin of local Cartesian coordinate is set in the rotating center. The locomotive displace-
ment is discretized into a series of sequential increments described in local coordination
(xi

s, yi
s) fixed on the body. Here, i represents the i-th state. The axis of xs is aligned with the

body axis of the rod.
The kinematics of locomotion are described by the Lagrangian type with the local

coordinates of the xs-axis and ys-axis for the translational directions. The rotational center,
Si (xi

s, yi
s), and Sj (xj

s, yj
s) are defined as the origin of the local Cartesian coordinate for two

states: initial state and end state during one discretized time increment. The spatial variable
of in-plane rotation, θs, around the rotating center is recorded during the increment from
the i-th to the j-th state in the local coordinate. The angular rotation of the rod in global
Cartesian coordinate θ is updated based on the in-plane rotation, θs, after a stepwise motion.
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In this way, the in-plane penetration and deflection of a rigid robot are well decomposed
and described by three components, respectively. The total time period is divided evenly
with an equal time step.

Several assumptions are made in the numerical scheme: (i) each time step leads to the
small amplitude of 3-DOFs (xs, ys,θs); (ii) the axial thrust, P, is applied coaxially with the rod,
and lateral thrust, F, is applied transversely to the moving body; (iii) the resistive stiffnesses
of the lunar regolith are idealized as three components: two compressive stiffnesses of k1 in
the x-direction and k2 in the y -direction, and one torsional stiffness, Gr. These three terms
of stiffnesses are defined as the characteristics of different layered formations corresponding
to a vertical depth of x.

The kinematics of the motion are described in the global coordinate; the coordinates
(x,y) and spatial variable (θ) are calculated based on the initial and end states at each
individual step. The coordinates (x,y) and spatial variable (θ) of the current configuration
are given as:

q = q0 + Teqs (1)

where the matrix of the current displacement in the global coordinate is q, the initial
position in the global coordinate is q0, the matrix of the local displacement is qs, and the
coordinate transformation matrix of displacement is Te:

q =

x
y
θ

, q0 =

x0
y0
θ0

, qs =

xs
ys
θs

 (2)

Te =

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

 (3)

where x, y, and θ represent the position and rotation of the current configuration of a
finite length rod in the global coordinate; x0, y0, and θ0 represent the ones of the initial (or
previous) configuration in the global coordinate; and xs, ys, and θs represent the ones of the
current configuration in the local coordinate.

The translational and angular velocity components are then calculated by differentiat-
ing the coordinate x, y, and θ directly, as follows:

.
q =

.
q0 +

.
T

e
qs + Te .

qs (4)

where the matrix of the current velocity in the global coordinate is
.
q, the initial velocity

in the global coordinate is
.
q0, the matrix of the local velocity is

.
qs, and the coordinate

transformation matrix of velocity is
.
T

e
:

.
q =


.
x
.
y
.
θ

,
.
q0 =


.
x0.
y0.
θ0

,
.
qs =


.
xs.
ys.
θs

 ,
.
T

e
=

∂Te

∂t
(5)

Based on Lagrangian mechanics, the dynamic description of a rigid rod with 3-DOF
can be formulated by the following steps:

(i) The kinetic energy of the system, including the translation and rotation, is expressed as:

T =
1
2

m
( .

x2
+

.
y2
)
+

1
2

J0
.
θ

2
(6)

where the rotational inertia, J0, is calculated as J0 = m
(
a3 + b3)/3LB.
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(ii) The potential energy of the system is induced by the deformation from the lunar
regolith, which is given as:

U =
1
2

k1xs
2 +

1
2

k2ys
2 +

1
2

Grθs
2 (7)

(iii) The Lagrangian function is defined by:

L = T −U (8)

(iv) Based on classical mechanics, the Lagrange equations are given as:

d
dt

(
∂L

∂
.
qk

s

)
− ∂L

∂qk
s
= Qk , (k = 1, 2, 3) (9)

where generalized coordinates q1
s = xs, q2

s = ys, q3
s = θs and generalized forces

Q1 = P − f , Q2 = F, Q3 = FlF. The friction force, f = µρgxsπRLB, is defined as a
function of planet gravity and the diving depth according to classical soil mechanics. For
simplification, µ = 0.1 is assumed to be the coefficient of robot–soil friction in this work.

(v) Finally, the Lagrangian equations for this problem are obtained as the following
ordinary differential equations (ODEs):

M(
..
qs + TeT ..

q0) + C
.
qs + Kqs = Q (10)

M =

m 0 0
0 m 0
0 0 Jo

, C =

 Cx −2m
.
θ0 0

2m
.
θ0 Cy 0

0 0 Cθ

,

K =


k1 −m

( .
θ0

)2
−m

..
θ0 0

m
..
θ0 k2 −m

( .
θ0

)2
0

0 0 Gr


(11)

The numerical damping term of C
.
qs is added into the left-hand side of Equation (10) as

the numerical dissipative terms. Here, the matrix of the numerical damping factors, C, is
introduced to avoid the occurrences of infinite values of displacements induced by constant
speed at the equilibrium state [47]. Equations (10) and (11) are the governing equations of a
self-burrowed steering robot drilling into a general granular medium.

2.3. Soil Interaction Model

The contact interaction between the robotic body and the regolith is described as one
set of spring systems. The stiffnesses of the contact springs approximately represent the in
situ elastic behaviors of soil or regolith in depth. In reality, these represent various geologic
structures, stratigraphic profiles, and complex stress states. In this work, there are three
idealized models of resistive-stiffness distribution with the depth-dependence (as shown in
Figure 4), but the horizontal variation of the regolith is not considered.



Aerospace 2023, 10, 190 8 of 27

Aerospace 2023, 10, 190 8 of 27 
 

 

(iii) The formation has a linear distribution of stiffness in depth (noted as “Linear”), 
respectively. All the vertical and horizontal stiffnesses of 𝑘1 and 𝑘2 are defined at the 
global coordinate system. The depth-dependent regolith model is assumed as the linear 
distribution along the depth. The slope of stiffness is noted as 𝛿𝑎𝑣 in the vertical direction 
and 𝛿௟𝑣 in the lateral direction. 𝑘1 and 𝑘2 are expressed as: ቊ𝑘1(x) = 𝛿𝑎𝑣𝑥𝑘2(x) = 𝛿𝑙𝑣𝑥 (13)

During the drilling process, the dip angle, 𝜃, and the corresponding depth, 𝑥, of the 
robotic body is changing over time as 𝜃(𝑡) and 𝑥(𝑡). Considering the lithological distri-
bution of the regolith in depth, the resistive stiffness acting on the robot is therefore varied 
with respect to the functions of time, 𝜃(𝑡) and 𝑥(𝑡). To describe the resistive stiffnesses 
at each robotic attitude angle, the effective stiffnesses are introduced as 𝑘1𝑒  and 𝑘2𝑒  along 
the local coordinated system attached to the robot body. The effective stiffnesses are de-
composed as: 𝑘1𝑒 = 𝑘1(x)cosθ(t)- 𝑘2(x)sinθ(t) (14)𝑘2𝑒 = 𝑘2(x)cosθ(t)+𝑘1(x)sinθ(t) (15)

In the local coordination system, the torsional stiffness, 𝐺𝑟𝑒, can be easily calculated 
based on the variables of a, b, 𝑘1𝑒 , and 𝑘2𝑒 . The effective torsional stiffness, 𝐺𝑟𝑒, has a linear 
relation between the active torsion, 𝑇𝑠, and the rotational angle, 𝜃𝑠, because of the small 
displacement assumption in each iteration. 𝑇𝑠 = 𝐺𝑟𝑒𝜃𝑠 (16)

where 

𝑇𝑠 = න 𝑘2𝑒 𝐿𝐵
𝑏

0 𝑙2𝑑𝑙 + න 𝑘2𝑒 𝐿𝐵
𝑎

0 𝑙2𝑑𝑙 (17)

This then leads to: 𝐺௥௘ = 𝑏ଷ3 𝐿஻ ሾ𝑘ଶ(x)cosθ(t)+𝑘ଵ(x)sinθ(t)ሿ+ 
𝑎ଷ3 𝐿஻ ሾ𝑘ଶ(x)cosθ(t)+𝑘ଵ(x)sinθ(t)ሿ (18)

 

 
 

(a) (b) 

Figure 4. Illustration of equivalent stiffness model of regolith and its mathematical description: (a) 
three hypothetical situations of resistive-stiffness distribution in depth, noted as “Constant”, “Lay-
ered”, and “Linear”; (b) the effective contact stiffness in the local coordinate system. 

Figure 4. Illustration of equivalent stiffness model of regolith and its mathematical description:
(a) three hypothetical situations of resistive-stiffness distribution in depth, noted as “Constant”,
“Layered”, and “Linear”; (b) the effective contact stiffness in the local coordinate system.

(i) In a uniform subsurface model, the vertical and horizontal stiffnesses of k1 and k2
are the constant values through all the depths (noted as “Constant”).

(ii) The formation contains a sequence of stacking layers in the vertical direction, and
each layer has an individual constant stiffness (noted as “Layered”):

ki(x) =


k1

i x ∈ [0 , d1)
k2

i x ∈ [d1 , d2)
...

...

(12)

where i = 1, 2 represents the lower index of k1(x) and k2(x), k1
i , and k2

i represent the
constants of ki at the corresponding depth. The layered formation is segmented by a set of
horizontal planes at different depths of x = d1, d2, · · · , etc.

(iii) The formation has a linear distribution of stiffness in depth (noted as “Linear”),
respectively. All the vertical and horizontal stiffnesses of k1 and k2 are defined at the
global coordinate system. The depth-dependent regolith model is assumed as the linear
distribution along the depth. The slope of stiffness is noted as δv

a in the vertical direction
and δv

l in the lateral direction. k1 and k2 are expressed as:{
k1(x) = δv

a x
k2(x) = δv

l x
(13)

During the drilling process, the dip angle, θ, and the corresponding depth, x, of the
robotic body is changing over time as θ(t) and x(t). Considering the lithological distribution
of the regolith in depth, the resistive stiffness acting on the robot is therefore varied with
respect to the functions of time, θ(t) and x(t). To describe the resistive stiffnesses at each
robotic attitude angle, the effective stiffnesses are introduced as ke

1 and ke
2 along the local

coordinated system attached to the robot body. The effective stiffnesses are decomposed as:

ke
1 = k1(x) cos θ(t) − k2(x) sin θ(t) (14)

ke
2 = k2(x) cos θ(t) + k1(x) sin θ(t) (15)

In the local coordination system, the torsional stiffness, Ge
r , can be easily calculated

based on the variables of a, b, ke
1, and ke

2. The effective torsional stiffness, Ge
r , has a linear
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relation between the active torsion, Ts, and the rotational angle, θs, because of the small
displacement assumption in each iteration.

Ts = Ge
r θs (16)

where

Ts =
∫ b

0

ke
2

LB
l2dl +

∫ a

0

ke
2

LB
l2dl (17)

This then leads to:

Ge
r =

b3

3 LB
[k2(x) cos θ(t)+k1(x) sin θ(t)] +

a3

3 LB
[k2(x) cos θ(t)+k1(x) sin θ(t)] (18)

In this work, the research objective is to build a numerical model predicting the
dynamic behaviors of a robotic mole burrowing in the lunar subsurface. However, the
characterization of the equivalent parameters of lunar regolith is not considered in the
scope of this work.

2.4. Numerical Scheme and Nondimensionalized Treatment

To solve this set of ODEs, the integration process is conducted by the Runge–Kutta
method [33,35,36]. The iteration is implemented by solving Equations (10) and (11). In
between each step, the current coordinate and velocity components in Equations (1)–(5)
are updated; these procedures are then repeated for the next time increment, until the final
time is reached. In each time step, the ODEs are solved at a constant increment size of time,
∆t, as shown in Figure 5.
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A dimensionless term of characteristic time, τ, is introduced to determine the time
increment. In order to consider each mode of motion, including axial, lateral, or rota-
tional movements, the time, t, is scaled by the corresponding angular resonance period
individually as:

τ1 = t/t1, τ2 = t/t2, and τr = t/tr (19)
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where the angular resonance periods are defined as the following expressions:

t1 = 2π
√

m/k1 (20)

t2 = 2π
√

m/k2 (21)

tr =
√

Jo/Gr (22)

In the case of the rod burrowing with directional controls, the motion is decomposed
with three components simultaneously. Therefore, the dimensionless time for the inte-
gration is chosen by the axial translation one, τ1, as a unified simplification. The size of
the time increment, ∆t, is chosen as one-tenth of the dimensionless time, ∆t = 1

10 τ, and a
detailed discussion is presented in Section 3.2.

For the other variables, the dimensionless displacements are defined as x = x/LB and
y = y/LB by scaling with the length of the cylindrical rod. The dimensionless moving
velocities,

.
x =

.
x/v1 and

.
y =

.
y/v2, are defined by the velocity divided by the characteristic

velocities v1 = LB/t1 and v2 = LB/t2. The dimensionless thrust force is defined as
P = P/k1LB, and dimensionless torque is defined as M = FlF/Gr.

2.5. Implementation of PD Tracking Control Strategies

Robotic actuator or prototype designs usually require a simple mathematical model
to calculate the power consumption required to supply them. The trajectory induces the
variation of the amount of power input during the locomotion, which results in pursuing an
optimal control strategy. In this proposed model, the output variables of actuations in the
burrowing robot are the thrust and lateral forces. A PD control method [48] coupled with
ODEs (PD-ODEs) is proposed to estimate the dynamic outputs of thrust and lateral forces
required to operate actuators or motors in burrowing robot travelling along a given path.

With PD control strategies, the main purpose is to build the connection between the
designed variables (such as displacements and velocities) and the calculated values in each
time step. The calculation is conducted in the local coordinate system fixed in the robotic
body. To obtain the values of thrust and lateral force by following the specified trajectory,
the differences between the desired and calculated displacements and velocities are added
as the right side in the Lagrange equations of Equation (10).

Thus, the generalized forces are formulated in a new way. The dynamic model of
directional drilling with the PD controller is given as follows:

M(
..
qs + TeT ..

q0) + C
.
qs + Kqs = QPD (23)

where QPD is defined as:

QPD = KP

(
TeTqd − qs

)
+ KD

( .
T

eT .
qd −

.
qs

)
(24)

where qd is the designed trace or predefined locomotive trajectory and
.
qd is the reference ve-

locity calculated based on the specified trajectory. The parameters of KP =
[
k1

p k2
p k3

p

]T

and KD =
[
k1

D k2
D k3

D
]T are the gain coefficients of proportional and derivative events,

respectively. The superscripts in the gain coefficients of PD, 1, 2, or 3, represent the compo-
nents in the axial, lateral, or rotational direction of local coordinates, individually. In this
calculation process, the PD control model is solved with ODEs in each iteration step, as
shown in Figure 6.
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3. Studies of Numerical Procedures

In this section, the parameters of numerical damping in ODEs and iterative time step
size are discussed in detail. The parameters of the simulation are given in Table 1.

Table 1. Main parameters of simulation.

Names Symbols Values Units (SI)

Mass of motion body m 1 kg
Body length LB 1 m
Arm length of lateral thrust, F lF 0.8 m
Cross-sectional diameter 2R 0.08 m
Ratio of rotational center in length a/b 0.25 /
Vertical stiffness k1 10 N/m
Horizontal stiffness k2 5 N/m

3.1. Numerical Damping

The interaction between locomotive rod and regolith is important and complicated
due to the uncertainty of soil compressibility, granular shape, characteristics of locomotion,
etc. During the penetration process, the regolith may be compressed or sheared by the
locomotive rod. The granular particles in the zone of rod–regolith interaction are forced to
slip or rotate, which produces dissipative effects that slow down the locomotion. In general,
the dashpot model is introduced to describe the frictional effects of soils on the rod [49,50].
Theoretically, the dashpot model represents energy loss due to friction [51]. The numerical
damping factor in this work is introduced based on the practical circumstance. This factor
is numerically correlated to the system and the properties of the soil medium, but it is not a
physical variable. It can be determined by additional calibration experiments in order to
compare the physical experiments.

For illustration, two simple cases with a 1-DOF movement are studied: the motion of
penetration at a constant thrust and deflection at a constant moment of rotation, as shown
in Figure 7. In the first case, only the x terms of Equation (10) are considered, and the
spatial variable, θ, is not considered. The magnitude of the driving force, P, is studied here.
In the second case, all terms in Equation (10) are considered, but only the driving torque,
M, is applied, and the gravitational effect is disregarded.
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To discuss the effects of damping factor on the results, factor Cx, with different values
of 0.1, 1, and 10, and factor Cθ , with different values of 1, 10, and 100, are compared, as
follows. As shown in Figure 8, the displacement and velocity reach the lower (blue) curve
due to the higher value of Cx or Cθ . This shows that the damping factor contributes to the
frictional energy loss and suppresses the increases of displacement and velocity. In this
work, the value of Cx is set as 10, and Cθ is set as 100.
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thrust; (b) deflection at a constant moment of rotation.

3.2. Time Step Size

To discuss the effects of increment size of time, ∆t, the values of ∆t = τ, τ/10 and τ/100 are
compared with Cθ = 10. As shown in Figure 9, there are tiny differences between the results,
with ∆t = τ, τ/10 and τ/100 (curves with black, red, and blue colors are actually overlapped).
The results indicate that increment size of time, ∆t (within the studied range), only affects
the sampling rate, but not the results.
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Figure 9. The comparison of time stepping size in the 1-DOF rotation case.

4. Numerical Experiments

In this section, four sets of numerical experiments are discussed in detail, including
the numerical verifications of simple loading cases, trajectory tracking control, steerability,
and directional drilling in different geological formations.

4.1. 1-DOF Movement in a Uniform Formation: Earth vs. Moon

Firstly, two simple scenarios, with one single DOF movement, are further studied, as
shown in Figure 7. One is the penetration process driven by the axial thrust, and the other
is the deflection of the rod embedded in the regolith induced by the lateral moment.

4.1.1. Case I of Penetration

In this case, three values of P (5, 7.5, and 10) are compared in Figure 10a,c under
1/6 Earth gravity of the Moon (1/6 g). In contrast, the values of P (30, 45, and 60) are
compared in Figure 10b,d under an Earth gravity of 1 g. Both nondimensionalized displace-
ment and velocity are plotted in the solid line and dotted line, respectively. The maximum
dimensionless displacement is predicted under the constant driving force. The higher
driving force leads to a deeper and faster penetration. This agrees well with the phenomena
of punching the rod into soils in geotechnical engineering [20]. The main parameters used
in the simulation are listed in Table 1.
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Figure 10. The motion of penetration at a constant nondimensional thrust: (a) at a constant nondi-
mensional thrust of 5, 7.5, and 10 under 1/6 Earth gravity; (b) at a constant nondimensional thrust of
30, 45, and 60 under Earth gravity; (c,d) are the dimensionless velocities under 1/6 Earth gravity and
Earth gravity, respectively.

The results in Figure 10a,c represent the case of 1/6 g on the Moon. To consider the
gravity effect, the case of 1 g on the Earth is illustrated in Figure 10b,d. The maximum
displacement under 1 g is reduced to roughly 1/6 compared to ones under 1/6 g at six
times P. The amplitude of velocity is faster than the ones under 1/6 g, because of the
higher kinetic energy of six times the level of P. It should be mentioned that the case of
P = 5 cannot penetrate the soil to the same depth due to the high overburden pressure on
the Earth. Therefore, the P required on the Earth to penetrate the same depth is roughly
six times that on the Moon.

4.1.2. Case II of Deflection

In this case, three values of M (0.1, 0.5, and 1) are compared in Figure 11. The higher
M = FlF/Gr leads to the larger deviation of the steerable robot. The angular rotation
reaches a limited value, and the angular velocity reduces gradually to zero at a constant
torque due to the resistance of the soil.
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Figure 11. The deflection at a constant moment of rotation at M = 0.1, 0.5, and 1: (a) angular
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4.1.3. Case III of in-Plane Directional Movement

Locomotion with directional controls is decomposed with three components (x, y, θ)
simultaneously. The value of F/P is defined as the ratio of lateral to axial thrust. To discuss
the effect of F/P, three values of F/P of 0.01, 0.02, and 0.05 are compared.

To investigate the contribution of P or F individually, one component of P or F is set
as a constant, and another is set as a variable. Therefore, there are two situations: the
directional motion with either the same value of lateral thrust or axial thrust, which is
noted as “Constant P” or “Constant F”, respectively. It should be noted that the same
values of P and F are in the case of F/P = 0.05 under 1/6 g and 1 g. The results of F/P are
shown in Figure 12. The high value of F/P means there is a high potential to deflect and
a low potential to penetrate, and vice versa. This nondimensionalized value is a crucial
parameter to steer the robot and build up the curvature of the burrowing trajectory. For
consideration of the gravity, the same value of F/P can drive the robot easier under lunar
gravity (1/6 g) than the one under the Earth’s gravity (1 g). To summarize, the amplitude
of the movement can be magnified by approximately six times from the Earth to the Moon
under the same power consumption.
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wellbore trajectory changes rapidly [52]. DLS is a terminology here to compare the curva-
ture of trajectories or the robotic capability of steering. The DLS of trace is characterized 
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One trajectory is designed as shown in Figure 13b and partitioned into three seg-
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tangential direction (white shading), respectively. In this case, the curvature radius (Rs) 

Figure 12. Directional penetration under a certain ratio between lateral and axial thrust force: (a) the
directional motion under lunar gravity (1/6 Earth gravity) by a constant value of axial thrust; (b) the
directional motion under lunar gravity by a constant value of lateral thrust; (c,d) the dimensionless
displacements under Earth gravity by a constant value of axial thrust and lateral thrust, respectively.

4.2. Trajectory Tracking via PD Control

To track a specified trace with PD control strategies, the difference between the given
and predicted values of the displacements and velocities are the important quantities in
PD-ODEs. Therefore, the performances of tracking are compared in terms of both the
displacements and the velocities between the predicted and specified trajectory. In this
case, k1 and k2 are set as a constant of the depth-independence. The main parameters used
in the simulation are listed in Table 2.



Aerospace 2023, 10, 190 17 of 27

Table 2. Main parameters of simulation with PD control.

Names Symbols Values Units (SI)

Mass of motion body m 1 kg
Body length LB 1 m
Arm length of lateral thrust, F lF 0.8 m
Cross-sectional diameter 2R 0.08 m
Ratio of rotational center in length a/b 0.25 /
Axial proportional-control factor k1

p 1 × 103 kg/s2

Lateral proportional-control factor k2
p 8 × 103 kg/s2

Torsional proportional-control factor k3
p 1 × 104 kg·m2/s2

Axial derivative-control factor k1
D 100 kg/s

Lateral derivative-control factor k2
D 100 kg/s

Torsional derivative-control factor k3
D 1 × 104 kg·m2/s

The dogleg severity (DLS) is a measure of the change in direction of a well bore
over a defined length, which is widely used for the oil and gas application to describe
how the wellbore trajectory changes rapidly [52]. DLS is a terminology here to compare
the curvature of trajectories or the robotic capability of steering. The DLS of trace is
characterized by the curvature radius, Rs, and its rotation angle, θR, as shown in Figure 13a.
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shaped borehole in the subsurface block during the directional drilling. The borehole di-
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tunnel, as shown in Figure 15a. The value of Rc/R is introduced as the ratio of actual bore-
hole radius vs. the robotic body’s radius. Here, 𝑅𝑐 is defined as the projected radius of 
robotic cylinder body length perpendicular to the normal direction of a specified path. A 
simulated result is shown in Figure 15b. The plotted circles of Rc/R through this work are 
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again, because the attitude angle of the robot is not deviating to ream the hole. 

Figure 13. Diagram of one planned trajectory: (a) the schematic diagram of DLS and a planned
trajectory; (b) the planned trajectory of curvature radius Rs = 100 m and rotational angle θR = 3◦.

One trajectory is designed as shown in Figure 13b and partitioned into three segments
of 1, 2, and 3. The segments represent three stages of drilling: the vertical penetrating
locomotion (blue shading), steering (yellow shading), and then locomotion along its tan-
gential direction (white shading), respectively. In this case, the curvature radius (Rs) and its
rotation angle (θR)are set as constants, where θR is the same value of 3◦ and the curvature
radius, Rs, is 100 m.

Here, the simulations of directional motion are conducted with the set of parameters
k1 = 10 N/m, k2 = 5 N/m, Rs = 100 m, and θR = 3◦. As the results show in Figure 14, the
prediction follows well with the specified trajectory in both displacements and velocities.
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The fluctuation in the predicted velocities is due to the continuous adjustment during the
steering motion and stepping into segment 3. The coupled PD method has the capability of
tracking the pre-defined trajectory. The robot drills and reams a tubular-shaped borehole
in the subsurface block during the directional drilling. The borehole diameter, Rc, varies
along the movement direction when the robot builds up a 3D curved tunnel, as shown
in Figure 15a. The value of Rc/R is introduced as the ratio of actual borehole radius vs.
the robotic body’s radius. Here, Rc is defined as the projected radius of robotic cylinder
body length perpendicular to the normal direction of a specified path. A simulated result
is shown in Figure 15b. The plotted circles of Rc/R through this work are scaled by a
magnified factor of 2 for a clear visualization of wellbore size. The color bar is normalized
from the radius, R, to the diameter, 2R, of the robot. As illustrated, Rc increases from
segment 1 to segment 2. Near the end of segment 2, the Rc decreases to R again, because
the attitude angle of the robot is not deviating to ream the hole.
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Figure 14. Comparison of directional motion between simulation and designed regarding dis-
placement and velocity: (a,b) the displacement histories in the vertical and horizontal directions,
respectively; (c,d) the velocity histories in the vertical and horizontal directions. In the legend, ‘Sim’
represents the simulated results, and ‘Designed’ represents the specified trajectory or reference velocity.
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Figure 15. Illustration of borehole development in a directional well: (a) diagram of steering motion
based on the reference trajectory; (b) the predicted borehole radius of Rc/R formed by the robotic
steering locomotion. Note: the color bar of the legend represents the scale range of Rc/R.

4.3. Parametric Studies on Steerability
4.3.1. Effect of the Curvature of Planned Trajectory

To investigate the performance of steering motion at the given trace, three DLS cases
with a different curvatures radius, Rs, but the same rotation angle, θR, of 3◦ are considered.
The cases of Rs = 30 m, 100 m, and 300 m are simulated and compared, as shown in
Figure 16. DLS is determined by the curvature, Rs, and a smaller Rs leads to a higher DLS
or wellbore curvature. In this case, the drilling domain of interest is assumed to be the
constant one with k1 = 10 N/m and k2 = 5 N/m.
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The simulations are conducted under different specified paths with DLSs of
Rs = 30 m, 100 m, and 300 m. As shown in Figure 17, the computational results indi-
cate that the higher curvature of trajectory produces a larger horizontal movement and
higher value of F/P. For the high curvature case, the value of F/P and Rc/R snaps during
the locomotion across the segments with different DLSs. For the small curvature case, the
shape of the wellbore becomes slender. This is because, under the relatively smaller DLS,
the gradient of variation of the trace is actually smoother. Thus, the robot tends to adjust
more easilly under the path with a smaller DLS. Actually, the variation of Rc/R along the
trajectory relates to the steerability, manipulation, and energy consumption of a robot.
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steering robot. In this case, the arm length of lateral force is set the same as b. This ratio 
represents the coupled relationship between the rotation and the arm length of lateral 
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In this case, the given trajectory is defined as shown in Figure 13b. As shown in Fig-
ure 18, the value of a/b =1 has the optimal bore hole diameter, but the values of a/b = 0.25 
and 4 tend to have the higher Rc/R in the steering segment. The maximum Rc/R is pro-
duced at a/b = 4. Limited by its short arm length of lateral force, this makes it hard to offer 
a sufficient capability to steer. The results indicate that to meet the requirements for a fine 
tuning of attitude angle, the structural parameter a/b of the robot should be carefully con-
sidered in the design, especially with the limited steering capacity of actuators. 

Figure 17. Predictions under different specified paths: (a) the dimensionless displacement and
angular rotation of a steering robot; (b,c) the nondimensional variables of F/P and Rc/R varying
with the trajectories with different DLSs, accordingly; (d) 3D representations of wellbore shapes
corresponding to different planned trajectories. Note: the color bar of the legend represents the scale
range of Rc/R.

4.3.2. Effect of the Rotation Center in the Robotic Body

As shown in Figure 2, the ratio of a/b is defined as the relative rotation center of a
steering robot. In this case, the arm length of lateral force is set the same as b. This ratio
represents the coupled relationship between the rotation and the arm length of lateral force.

In this case, the given trajectory is defined as shown in Figure 13b. As shown in
Figure 18, the value of a/b = 1 has the optimal bore hole diameter, but the values of
a/b = 0.25 and 4 tend to have the higher Rc/R in the steering segment. The maximum Rc/R
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is produced at a/b = 4. Limited by its short arm length of lateral force, this makes it hard to
offer a sufficient capability to steer. The results indicate that to meet the requirements for a
fine tuning of attitude angle, the structural parameter a/b of the robot should be carefully
considered in the design, especially with the limited steering capacity of actuators.
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Figure 18. Simulations under different parameters of a specified trace with different a/b ratio of 0.25,
1, and 4: (a,b) the nondimensional variables of F/P and Rc/R, respectively.

4.3.3. Effect of the Moving Velocity Control

In this section, the velocity control along the path is discussed. The velocity of steering
the robot along the directional path is assumed to be a constant. These pre-set velocities
are actually the resultant speeds, denoted as Vs. Its components in both the axial and
lateral directions are accordingly calculated based on the location of the robot along the
pre-planned trajectory, as shown in Figure 13b.

The results of simulation are compared in Figure 19 for different targeted velocities
(Vs) of 1 mm/s, 5 mm/s, 10 mm/s, and 20 mm/s. The maximum Rc/R is decreased with
the higher value of velocity. In the transition region between segments 1 and 2, the value
of Rc/R is lower under the velocity of 1 mm/s. In contrast, the value of Rc/R is smaller
with the faster locomotive velocity during the transition region between segments 2 and 3.
The higher velocity might not give a sufficient time for the robot to adjust its orientation
properly at the start, that is, the transition region between segments 1 and 2. The difference
between the simulation and designed values of displacements and velocities in PD-ODEs is
relatively greater under a higher velocity. Thus, an intense response in iterative steps might
appear in these situations (Vs = 5 mm/s, 10 mm/s, and 20 mm/s). Accordingly, the value
of F/P is increased with the rise in velocity. In the case of constant cruising speed, a high
velocity could lead to a strong counteracting resistance, and therefore consume additional
power to manipulate.



Aerospace 2023, 10, 190 22 of 27
Aerospace 2023, 10, 190 21 of 27 
 

 

 
Figure 19. Simulations of a designed trace with different resultant velocities along the trace: (a) the 
nondimensional variables of F/P and Rc/R vary with different targeted velocities in the depth direc-
tion, accordingly; (b) the borehole shapes are formed under the given velocities. Note: the color bar 
of the legend represents the scale range of Rc/R. 

4.4. Directional Drilling in Different Geological Formations 
4.4.1. A Layered Formation Model with a Set of Constant Stiffnesses 

The interaction between the rod and regolith is described by three parameters: the 
compression stiffness, 𝑘1, in the x- direction and 𝑘2 in the y-direction, and the torsional 
stiffness, 𝐺𝑟. In this case, the stiffness coefficients are assumed to be constant layer by 
layer. To describe the effective stiffness in the robot at its local coordinated system, 𝑘1, 𝑘2, and 𝐺𝑟 are transferred to 𝑘1𝑒 , 𝑘2𝑒 , and 𝐺𝑟𝑒 in a local coordinated system during each 
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constant value of 0.5 in all cases. For the comparison of cases, the pre-defined trajectory is 
the same one as for curvature radius Rs = 100 m and rotational angle 𝜃ோ = 3°, as shown in 
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Figure 19. Simulations of a designed trace with different resultant velocities along the trace:
(a) the nondimensional variables of F/P and Rc/R vary with different targeted velocities in the
depth direction, accordingly; (b) the borehole shapes are formed under the given velocities. Note: the
color bar of the legend represents the scale range of Rc/R.

4.4. Directional Drilling in Different Geological Formations
4.4.1. A Layered Formation Model with a Set of Constant Stiffnesses

The interaction between the rod and regolith is described by three parameters: the
compression stiffness, k1, in the x- direction and k2 in the y-direction, and the torsional
stiffness, Gr. In this case, the stiffness coefficients are assumed to be constant layer by layer.
To describe the effective stiffness in the robot at its local coordinated system, k1, k2, and
Gr are transferred to ke

1, ke
2, and Ge

r in a local coordinated system during each simulated
iteration step, as described in Section 2.3. Here, the ratio of k2/k1 is set as a constant value
of 0.5 in all cases. For the comparison of cases, the pre-defined trajectory is the same one as
for curvature radius Rs = 100 m and rotational angle θR = 3◦, as shown in Figure 13b. The
cruising speed, Vs, is set at the same value of 2 mm/s.

The regolith zone is defined as a three-layered structure; the vertical stiffness of
segment 1, 2, and 3 is set as 1 N/m, 100 N/m, and 1 N/m, respectively, noted as
k1 = 1:100:1. It is numerically expressed in the following way:

k1(x) =


1 x ∈ [0 , 2)

100 x ∈ [2 , 7.3)
1 x ∈ [7.3 , 10]

(25)
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The lateral stiffness is fixed and determined as k2/k1 = 0.5 in all cases. This situation
corresponds to the reality of drilling into a hard formation layer from a soft layer. The
simulated results are also compared with three uniform formation models under constant
stiffness values of k1 = 1, 50, and 100 N/m, respectively, and a layered formation with
k1 = 1:100:1. The results are shown in Figure 20. The locomotion in “harder” regolith could
lead to a more elongated borehole shape compared with different k1. When there is a
layered distribution of stiffness in depth, the segment with a “hard” formation actually
helps the robot to maintain a good steering stability and adjustment of its attitude angle.
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4.4.2. A Formation Model with a Linear Distribution of Stiffness

Considering the actual condition of the layered structure of regolith, stiffness k1 in
the x-direction and k2 in the y-direction, and the torsional stiffness, Gr, may vary with the
depth direction due to overburden [53,54]. Furthermore, a depth-dependent stiffness can
provide the high-fidelity prediction to simulate a practical robot–soil interaction for deep
drilling on the Moon.

In this comparison, the given tracking path is determined with Rs = 100 m and
θR = 3◦, as shown in Figure 13b. The cruising speed, Vs, is a constant of 2 mm/s. As shown
in Figure 21, three slopes of linear formations are considered, δv

a = 1, 1.5, and 2 N/m2, with
the lateral stiffness ratios of k2

k1
= 0.5 (δv

a /δv
l = 0.5). With the same set of parameters, steering

in media of the higher stiffness, it can achieve the higher angular deflection. This indicates
that, to some extent, steering in regolith with a higher (both vertical and lateral) stiffness
makes it easier to adjust the attitude angle of the burrowing robot with a good stability.
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Overall, the results show that the different conditions of DLS of the designed trace,
locomotive velocity, and possible stiffness of layered soils can influence the tracking per-
formance of a self-burrowing robot. Currently, PD parameters are given as a certain set
of values, so it is not necessary to strictly follow the desired path. In the near future, the
control algorithm will be investigated in more details.

5. Conclusions

In this work, a predictive model of a self-locomotive burrowing device is proposed.
A set of 3-DOF governing equations is derived to describe the kinematic states of a mole-
like drilling robot. The trajectory and kinematics of locomotion is predicted numerically
with the implementation of the Runge–Kutta method. The coupled equations with the
proportional-derivate control method are developed to estimate the F/P and Rc/R along
the prescribed trajectory. Parametric studies with planned trajectories, planet gravity,
formations, and structural parameters are investigated for understanding the steerability
and capacity of actuation during the drilling process.

The proposed reduced-order model serves as a simplified tool to simulate the operating
and controlling scenarios of an autonomous burrowing robot within the lunar subsurface.
It also provides an estimation of the operating difference between drilling experiments
in a lunar environment and on Earth. It may be further expanded to consider full 3D
trajectory planning and navigation algorithms coupled with the in-time subsurface imaging
techniques of LPR and data-driven digital-twin development.

All in all, this model provides an initial attempt to plan the space missions of a drilling
robot to obtain regolith samples through deep drilling within an extraterrestrial planet such
as the Moon or Mars.
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