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Abstract: The relative pose estimation of the space target is indispensable for on-orbit autonomous
service missions. Line segment detection is an important step in pose estimation. The traditional
line segment detectors show impressive performance under sufficient illumination, while it is easy
to fail under complex illumination conditions where the illumination is too bright or too dark. We
propose a robust line segment detector for space applications considering the complex illumination
in space environments. An improved two-dimensional histogram construction strategy is used to
optimize the Otsu method to improve the accuracy of anchor map extraction. To further improve
line segment detection’s effect, we introduce an aggregation method that uses the angle difference
between segments, the distance between endpoints, and the overlap degree of segments to filter
the aggregation candidate segments and connect disjoint line segments that probably came from
the same segment. We demonstrate the performance of the proposed line segment detector using a
variety of images collected on a semiphysical simulation platform. The results show that our method
has better performance than traditional line segment detectors including LSD, Linelet, etc., in terms
of line detection precision.

Keywords: complex illumination; space target; line segment detection; Otsu; aggregation

1. Introduction

Accurate measurement of the relative pose of space targets is a prerequisite for on-orbit
service missions. Vision-based measurement technology has great potential advantages in
the pose estimation missions of close-range space targets. Visual pose estimation methods
can be divided into traditional measurement methods and deep learning methods. There
are two main types of pose estimation methods based on deep learning: based on the
target recognition network and based on the pose estimation network. The pose estimation
algorithm based on the target recognition network is an indirect pose estimation method; it
first uses the target recognition network for feature extraction to obtain key point position
information and then uses the traditional method for pose estimation [1–3]. The method
based on the pose estimation network is a relatively direct pose estimation method, which
directly obtains the six degree of freedom pose estimation result through the overall
regression and categorical voting network [4–7]. Deep learning techniques have achieved
great success in many fields, especially in computer vision. However, space applications
differ from ground tasks because of their high reliability requirements and the relatively
limited computing resources of space hardware [8]. The space target pose estimation
method based on deep learning has a large amount of computation and lacks a real large
dataset, and whether it can meet the high requirements of space missions for robustness
has not been verified in actual space tasks. In contrast, traditional visual pose estimation
methods are more reliable and have a large number of applications in space missions,

Aerospace 2023, 10, 195. https://doi.org/10.3390/aerospace10020195 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10020195
https://doi.org/10.3390/aerospace10020195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-7140-430X
https://doi.org/10.3390/aerospace10020195
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10020195?type=check_update&version=3


Aerospace 2023, 10, 195 2 of 19

but they are greatly affected by environmental factors and need to be further studied for
specific problems.

For most manmade space targets, the key structures of space targets are mostly com-
posed of line segments. Compared with other features, line segments are less affected
by observation conditions such as illumination and noise. Using line segments to rep-
resent space targets can reduce the complexity of the pose estimation algorithm. At the
same time, the robustness of the algorithm will be greatly improved. In addition to ap-
plications in target pose estimation [9], line segment extraction is also widely used in the
fields of target detection [10–13], image registration [14], target recognition [15,16], and
3D reconstruction [17,18].

Different from the feature extraction problem of motion targets in general scenes,
the line segment extraction of noncooperative targets in space for the in-orbit control
process faces more challenges. In space, (1) the illumination varies dramatically. The strong
sunlight leads to high contrast and high dynamic range of the image, where the image
brightness on the side facing the sun is large and even oversaturated, while the side that
is not exposed to the sun is dark and the image brightness is low. How to accurately
extract the target line segment features under complex illumination poses a challenge to the
existing traditional line segment detection algorithms. (2) The star background, shadow,
and spatial noise challenge the robustness of the line segment detection algorithm. (3) The
on-orbit operation missions have higher requirements for the real-time performance of the
line segment detection algorithm. The on-orbit operation missions require the spacecraft
to have the ability of guidance, navigation, and control. The premise of attitude orbit
control is to obtain the pose information of the target, which puts forward requirements
for the speed of pose estimation and line detection algorithm. Generally, to ensure that the
space on-orbit operation missions can be completed stably, the speed of the whole pose
estimation algorithm needs to be guaranteed at more than 4 HZ.

The existing line segment detection methods can be broadly classified into two cat-
egories: the Hough transform (HT)-based approach and the perceptual-grouping-based
approach. HT is one of the most commonly used line detection algorithms [19]. It cleverly
converts the line segment detection problem in the image domain into a peak detection
problem in the parameter space. HT has good robustness to edge gaps and image noise,
but it also has some shortcomings, such as complex threshold settings, a large number of
false alarms, and a large amount of computation. For the shortcomings of the HT, many
improved Hough detectors have been proposed.

The improved Hough detectors mainly focus on improving the performance and
reducing the complexity of the algorithm. Kiryati et al. [20] proposed a probabilistic
Hough transform (PHT) method, which uses only a small number of randomly selected
edge points in the image as the input to the Hough transform. Galamhos et al. [21]
improved the PHT by proposing a progressive probabilistic Hough transform (PPHT)
method, which accelerates the calculation of HT by the selection of random edge points.
Xu et al. [22] proposed a random Hough transform (RHT) method. For a curve with n
parameters, it improves efficiency by randomly selecting n pixels and mapping them to
a point in the parameter space. Fernandes et al. [23] proposed a kernel-based Hough
transform (KHT) method, which improves the robustness of HT using an effective voting
scheme. Du et al. [24] proposed a method that could accurately extract the endpoints of
line segments, which uses the geometric analysis method to extract inherent features of line
segments from the voting distribution near the HT peak. Almazan et al. [25] proposed a
Markov chain marginal line segment detector (MCMLSD) based on PPHT, which combines
the advantages of PPHT and image domain spatial analysis to identify line segments, but it
produces many false positives in complex real images.

The perceptual grouping (PG) method solves the line segment detection problem from
a completely different perspective. This type of method first uses the gradient magnitude
and direction to group pixels, then fits the pixels in the same group into line segments, and
finally suppresses the false alarm of line segments by verification methods.
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Burns et al. [26] proposed the first line segment detector based on gradient direction,
but this detector requires manual parameter adjustment and has false detections of line seg-
ments. To control false positives, Desolneux et al. [27] proposed the Helmholtz principle to
verify line segments, which converts the detection threshold to the number of false alarms
(NFA) by employing the inverse uniform random assumption. Lu [28] et al. extended
the application of the Helmholtz principle by using the relative number of false alarms
(RNFA) instead of the NFA. In a subsequent study, Grompone et al. [29] introduced the
Helmholtz principle and proposed an advanced line segment detector (LSD), which effec-
tively solves the problems of manual parameter adjustment and false alarm suppression.
Akinlar et al. [30–32] proposed a faster line segment detector (EDlines), which provided
the possibility of real-time application of line segment detection. Similarly, Wang et al. [33]
proposed an adaptive gradient threshold and full-direction line segment growth method
based on line detection. To solve the problem of manual parameter adjustment, Lu et al. [34]
improved the Canny detector and proposed a parameter-free detector (Cannylines), which
has better robustness in manmade scenes. Aiming at the problem of the line segment
oversegmentation, Salaün et al. [35] proposed a multi-scale extension method for LSD,
this method effectively solves the over-segmentation problem and is more robust to low-
contrast noise. Yu et al. [36] also proposed a similar improved method. Hamid et al. [37]
proposed a method to merge fracture line segments. Cho et al. [38] proposed a new line
segment detection method (Linelet), which can extract more effective line segments, but it
cannot overcome the problem of line segment breaks under the condition of gradient insta-
bility. In terms of the line segment fitting method, Liu et al. [39,40] proposed a length-based
line segment detector (LB-LSD), which does not use the traditional least squares error to fit
the line segments but fits the line segments according to the length condition.

Recently, Wei et al. [41] proposed a line segment detection method (AG3lines) that
combines active grouping and geometric gradients. The method consists of three stages:
anchor map extraction, active grouping, and line segment validation, which can control
false positives and run faster. However, the robustness of the method is not good under
complex illumination and noise interference. The main reason is that complex illumination
and noise affect the anchor map extraction, which leads to a low number of anchors and
extraction errors. The subsequent line segment validation is also affected. In the line
segment validation phase, AG3lines adopts two methods to control false positives from
rough to fine. Firstly, the anchor density along the line segment is exploited to control false
positives, and then the distribution of the gradient magnitudes along the line segment is
used to further control false positives. Due to the error in the anchor map extraction, the
anchor density of the line segment changes, and the reduction in the anchors may lead to a
situation that the adjacent small line segments from the same line segment fail to connect.

The line segment fracture phenomenon caused by the reduced number of anchors
when the illumination varies dramatically is shown in Figure 1. Figure 1a is the original
image with the presence of two line segments, which should generate Figure 1b after line
segment detection. Due to the too-dark illumination conditions, AG3lines has the problem
of decreasing anchors, as shown in Figure 1c. False positives occur after active grouping,
and the results are as shown in Figure 1d. The fracture of the line segment causes the
adjacent small segments of the same line segment to fail to connect.

To furtherly improve the performance of the space target line segment detector, this
paper proposes a line segment detection method for space targets under complex illumi-
nation named ST_LSD. The noise is removed by introducing adaptive bilateral filtering.
The anchor map extraction method is optimized by combining the improved Otsu [42]. An
aggregation method is introduced to produce line segment results of higher quality.
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Figure 1. The line segment fracture phenomenon is caused by the reduced number of anchors. (a) The
original image. (b) Theoretical output image. (c) Anchor map after AG3line processing. (d) Actual
output image.

The remainder of this paper is organized as follows. Section 2 describes the design
details of ST_LSD. Section 2.1 introduces the overview of ST_LSD. Section 2.2 describes
the noise removal method combined with adaptive bilateral filtering. Section 2.3 details
the anchor map extraction method combined with improved Otsu. Section 2.4 discusses
the improved line segment validation and the aggregation method. Section 3 provides our
quantitative and qualitative evaluation of the proposed method. Section 4 discusses the
parameter settings and algorithm complexity of ST_LSD. Section 5 draws the conclusions.

2. Methods
2.1. Overview of ST_LSD

Figure 2 shows the workflow of ST_LSD. Firstly, to protect the edge and remove
the noise, the input gray image is preprocessed by adaptive bilateral filtering. Secondly,
the improved Otsu algorithm is used to segment the target under complex illumination.
The gradient magnitude and gradient direction are calculated, and pixels have a high
probability that line segments that pass over are extracted as effective anchors. Thirdly, the
anchors are actively grouped into line segments based on the line segment geometry and
the alignment of gradient direction. Line segments are verified according to the anchor
density and gradient magnitude distribution to control false positives. Finally, according
to the line segment aggregation method, the adjacent small line segments that may come
from the same line segment are detected and connected.

Aerospace 2022, 9, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. The line segment fracture phenomenon is caused by the reduced number of anchors. (a) 

The original image. (b) Theoretical output image. (c) Anchor map after AG3line processing. (d) 

Actual output image. 

To furtherly improve the performance of the space target line segment detector, this 

paper proposes a line segment detection method for space targets under complex illu-

mination named ST_LSD. The noise is removed by introducing adaptive bilateral filter-

ing. The anchor map extraction method is optimized by combining the improved Otsu 

[42]. An aggregation method is introduced to produce line segment results of higher 

quality.  

The remainder of this paper is organized as follows. Section 2 describes the design 

details of ST_LSD. Section 2.1 introduces the overview of ST_LSD. Section 2.2 describes 

the noise removal method combined with adaptive bilateral filtering. Section 2.3 details 

the anchor map extraction method combined with improved Otsu. Section 2.4 discusses 

the improved line segment validation and the aggregation method. Section 3 provides 

our quantitative and qualitative evaluation of the proposed method. Section 4 discusses 

the parameter settings and algorithm complexity of ST_LSD. Section 5 draws the conclu-

sions. 

2. Methods 

2.1. Overview of ST_LSD 

Figure 2 shows the workflow of ST_LSD. Firstly, to protect the edge and remove the 

noise, the input gray image is preprocessed by adaptive bilateral filtering. Secondly, the 

improved Otsu algorithm is used to segment the target under complex illumination. The 

gradient magnitude and gradient direction are calculated, and pixels have a high proba-

bility that line segments that pass over are extracted as effective anchors. Thirdly, the 

anchors are actively grouped into line segments based on the line segment geometry and 

the alignment of gradient direction. Line segments are verified according to the anchor 

density and gradient magnitude distribution to control false positives. Finally, according 

to the line segment aggregation method, the adjacent small line segments that may come 

from the same line segment are detected and connected. 

 

Figure 2. The workflow of ST_LSD.

2.2. Noise Removal Method Combined with Adaptive Bilateral Filtering

Although the camera used in space may adopt a series of measures to suppress stray
light and noise, for example, the spectral characteristics of the CCD sensor can be reasonably
selected to make it work in the band where the sunlight irradiance is relatively weak and
the sensitivity of the CCD sensor is relatively strong. A narrow-band filter is added in front
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of the lens to filter out some stray light outside the target. However, the impact of complex
illumination and spatial noise on image quality still cannot be avoided.

When the original image contains noise, the first step of line segment detection is
to filter the image to remove the noise. Line segment detection algorithms generally use
linear filtering methods, such as the most commonly used Gaussian filtering. However,
linear filtering methods can suppress some edges while removing noise, resulting in edge
blurring, which is not conducive to the extraction of subsequent anchors. To address the
problem, we adopt a nonlinear filtering method, where a fast adaptive bilateral filter [43] is
used instead of the traditional Gaussian filter.

Let I : Z2 → R represent the input image. The output image O : Z2 → R after adap-
tive bilateral filtering is given by:

O(x) = k(x)−1 ∑
y∈Ω

η(y)φx(I(x− y)− θ(x))I(x− y) (1)

the normalized parameter k(x) is expressed as:

k(x) = ∑
y∈Ω

η(y)φx(I(x− y)− θ(x)) (2)

where the θ(x) is the intensity of the image pixel of interest I(x), which is set to be
θ(x) = I(x) + f (x). f (x) is the offset image pixel. Ω is a window centered at the origin,
and the window in Equations (1) and (2) is usually set to be Ω = [−3ρ, 3ρ]2. φx : R→ R is
the local Gaussian range kernel, which is expressed as:

φx(i) = exp

(
− i2

2σ(x)2

)
(3)

where σ(x) is the standard deviation of the Gaussian function. Importantly, the spatial
kernel η : Z2 → R in Equation (1) is a Gaussian kernel, which is calculated as:

η(y) = exp

(
−‖y‖

2

2ρ2

)
(4)

where ρ is also the standard deviation of the Gaussian function.

2.3. Anchor Map Extraction Method Combined with Improved Otsu

To further improve the robustness of the line detection under complex illumination,
an adaptive image segmentation method based on the Otsu algorithm is introduced. The
traditional two-dimensional Otsu algorithm has limitations in processing images with
salt-and-pepper noise and uneven illumination. An improved two-dimensional histogram
construction strategy is proposed to improve the extraction of the anchor map.

Suppose f is an image represented in L gray value with M rows and N columns. Let
A be the corresponding mean image. The gray level of pixels in A is calculated by:

A(x, y) =
x+(k−1)/2

∑
x̃=x−(k−1)/2

y+(k−1)/2

∑
ỹ=y−(k−1)/2

f (x̃, ỹ) (5)

where, A(x, y) and f (x, y) represent the gray level of the pixel at (x, y) in A and f , respec-
tively. k represents the size of the filter, and the value of k is set to be 3 in our work.

To reduce the complexity, two-dimensional tuples are used to simplify the calcula-
tion [44]. Let f (x, y) = i, A(x, y) = j, both of which form the tuple G(x, y). Then, the
tuple contains the gray level of any pixel and its corresponding neighborhood mean gray
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information. Suppose nij is the number of occurrences of pixel (x, y) in the histogram.
Thus, the two-dimensional joint probability function Pij is obtained as:

Pij =
nij

M× N
(6)

where x, y ∈ [0, L− 1],nij ∈ [0, M× N] and ∑
i

∑
i

Pij = 1.

Given a threshold pair (s, t) consisting of gray threshold s and neighborhood mean
gray threshold t. The two-dimensional histogram shown in Figure 3 is divided into four
areas A, B, C, and D representing the background, edge, target, and noise.
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For the space target images, the gray value of the pixel inside the target is roughly
the same as the neighborhood mean gray level, and so is the gray value of the spatial
background. However, the gray values at the edges of the target and the noise are different.
For a given threshold pair (s, t), image pixels can be divided into two groups, background
Tb and objects To. Their occurrence probabilities can be expressed as:

ωb = P(Tb) =
s

∑
i=1

t

∑
j=1

Pij (7)

ωo = P(To) =
L−1

∑
i=s

L−1

∑
j=t

Pij (8)

where the mean vectors δb and δo corresponding to Tb and To can be expressed as:

δb =
(

δbi, δbj

)T
=

(
s

∑
i=1

t

∑
j=1

iPij

ωb
,

s

∑
i=1

t

∑
j=1

jPij

ωb

)T

(9)

δO =
(
δOi, δOj

)T
=

(
L−1

∑
i=s

L−1

∑
j=t

iPij

ωo
,

L−1

∑
i=s

L−1

∑
j=t

jPij

ωo

)T

(10)

Due to the assumption that the occurrence of image data away from the diagonal of
the 2D histogram is negligible [45], we can obtain the following approximate expression:

ωb + ωo ≈ 1, δL = ωbδb + ωoδo (11)

The between-class variance of the two-dimensional Otsu algorithm can be defined as follows:

σB =
1

∑
k=0

ωk[(δk − δT)(δk − δT)
T ] (12)
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By using the trace of σB as the measurement of between-class variance, there is:

Tr(σB) = ωb

[
(δbi − δLi)

2 +
(

δbj − δLj

)2
]
+ ωo

[
(δoi − δLi)

2 +
(
δoj − δLj

)2
]

(13)

Therefore, the optimal threshold pair s∗, t∗ can be obtained by maximizing the between-
class variance:

(s∗, t∗) = arg max
0≤s,t≤L−1

(Tr(σB)) (14)

We propose a construction strategy for a two-dimensional histogram. Based on the
fact that median filtering can suppress salt-and-pepper noise well, the steps of median
filtering are introduced in the construction of a two-dimensional histogram.

Firstly, the original image f is median filtered with k × k convolution kernel, and
median image M can be expressed as:

M(x, y) = med

{
f (x̃, ỹ)

∣∣∣x− k−1
2 ≤ x̃ ≤ x + k−1

2 ,

y− k−1
2 ≤ ỹ ≤ y + k−1

2

}
(15)

Secondly, according to the obtained median image M, the corresponding mean image
can be calculated by:

A(x, y) =
x+(k−1)/2

∑
x̃=x−(k−1)/2

y+(k−1)/2

∑
ỹ=y−(k−1)/2

M(x̃, ỹ) (16)

Finally, we use the median image M and the mean image A to construct a two-
dimensional histogram. Based on constructing a two-dimensional gray histogram, the
inter-class variance is calculated, and the optimal segmentation threshold is obtained by
maximizing the interclass variance. The flow chart is shown in Figure 4. Algorithm 1 shows
the implementation process of the improved two-dimensional Otsu algorithm.

Algorithm 1 Improved Otsu method

Input: The gray image f ; Initialization parameter.
Output: Otsu segmentation result image O.

Step1: median filtering.
Step2: construct the 2D histogram using median image M and median-average

image A.
Step3: calculate the between-class variance Tr.
for i = 0 to 256 do

for j = 0 to 256 do

Tr←
(

ωb(δLi − δbi)
2
)
+

(
ωo

(
δLj − δoj

)2
)

/(ωbωo)

Step4: calculate the optimal threshold for maximizing the between-class variance.
if (Tr > maxvariance) then
maxvariance←Tr
Trthreshold_s← i
ithreshold_t← j
end

end
end
T← threshold_s
return T

Step5: segment the image by the threshold value T.
ShowImage O.
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Secondly, according to the obtained median image 𝑀, the corresponding mean im-
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Figure 4. Flow chart of the algorithm.

The improved Otsu method is used to process the image, then the gradient magnitude
and gradient orientation are calculated, and the effective anchors are extracted in two
steps. Firstly, we use the non-maximum suppression method of the Canny algorithm to
extract pixels to obtain general anchors. Secondly, based on the property that the gradient
direction of line pixel should be aligned with neighbor pixels. To improve the effectiveness
of anchor points and simplify the anchor map, we further verify the general anchors by the
orientation and extract general pixels aligned with their neighbor edge pixels as effective
anchors. Algorithm 2 presents the implementation process of the anchor map extraction
method combined with Otsu.

Algorithm 2 Anchor map extraction method combined with improved Otsu

Input: The image I processed by the improved Otsu method;
the gradient orientation tolerance µ.

Output: Effective anchors Ae.
Step1: calculate the gradient magnitude Gm and gradient orientation Go of pixel P(x, y); the

center pixel of the neighborhood of pixel P(x, y) is Gp; the interpolation of two gradient amplitudes
along the gradient orientation is Gp1 and Gp2, respectively; output the general anchors Ag.

if Gp ≥ Gp1 and Gp ≥ Gp2 then
Ag ← Gp

else
Gp ← 0

end if
return Ag

Step2: verify the general anchors and obtain effective anchors Ae; the
gradient orentation of the general anchors Ag is Gg.

if Gg is horizontal then
for pixel P(x, y) in {(x, ya) y−1 ≤ ya ≤ y+1, ya∈N} do

if angdiff (Gg (x, y), Gg (x, ya)) < µ than
Ae ← true

else Ae ← false
end if

end for
end if

return Ae

2.4. Line Segment Validation and Aggregation

Local strong light may make it impossible to extract effective anchors, which may cause
the number of effective anchors to decrease, similar to the partial structure being partially
occluded. After anchor map extraction, active grouping, and line segment validation, there
may be a situation that the adjacent small line segments from the same line segment fail
to connect.

Figure 5 shows this false alarm caused by the change in anchor density. In Figure 5a,
there is an obvious line segment. Due to the interference of strong light or noise in the
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middle of the line segment, the anchor extraction has problems, as shown in Figure 5b,
where the number of red anchors in the middle of the line segment (the blue circular region)
is less than the threshold of anchor density. After the anchor density method along the
line segment, the complete line segment is segmented into two small blue adjacent line
segments as shown in Figure 5c. This type of false alarm is likely to occur under complex
illumination and noise interference. To solve this problem, an aggregation method for
complex illumination is used, which realizes the aggregation of line segments by connecting
disjoint line segments that probably came from the same line segment.

Aerospace 2022, 9, x FOR PEER REVIEW 9 of 20 
 

 

5b, where the number of red anchors in the middle of the line segment (the blue circular 

region) is less than the threshold of anchor density. After the anchor density method 

along the line segment, the complete line segment is segmented into two small blue ad-

jacent line segments as shown in Figure 5c. This type of false alarm is likely to occur un-

der complex illumination and noise interference. To solve this problem, an aggregation 

method for complex illumination is used, which realizes the aggregation of line seg-

ments by connecting disjoint line segments that probably came from the same line seg-

ment. 

 

Figure 5. False alarm caused by anchor density change. (a) The original image. (b) Errors in anchor 

map extraction. (c) The complete line segment is divided into two small line segments. 

Suppose the line segment obtained during the validation phase of the line segment 

is 𝑙𝑎. We call adjacent disjoint segments that probably came from the same line segment 

as an aggregate candidate line segment 𝑙𝑏. The angle difference between the line seg-

ments, the distance between endpoints, and the overlap of the line segments are used to 

judge whether the aggregate candidate line segment 𝑙𝑏 can be aggregated. The angle dif-

ference between the line segments and the distance between the endpoints are defined 

as shown in Figure 6. 

 

Figure 6. Schematic diagram of the angle difference between segments and the distance between 

endpoints. 

First, we consider the angle difference between line segments as the first aggregate 

condition for candidate line segments. Let the angle difference between line segments 𝑙𝑎 

and 𝑙𝑏  be 𝜃. When 𝜃 is less than a certain angle difference threshold 𝜏𝜃 , the two line 

segments may meet the aggregation requirements and enter the next aggregation condi-

tional validation phase. The angle difference threshold 𝜏𝜃 is calculated by: 

( )

1
1

1 e
   
 

+
= −

+

 
 
 

 (17) 

where 𝛼, 𝛽, and 𝛾 are coefficients and 𝜆 is a combined normalization coefficient, which 

can be expressed as: 

b

a d

l d

l



= +  (18) 

where |𝑙𝑎| and |𝑙𝑏| represent the lengths of the line segments 𝑙𝑎 and 𝑙𝑏, respectively, and 

𝑑 and 𝜏𝑑 are described below.  

Figure 5. False alarm caused by anchor density change. (a) The original image. (b) Errors in anchor
map extraction. (c) The complete line segment is divided into two small line segments.

Suppose the line segment obtained during the validation phase of the line segment is
la. We call adjacent disjoint segments that probably came from the same line segment as
an aggregate candidate line segment lb. The angle difference between the line segments,
the distance between endpoints, and the overlap of the line segments are used to judge
whether the aggregate candidate line segment lb can be aggregated. The angle difference
between the line segments and the distance between the endpoints are defined as shown
in Figure 6.
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Figure 6. Schematic diagram of the angle difference between segments and the distance
between endpoints.

First, we consider the angle difference between line segments as the first aggregate
condition for candidate line segments. Let the angle difference between line segments la and
lb be θ. When θ is less than a certain angle difference threshold τθ , the two line segments may
meet the aggregation requirements and enter the next aggregation conditional validation
phase. The angle difference threshold τθ is calculated by:

τθ =

(
1− 1

1 + eα(λ+β)

)
γ (17)

where α, β, and γ are coefficients and λ is a combined normalization coefficient, which can
be expressed as:

λ =
|lb|
|la|

+
d
τd

(18)

where |la| and |lb| represent the lengths of the line segments la and lb, respectively, and d
and τd are described below.

Second, we use the endpoint distance between the line segments as the second aggre-
gate condition, as shown in Figure 7. We calculate the Euclidean distance between each
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endpoint of la and lb and select the smallest endpoint distance as the endpoint distance
between la and lb. When the two line segments are close enough—in other words, the
endpoint distance d meets a certain endpoint distance threshold—it is possible for the two
line segments to further aggregate. Set the endpoint distance threshold as τd, which is
proportional to the length of the line segment:

τd = ε|max{|la|, |lb|}| (19)

where ε is a custom coefficient that satisfies 0 < ε < 1.
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Finally, we determine whether there is an overlap between the two line segments, as
shown in Figure 7. The two segments la and lb are projected onto the x-axis, and the overlap
length ψ(la, lb) between la and lb can be obtained. Since the aggregation method is the
last part of ST_LSD, it is necessary to prevent false positives while connecting disjoint line
segments that may come from the same line segment. Therefore, we set a strict criterion
for overlap judgment, where only ψ(la, lb) = 0. In other words, the last condition for
aggregation can be satisfied only when there is no overlap between the two line segments.

We list five typical relationships between adjacent line segments, as shown in Figure 8.
In Figure 8a, the angle difference between line segments la1 and la2 is too large to satisfy
the first condition of aggregation. As shown in Figure 8b, although line segments lb1 and
lb1 satisfy the constraint of an angle difference, the endpoint distance between the two line
segments is greater than the endpoint distance threshold τd. This situation does not meet
the aggregation condition. In Figure 8c, the angle difference between line segments lc1
and lc1 is small enough, and the endpoint distance also meets the requirements, but the
two line segments overlap and do not meet the aggregation requirements. In Figure 8d,
line segments ld1 and ld1 maintain a collinear disjoint relationship, which is the most ideal
situation for aggregation. The two line segments are adjacent and close enough, and
all three conditions meet the requirements, so the aggregation operation can be carried
out on the two line segments. In Figure 8e, line segments le1 and le1 show a parallel
disjoint situation, which is common in structural space targets composed of polyhedrons.
In this case, the overlap of the two line segments also makes it impossible to meet the
aggregation requirements.
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3. Results

We have conducted extensive and detailed experiments, and both quantitative and
qualitative experiments are employed for the evaluation of the ST_LSD line segment
detection method. The performance of ST_LSD is also compared to LSD, EDLines, Linelet,
and AG3line. Among them, LSD and EDLines are the most widely used line segment
detectors in recent years, Linelet is a relatively new detector, and the AG3line detector has
better effectiveness and faster speed.

3.1. Evaluation Metrics

To scientifically and comprehensively evaluate the performance of ST_LSD, four
classical indicators in the field of line segment detection are used in this paper: precision,
recall, F-score, and computation time (the unit is milliseconds). Precision, recall, and F-score
can be calculated by:

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F− score =
2PR

P + R
(22)

where TP is the number of correctly detected line segments called true positive, FP is the
false positive and represents the number of incorrectly detected line segments, and FN
indicates false negative, that is, the number of line segments that exist in the image but are
not detected by the algorithm. In addition, the computation time can reflect the operating
efficiency of the algorithm.

In the evaluation of Linelet and AG3line, the valid detection line segment Led and its
ground truth Lgt satisfied the following constraints: (1) the angle difference between Led
and Lgt is smaller than π/36; (2) the midpoint of Led is within one pixel to Lgt; and (3) the
intersection over Lgt is larger than the threshold:

Led ∩ Lgt

Lgt
≥ λarea (23)

To avoid setting the overconnection as a true positive, we follow an additional con-
straint added by AG3line:

Led ∩ Lgt

Led
≥ λarea (24)

λarea is the intersection threshold. In this paper, we set it to λarea = 0.5 by following
the Linelet and AG3line methods.
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3.2. Dataset Description

The experimental data in this paper are the optical images of the noncooperative target
in space. To collect the optical image data of space targets under different illumination
and different noise interference, we built a semiphysical simulation platform to simulate
the space environment. The semiphysical simulation platform is shown in Figure 9. The
experimental system includes a three-axis turntable, a three degree of freedom guide rail, a
camera suitable for the micro-nano satellite platform in space, a real 3U CubeSat, a solar
illumination simulator, and the Earth background. In terms of illumination simulation,
we use the solar simulator to simulate different illumination intensities and control the
movement of the target by rotating the three-axis turntable so as to simulate the situation
of different incidence angles of sunlight, and the images of different light intensities and
different incidence angles of sunlight are collected by the camera. In addition, the three
degrees of freedom guide rail can also control the distance between the target and the
tracker. In general, the platform can simulate and collect the pose of the CubeSat in different
space environments.

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 20 
 

 

ed gt

area

ed

L L

L



  (24) 

𝜆𝑎𝑟𝑒𝑎 is the intersection threshold. In this paper, we set it to 𝜆𝑎𝑟𝑒𝑎 = 0.5 by following the 

Linelet and AG3line methods. 

3.2. Dataset Description 

The experimental data in this paper are the optical images of the noncooperative 

target in space. To collect the optical image data of space targets under different illumi-

nation and different noise interference, we built a semiphysical simulation platform to 

simulate the space environment. The semiphysical simulation platform is shown in Fig-

ure 9. The experimental system includes a three-axis turntable, a three degree of freedom 

guide rail, a camera suitable for the micro-nano satellite platform in space, a real 3U Cu-

beSat, a solar illumination simulator, and the Earth background. In terms of illumination 

simulation, we use the solar simulator to simulate different illumination intensities and 

control the movement of the target by rotating the three-axis turntable so as to simulate 

the situation of different incidence angles of sunlight, and the images of different light 

intensities and different incidence angles of sunlight are collected by the camera. In ad-

dition, the three degrees of freedom guide rail can also control the distance between the 

target and the tracker. In general, the platform can simulate and collect the pose of the 

CubeSat in different space environments. 

 

Figure 9. Semiphysical simulation platform. 

The dataset contains 21 images with a size of 640 × 480, which simulates 7 images 

of CubeSat each under high brightness, low brightness, and noise interference. As 

shown in Figure 10, we list some of the images collected in the micro-nano satellite line 

segments (MNS-LS) dataset. Figure 10a represents a high-brightness image. We control 

different illumination intensities on the basis of maintaining high brightness and adjust 

the distance and angle between the target and the camera to control the local or global 

high brightness of the target. Figure 10b represents the low-brightness image, and Figure 

10c represents the image containing noise. We carefully annotated the dataset with the 

annotation software and obtained the ground truth line segment of each image in the 

MNS-LS dataset. In this paper, the performance of ST_LSD is verified by using the MNS-

LS dataset. 

  

Figure 9. Semiphysical simulation platform.

The dataset contains 21 images with a size of 640× 480, which simulates 7 images of
CubeSat each under high brightness, low brightness, and noise interference. As shown in
Figure 10, we list some of the images collected in the micro-nano satellite line segments
(MNS-LS) dataset. Figure 10a represents a high-brightness image. We control different
illumination intensities on the basis of maintaining high brightness and adjust the distance
and angle between the target and the camera to control the local or global high brightness
of the target. Figure 10b represents the low-brightness image, and Figure 10c represents the
image containing noise. We carefully annotated the dataset with the annotation software
and obtained the ground truth line segment of each image in the MNS-LS dataset. In this
paper, the performance of ST_LSD is verified by using the MNS-LS dataset.
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Figure 10. Some images in the MNS-LS dataset. (a) High-brightness image. (b) Low-brightness
image. (c) An image with noise.

3.3. Quantitative Evaluation Results

Table 1 provides the line segment detection results of the five methods on the MNS-
LS dataset. As shown in the results, ST_LSD is better than other methods in precision,
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recall, and F-score. This is mainly attributed to the adaptive bilateral filtering and anchor
map extraction method combined with Otsu introduced in this paper. In addition, the
aggregation method introduced also ensures the integrity of line segments as much as
possible. AG3line ranks second in precision, recall, and F-score because AG3line uses
the combination of active grouping and geometric gradients to facilitate the extraction
of line segments, thus ensuring the recall of line segments. In precision, AG3line adopts
two methods to control false positives from coarse to fine, which is also more effective.
EDlines and Linelet perform very similarly in three aspects, but Linelet does better overall
in precision and F-score. The performance of Linelet in precision benefits from its effective
control of false positives in the validation phase. After the original author’s optimization,
the performance of EDlines is significantly improved, and it performs better than Linelet in
the recall, but its precision and F-score are worse than Linelet, which indicates that EDlines
detect more ground truths as well as more false positives than Linelet. The classical LSD
performs poorly and has a certain gap with the previous four detectors.

Table 1. Performance of different methods on the MNS-LS dataset.

Methods Precision Recall F-Score Time/ms

LSD 0.4994 0.3123 0.3773 43.76
EDlines 0.5761 0.3700 0.4424 47.23
Linelet 0.5782 0.3696 0.4453 -

AG3line 0.6432 0.4476 0.5222 27.88
ST_LSD 0.6807 0.4847 0.5598 33.37

Figure 11 shows the detailed performance of the different methods in precision, recall,
and F-score on the MNS-LS dataset. As shown in the picture, ST_LSD performs better on
images 1–6 with high-brightness illumination. For images with a large gradient difference
between the background and the target, the anchor map extraction method combined with
Otsu can effectively separate the background and target so as to extract more meaningful
line segments. For images 7–13 with too-dark illumination, the gradient difference between
the background and the target is very small. The anchor map extraction method combined
with Otsu fails to effectively separate the target and the background, which leads to the
performance degradation of ST_LSD in images 7–13. However, compared with other
traditional methods, ST_LSD still maintains certain advantages. In addition, for images
14–21 with noise interference, ST_LSD is slightly better in all aspects, mainly due to the
bilateral filtering method introduced in this paper, which can remove noise and effectively
maintain edge information. In general, compared with other methods, ST_LSD performs
better with complex illumination and noise interference.

3.4. Qualitative Comparison

Figures 12–14 show the line segment detection results on images no. 3, 8, and 21
of the MNS-LS dataset, respectively. The image in Figure 12a is a challenging situation,
where high-brightness illumination poses a challenge to the detection of the quadrangu-
lar structure on the front and makes the detected line segment incomplete. As shown
in Figure 12c,d, LSD and EDlines can detect part of the quadrangular structure, but the
number of line segments detected by LSD on the solar panel is too small, and it is not
robust to the situation of complex illumination, while EDlines causes many complete line
segments to break. The orange circular region in Figure 12e shows that Linelet produces
many fractures and more false positives than ST_LSD. We can see from the orange circular
region in Figure 12f that AG3line does not perform well in the detection of the quadrille
structure on the front and some line segments are fractured. In comparison, as shown in
the orange circular region in Figure 12g, ST_LSD can effectively extract some obvious quad-
rangular structure line segments with high-brightness illumination, and it can maintain the
integrity of line segments, such as detecting solar panel line segments while rejecting some
false positives.
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Figure 12. Line segment detection result on image no. 3 of the dataset.

Figure 13a shows the situation with low-brightness illumination. LSD still has the
problem of detecting too few line segments and failing to detect the line segments on the
right side of the square surface. EDlines also has the same problem, but the optimized
EDlines performs better than LSD. As shown in the orange circular region in Figure 13e,
Linelet detects the most fracture line segments and produces the most fractures. AG3line
performs better than the others except for ST_LSD. ST_LSD detects more complete line
segments and also rejects some false positives on the square.
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Figure 14a represents the situation with noise interference. As shown in Figure 14,
ST_LSD outperforms the others in rejecting false positives. In addition, ST_LSD detects the
largest number of meaningful line segments. Many false positives are generated by LSD,
EDlines, and Linelet. LSD and EDlines split a complete line segment into many small lines,
while Linelet is found to produce many fractures and more false positives than ST_LSD.

The quantitative evaluation in Table 2 corresponds to the qualitative results. It can
be seen that ST_LSD has good performance in the detection performance of three images.
ST_LSD achieves the top score in precision, recall, and F-score. Note that the computational
time of ST_LSD ranks second, which is only slightly slower than AG3line.

Table 2. Quantitative evaluation of the performance on images no. 3, 8, and 21 of the dataset.

Algorithm
Image

LSD EDlines Linelet AG3line ST_LSD

#3 #8 #21 Mean #3 #8 #21 Mean #3 #8 #21 Mean #3 #8 #21 Mean #3 #8 #21 Mean

Precision 0.5 0.35 0.56 0.47 0.58 0.42 0.63 0.54 0.63 0.43 0.66 0.57 0.64 0.6 0.68 0.64 0.68 0.64 0.7 0.67
Recall 0.24 0.19 0.41 0.28 0.28 0.25 0.47 0.33 0.28 0.27 0.49 0.35 0.34 0.42 0.57 0.44 0.38 0.45 0.61 0.48
F-score 0.32 0.25 0.47 0.25 0.38 0.31 0.54 0.41 0.39 0.34 0.56 0.43 0.44 0.49 0.62 0.52 0.49 0.53 0.65 0.56

Time(ms) 36.8 35.1 51.8 41.2 41.6 38.6 58.3 46.2 - - - - 25.2 23.4 35.3 28.0 29.1 28.3 42.4 33.3
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4. Discussion

This section describes the parameter settings and algorithmic complexity of ST_LSD.
In addition, future research directions are also proposed.

4.1. Parameter Settings

To ensure the effectiveness of the algorithm comparison, we discuss the parameter
settings of the four comparison methods of LSD, EDLines, Linelet, and AG3line. Finally,
we use the source code and default parameters provided by the original author of the
algorithm. We list some important parameters of the four methods. LSD sets the minimum
gradient magnitude to 5.2; EDLines uses a 5× 5 Gaussian kernel filter with σ = 1 to filter
the image; Linelet sets the linelet length difference threshold τlen to 3; the jump distance of
anchor points in AG3lines is set to 10, and the gradient orientation threshold is π/8. Except
for EDLines, the implementations of the other three methods are available on the websites
provided by the relevant authors. Since the original EDLines code is no longer available on
the website provided by the author, we used the optimized code of the original authors
to improve the performance of EDLines and enhance the comparability of EDLines. Their
implementations are available on the authors’ websites [46–49]. Our algorithm determines
the internal parameters during the experiment. The parameters of ST_LSD are as follows:

1. Suppressing image noise: in Section 2.2, the image is filtered by using an adaptive
bilateral filter with a 3× 3 filter window.

2. Gradient orientation tolerance: in Section 2.3, following the LSD [21] method, two
pixels’ gradient orientations are aligned when the difference between their angles is
smaller than π/8.

3. Angle difference threshold: in Section 2.4, following the LSM [29] method, the coeffi-
cients in the angle difference threshold are set as α = −2, β = −1.5, and γ = 22.5

◦
.

4. Endpoint distance threshold: in Section 2.4, ε = 0.09, and the algorithm has the best
effect in the experiment.

4.2. The Complexity of ST_LSD

For the ST_LSD algorithm, the computational cost mainly includes image preprocessing,
anchor map extraction, active grouping, line segment validation, and line segment aggregation.
We discuss the complexity by testing the computation time of the four algorithms.

The computation times of LSD, EDlines, AG3line, and ST_LSD are compared using the
MNS-LS dataset. Linelet is only available for the MATLAB vision, while ST_LSD and the
other three algorithms are implemented by Visual C ++ Compiler. It is unfair to use the C ++
version of ST_LSD to compare with Linelet. Therefore, in the comparison of computation
time, ST_LSD only considers LSD, EDlines, and AG3line running on the same hardware
environment and the same compiler. The tests were performed on the same laptop with a
Win10 system (Intel Core i7-8750H, 2.20 GHz CPU, and 16 GB RAM). To further reduce the
error, we employed 30 tests for each image and took the average computation time as the
final result.

Figure 15 shows the computation times of the four methods on the MNS-LS dataset,
where it can be seen that all of them processed each image within about 80 milliseconds
(ms). AG3line is the fastest, and the computation time is stable within 20–30 ms because
its active grouping method reduces the computation time. ST_LSD ranks second, and its
time distribution is also relatively stable. There are two reasons why ST_LSD is slower
than AG3line. First, ST_LSD introduces bilateral filtering to replace the original Gaussian
filtering processing method. Bilateral filtering can keep image edge information well,
but it also takes more time than Gaussian filtering. Second, the anchor map extraction
method combined with Otsu adopted by ST_LSD also requires a certain computation time.
But in general, ST_LSD achieves good performance in computation time, which is faster
than the classical linear-time detector LSD and the optimized EDlines. The difference
between the computation time of optimized EDlines and LSD is not very large, but their
time distributions are not as stable as ST_LSD. The optimized EDlines has a significant
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improvement in the detection effect, which overtakes the traditional LSD, but it does not
maintain the advantage of fast and real-time computing time, and, on the other hand, it is a
little slower than LSD.
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Our experimental results demonstrate that ST_LSD can perform well under complex il-
lumination conditions and noise interference. The introduced bilateral filtering method can
maintain the edge information of the image well, the anchor map extraction method com-
bined with Otsu can be applied to complex illumination, and the aggregation method also
has a certain effect on ensuring the integrity of line segments. Compared with traditional
line segment detection methods, ST_LSD achieves a good balance in extracting complete
line segments and controlling false positives. Moreover, it performs well in computation
time. Of course, the traditional line detection method cannot avoid false alarms, and
ST_LSD also produces certain false alarms in complex space environments. The causes of
false alarms are mainly the following three: (1) the dramatic change in illumination affects
the extraction of anchor points, resulting in too few anchor points; (2) a change in anchor
density in the line segment validation phase; and (3) some fixed threshold parameters
in the line segment aggregation phase. In general, ST_LSD has a good improvement in
detection precision and visual effects.

In addition, it cannot be ignored that other traditional detectors have their own
advantages: (1) LSD does not need parameter adjustment and can control certain false
positives; (2) EDlines has a fast computation time and can run in real time. Although
the computation time of optimized EDlines has increased, the detection effect has been
significantly improved; (3) Linelet can extract more local line segments, although it produces
more fracture line segments; and (4) AG3line can effectively control false negatives and
false positives while maintaining a fast running speed.

5. Conclusions

On the whole, we aimed to address the problem that traditional line segment detection
methods easily fail in the presence of complex illumination and noise interference. To
further improve the performance of space target segment detection, we propose a robust
line segment detector for space applications called ST_LSD in this paper. The proposed
detector can effectively solve the phenomenon of line segment fracture caused by complex
illumination and noise interference. The image data are collected through a semiphysical
simulation platform, and the MNS-LS dataset is constructed precisely to verify the perfor-
mance of ST_LSD. Our quantitative and qualitative evaluation results show that ST_LSD
is superior to traditional detectors in terms of detection accuracy and visual effect under
complex illumination and noise interference.

There are still some limitations to the proposed approach. It can be seen from the
experimental results that the speed of ST_LSD needs to be further improved. In future
studies, we suggest three extensions to the work presented in this paper: (1) optimize the
active grouping and line segment verification of ST_LSD to be more suitable for real-time
application scenarios; (2) expand and optimize the existing MNS-LS dataset to meet more
mission requirements; and (3) extend ST_LSD’s algorithm to detect the circles, which
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occur frequently in space targets, to adapt to more and more extensive space on-orbit
service missions.
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