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Abstract: Probabilistic failure risk analysis of aeroengine life-limited parts is of great significance
for flight safety. Current probabilistic failure risk analysis uses equal amplitude load calculations
for conservative estimation, avoiding inclusion of the interference effect analyzing random loads
due to its massive computational complexity and leading to reduced analysis accuracy. Here, an
efficient algorithm is established to solve this computational problem, and an analytical framework
is established to consider the interference effect of variable amplitude load. The corresponding
probabilistic failure risk analysis is performed for the centrifugal compressor disk. The results show
that considering the interference effect of random variable amplitude loads causes a significant
decrease in the risk of failure, and the efficient algorithm has advantages over the Monte Carlo
sampling method in accuracy and efficiency when considering load interference. This work provides
a reference for exploring the probabilistic damage tolerance method under complex loads and
supports the optimal design of life-limited parts.

Keywords: probabilistic failure risk; life-limited part; load interference effect; variable amplitude load

1. Introduction

Failure of aeroengine life-limited parts leads to catastrophic consequences, so it is
important to ensure the flight safety of aeroengine life-limited parts. The Federal Aviation
Administration (FAA) proposed in AC 33.14-1 that factors such as material defects and
stresses applied during operation should be taken into account to realize probabilistic fail-
ure risk analysis of life-limited parts [1]. Based on the above requirements, a probabilistic
failure risk analysis framework is proposed here. The framework considers the random-
ness of initial defect distribution, applied load, material properties, and nondestructive
examination, and the corresponding probabilistic failure risk is obtained through sampling
calculation [2]. Engine safety is improved by reducing the probability of failure below a
specific design target risk value during the design process (component event rate is always
set at 10−9) [1].

Using sensitivity analysis of the factors of failure probability, it can be seen that
the randomness of defect size and of stress characteristics have the greatest influence
on the risk of failure for the centrifugal compressor impeller [3]. Of these, defect size
characteristics can be determined in industry [4], whereas the characterization and analysis
of stresses require improvement. Traditional probabilistic failure risk analysis simplifies
the load spectrum into a constant amplitude load calculation for conservative estimation
to avoid the massive computation caused by the interference effect of analyzing random
loads. When multidimensional random variables, including stress uncertainty, need to be
considered, the probabilistic life evaluation method first samples different stress values for
equal amplitude load calculation and then weighs the results according to the occurrence
probability of different stress values to obtain the failure probability [5–7]. However, due
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to the randomness of flight state and operation, the stress of the engine fluctuates under
different cycles, and it is not practical to use the simplification of a constant amplitude
load. At the same time, the load interference effect retards crack growth rate [8,9], and
ignoring the load interference effect will cause a loss of accuracy in failure risk. Therefore,
it is necessary to change the load characterization method to reflect random load sequences
and to use a corresponding computational model to analyze the load interference effect.

When considering the random load interference effect, analysis efficiency is greatly
reduced due to the need to include the influence of a preceding load on a subsequent load.
Original acceleration methods, such as the life approximation function [10], numerical
integration [11,12], importance sampling [13], and first/second order reliability [14], are
all based on the assumption that the applied load is constant over the whole life cycle.
Therefore, these acceleration methods cannot be applied to the analysis of life-limited
parts considering load interference. Juan et al. [15] achieved an efficient calculation of
variable amplitude load by transforming the variable amplitude load spectrum (without
considering the interference effect) into a constant amplitude load spectrum. However, if
the load interference effect is considered, the integral equation of this method cannot be
simplified, and thus the analytical efficiency cannot be improved. Therefore, the original
algorithm needs to be improved to adapt to the load interference problem.

To solve these problems, this paper changes the load characterization method, selects a
calculation model considering load interference, and develops a new acceleration algorithm
for the analysis of failure probability to realize an analysis that considers the random
variable amplitude load interference effect. The sections of this paper are as follows: the
probabilistic failure risk analysis method considering load interference effect is described
in Section 2; the computational model and inputs are introduced in Section 3; the results
and analysis are illustrated in Section 4; and the conclusions are summarized in Section 5.

2. The Probabilistic Failure Risk Analysis Method Considering Load Interference Effect

This section describes the processing procedures and mathematical principles of the
failure risk analysis method considering load interference effect and does not involve the
calculation process of a specific case. A specific computational example will be given in
Section 3.

The probabilistic failure risk analysis method considering load interference effect con-
sists of three parts: construction and processing of random load sequences, fast calculation
method for crack length distribution evolution, and failure risk calculation for the whole
disk. These parts are here presented in three respective sections.

2.1. Construction and Processing of Random Load Sequences

Before conducting probabilistic failure risk analysis considering random load inter-
ference effect, finite element analysis of the typical working environment of aeroengine
life-limited parts under a typical flight cycle needs to be conducted to obtain the corre-
sponding stress contours for these life-limited parts. Zone division according to geometric
continuity, stress similarity, and near-surface zone refinement [16] and the base stress sbase
of each zone need to be obtained.

The number of cycles in the whole life cycle was set as Nmax. The stress scatter coeffi-
cient was set as X, and the corresponding stress distribution was constructed. Sampling
was carried out to obtain the stress scatter coefficient Xi under the i-th sampling. The i-th
corresponding load value si is

si = Xi × sbase. (1)

By combining the load values according to the sampling sequence, the random variable
amplitude load (s1, s2, . . . , sNmax) of life-limited parts during the whole life cycle can be
obtained. In this model, it was assumed that the stress value was unloaded to 0 after
each loading.
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The calculation of failure risk involves the analysis of crack propagation in the area
with initial cracks (i.e., anomalies). The Wheeler load interference model [17] was chosen
to calculate the crack length a: { da

dN = CpC(∆Ki)
n

∆Ki = Gsi
√
πai

(2)

where ∆Ki, si, and ai are the stress intensity factor, stress value, and crack length at the
i-th cycle, respectively; G is the geometric correction coefficient, which is related to the
geometric shape of the crack region and other factors; C and n are constant and only related
to the environmental and material properties; Cp is the crack tip plastic zone correction
factor, which is obtained from Equation (3):

Cp =

1 if aOL + rOL ≥ ai + ri(
ri

aOL+rOL−ai

)m
if aOL + rOL < ai + ri

(3)

where ri is the length of the plastic zone under the i-th cyclic loading, calculated by
Equation (4) [18]. aOL and rOL are the crack length and plastic zone size, respectively, when
the historical maximum plastic zone is generated, as shown in Figure 1. m is the coefficient
of the Wheeler model.

ri =
1
απ

(
∆Ki
σys

)2
(4)

where α is the constraint coefficient, the plane strain condition is adopted and then α= 3,
and σys is the yield strength of the material. The crack extension process was assumed
to be an elastic-perfectly plastic material response process. This assumption accords
with the response process of the component materials of life-limiting parts under high
temperature [19].
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Figure 1. The plastic zone ahead of the crack tip.

2.2. Fast Calculation Method for Crack Length Distribution Evolution

Theorem 1. There are two initial crack lengths: a′′1 , a′1 and a′′1 > a′1. Θi(a1) expresses the
crack length of a1 after load sequences s1, s2, . . . ,si. For any crack growth process, as long as
Θj(a1) > Θi(a1) holds for any j > i, it must hold that Θi

(
a′′1
)
> Θi

(
a′1
)
.

Proof of Theorem 1. As shown in Figure 2, the load sequences (s1, s2, . . .) are grouped,
where the load sequence of the first group is (s1, s2, . . . ,st1), and the load sequence of the
k-th group (k ≥ 2) is

(
stk−1+1, stk−1+2, . . . ,stk

)
. First, it can be proven by mathematical in-

duction that there is a certain grouping method to ensure that for any j ∈ (st1 , st2 , . . . ,stN ),
Θj
(
a′′1 ) > Θj

(
a′1
)

is established. The first group (s1, s2, . . . ,st1) is divided by selecting
t1 such that Θt1

(
a′1
)
= a′′1 . At this time, Θt1

(
a′′1
)
> Θ0

(
a′′1
)
= a′′1 = Θt1

(
a′1
)

is estab-
lished. Suppose there exists a division of the k-th group such that Θk−1

(
a′′1 ) >Θk

(
a′1
)

holds. Then, the (k +1) -th group
(
stk+1, stk+2, . . . ,stk+1

)
is divided by selecting tk+1 such

that Θtk+1

(
a′1
)

= Θtk

(
a′′1
)
. At this time, Θtk+1

(
a′′1
)
> Θtk

(
a′′1
)

= Θtk+1

(
a′1
)
. Therefore,

mathematical induction has been proven. Second, for other elements inside any k-th
group, ∀i ∈

(
stk−1+1, . . .stk−1

)
, Θi

(
a′′1
)
> Θtk−1

(
a′′1
)

= Θtk

(
a′1
)
> Θi

(
a′1
)
. Therefore,
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Θi
(
a′′1 ) > Θi

(
a′1
)

is valid for any k group. It follows that Θi
(
a′′1 ) > Θi

(
a′1
)

for all load
sequences i ∈ (s1, s2 , . . .) . The proof of Theorem 1 is completed. �
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Because Θj(a1) > Θi(a1) holds for any j > i in the Wheeler load interference model,
according to Theorem 1 Θk(a1) > Θi(a1) for any i. For the initial crack interval

(
al

1, ar
1
)
,

∀a1 ∈
(
al

1, ar
1
)
, ΘN(a1) ∈

(
ΘN
(
al

1),ΘN
(
ar

1
))

, and then

∫ ar
1

al
1

f (a1)da1 =
∫ ΘN(ar

1)

ΘN(al
1)

f (ΘN(a1))dΘN(a1) (5)

where f (·) is the probability density function of crack occurrence. According to Equation (5),
for any two initial crack lengths, the probability within the interval formed before and after
crack growth remains unchanged.

Based on this, the method shown in Figure 3 can be used to capture the crack distri-
bution evolution process. First, the initial defect distribution f (a1) can be discretized into
several groups by dividing the range of a1 into intervals with equal spacing. Each group
containing the initial crack length al

1, ar
1 corresponding to the endpoints of the interval is

obtained, and the occurrence probability
∫ ar

1
al

1
f (a1)da1 within the interval is obtained. Sub-

sequently, the value ΘN
(
al

1
)
, ΘN

(
ar

1
)

of each group’s interval endpoint after crack growth

is calculated. Finally, by matching ΘN
(
al

1
)
, ΘN

(
ar

1
)

with
∫ ar

1
al

1
f (a1)da1 in each group, the

probability distribution f (ΘN(a1)) at the end of crack growth can be obtained.
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Using the above method, fast acquisition of the probability distribution at the end
of crack growth can be achieved, avoiding millions of Monte Carlo samplings of the
defect distribution.

2.3. Failure Risk Calculation for the Whole Disk

According to generalized stress intensity factor interference theory [20], failure of the
disk is defined as the stress intensity factor K exceeding the fracture toughness Kc. The
relationship between Kc and critical length acritical is shown in Equation (6), where s takes
the reference stress sbase. acritical is calculated using Equation (6) and defined as failure
when ΘN(a1) ≥ acritical:

Kc = sG
√
πacritical. (6)

After obtaining the probability distribution f (ΘN(a1)) at the end of crack growth, the
failure probability Pf,z of a single zone can be calculated using Equation (7) as follows:

Pf,z =
∫ +∞

acritical

f (ΘN(a1))dΘN(a1). (7)

The risk of the disk can be obtained by weighing the risk of all zones according to the
probability of defect occurrence:

Pf,disk =
Zmax

∑
z=1

Poccur,z × Pf,z (8)

where Poccur,z is the probability of occurrence of defects in each zone, which is usually
related to the volume or mass of each zone, and Zmax is the total number of zones.

The probabilistic failure risk analysis method considering load interference effect
presented above was realized by coding through Matlab 2016b. The validity of the pro-
gram adopted in this paper passed the test of the recognized test case in the appendix of
reference [1].

3. Computational Model and Inputs

In this section, a specific probabilistic failure risk analysis considering the random
load interference effect is carried out using a life-limited part as an example. This section is
divided into two parts. Section 3.1 introduces the analysis of finite elements and the charac-
terization of random loads to provide a source of loads for the load interference analysis.
Section 3.2 introduces the material defect data required for the load interference analysis.

3.1. Analysis of Finite Elements and Characterization of Random Loads

The centrifugal compressor impeller was selected as the analysis object. A 1/10 sector
of a three-dimensional compressor impeller model is shown in Figure 4a. Given that the
model is assumed to be a hollow rotary body, the radial–axial section is used to represent
the state of the entire disk for zone division, random load characterization, and failure risk
analysis. The size of the radial–axial section and mesh division results of this model are
shown in Figure 4b.

Through analysis of a secondary air system [21], corresponding typical flight condi-
tions can be obtained, as shown in Table 1. The material used in this paper is Ti-6AL-4 V,
and its properties are shown in Table 2. It was assumed that the material is isotropic and ho-
mogeneous everywhere in the disk. According to the above conditions, thermoelastic finite
element analysis was performed using the one way fluid-structure interaction method [22],
and the stress contour of the radial–axial section of the disk under typical flight condition
was obtained, as shown in Figure 5a.
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Table 1. Boundary conditions of finite element analysis.

Boundary Condition Value

Rotate speed 39,500 r/min
Mass flow 8.125 × 10−4 Kg/s

Inlet temperature 288.15 K
Outlet pressure 398,440 Pa

Outlet temperature 462.56 K

Table 2. Material properties of Ti-6AL-4 V [23].

Parameter Value

E 110 Gpa
ν 0.3
λ 7.955 W/(mk)
α 8.6× 10−6/◦C
ρ 4620 Kg/m3

σys 900 Mpa
C 9.25× 10−13 m/cycle
m 3.87
Kc 64.5 Mpa

√
m
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The stress contour of the radial–axial section of the disk, obtained through this sec-
ondary air system analysis and thermoelastic analysis, is only used as input for the failure
risk analysis, and so these processes are not described in detail in this paper. This paper
focuses on the geometry and boundary conditions of the disk as well as other inputs to the
failure risk assessment model. In fact, the method described in Section 2 is suitable for any
input with known stress distribution, and there are no excessive restrictions on sources.

After obtaining the stress contour of the radial–axial section of the disk, according to
the zone division method described in reference [16], the radial–axial section of disk was
zoned according to geometric continuity, stress similarity, and near-surface zone refinement,
and the zone division results are shown in Figure 5b. After zoning the disk, the maximum
stress of each zone was selected as the reference stress of each zone.

Having obtained the reference stress of each zone, the number of cycles Nmax was
set to 20,000 and the stress scatter coefficient X obeyed X∼ U(1, 0.0662

)
. Xi was sampled,

and the corresponding load sequences (s1, s2, . . . , s20,000) of a single zone were obtained
through Equation (1). The normalized representation (Si/Sbase) of the first 50 random
variable amplitude load sequences is shown in Figure 6.
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3.2. Initial Crack Distribution Acquisition

Initial defect distribution is described as the frequency of occurrence of an initial defect
of a certain size within a unit mass (or volume) of material [4]. The hard alpha inclusion
distribution from the triple vacuum arc remelt (VAR) process or, the cold hearth melt
plus VAR processes in the Reference [1] was selected as the input, as shown in Figure 7.
The horizontal coordinate indicates defect size, and the vertical coordinate indicates the
frequency of defects per million pounds of material that exceed the size given in the
corresponding horizontal coordinate. Assuming that the defect is circular, the area data in
the vertical coordinate is converted into defect length, and the corresponding defect size
distribution can be obtained. It is worth noting that the probability of a disk containing
hard alpha defects is generally very low. Therefore, if defects are present in the disk, the
number of defects does not exceed 1.

In general, the structurally safe life of a crack is composed of its initiation and stable
propagation. However, defects introduced during the processing and manufacturing
stage may accelerate the crack process. Thus, the initiation life of a crack is generally
assumed to be zero based on conservative security assumptions, and the initial crack
length is considered to be the same as the initial defect length [11]. The transcendental
curve distribution can be transformed into a cumulative distribution function (CDF) using
Equation (9) [24]:

CDF(a) =
exc(a)− exc(amin)

exc(amax)− exc(amin)
(9)
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where exc(a) is the number of cracks with size equal to or greater than a million pounds
of titanium, and amin and amax are the minimum and maximum values of the initial crack
length, respectively. For the method described in this paper, the initial anomaly distribution
data can be used directly on a volumetric basis by multiplying the density of the material.

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 13 
 

 

3.2. Initial Crack Distribution Acquisition 
Initial defect distribution is described as the frequency of occurrence of an initial de-

fect of a certain size within a unit mass (or volume) of material [4]. The hard alpha inclu-
sion distribution from the triple vacuum arc remelt (VAR) process or, the cold hearth melt 
plus VAR processes in the Reference [1] was selected as the input, as shown in Figure 7. 
The horizontal coordinate indicates defect size, and the vertical coordinate indicates the 
frequency of defects per million pounds of material that exceed the size given in the cor-
responding horizontal coordinate. Assuming that the defect is circular, the area data in 
the vertical coordinate is converted into defect length, and the corresponding defect size 
distribution can be obtained. It is worth noting that the probability of a disk containing 
hard alpha defects is generally very low. Therefore, if defects are present in the disk, the 
number of defects does not exceed 1. 

 
Figure 7. Initial anomaly distribution. 

In general, the structurally safe life of a crack is composed of its initiation and stable 
propagation. However, defects introduced during the processing and manufacturing 
stage may accelerate the crack process. Thus, the initiation life of a crack is generally as-
sumed to be zero based on conservative security assumptions, and the initial crack length 
is considered to be the same as the initial defect length [11]. The transcendental curve 
distribution can be transformed into a cumulative distribution function (CDF) using Equa-
tion (9) [24]: 

CDF(a)=
exc(a) - exc(amin)

exc(amax) - exc(amin) (9) 

where exc(a) is the number of cracks with size equal to or greater than a million pounds 
of titanium, and amin and amax are the minimum and maximum values of the initial crack 
length, respectively. For the method described in this paper, the initial anomaly distribu-
tion data can be used directly on a volumetric basis by multiplying the density of the ma-
terial. 

4. Results and Discussion 
This section analyzes the results of the above failure risk analysis method considering 

the interference effect of random loads. By comparing the simulation results with those of 
a constant amplitude load, the influence of load interference on failure risk is clarified. By 
comparing the crack length distribution evolution method with Monte Carlo sampling, 
the accuracy and efficiency of the crack length distribution evolution method are clarified. 

  

Figure 7. Initial anomaly distribution.

4. Results and Discussion

This section analyzes the results of the above failure risk analysis method considering
the interference effect of random loads. By comparing the simulation results with those of
a constant amplitude load, the influence of load interference on failure risk is clarified. By
comparing the crack length distribution evolution method with Monte Carlo sampling, the
accuracy and efficiency of the crack length distribution evolution method are clarified.

4.1. Effect of Considering Load Interference

For comparison, two other analyses were performed. The first control group did
not consider the load dispersion, and for each zone, only sbase was used for the constant
amplitude load calculation. The second control group adopted the traditional method:
the same distribution as in Section 3.1 was sampled to obtain different stress values for a
constant amplitude load calculation, and the results were then weighed according to the
occurrence probability of the different stress values to obtain the failure probability of a
single zone. The crack growth history for the two kinds of constant amplitude load analysis
was calculated using Equation (2) under the condition Cp = 1. In the process, the numerical
integration method in references [11,12] was adopted to improve computational efficiency.

The disk failure risk with different cycles is shown in Figure 8. The X-axis represents
the number of cycles experienced by the disk, and the Y-axis represents the probability of
failure. The failure risk of the various methods increases with increasing N, regardless of
whether the load interference effect is considered.

The Pf of the load interference group, control group 1, and control group 2 are
2.062× 10−11 event/cycle, 3.814× 10−11 event/cycle and 3.694× 10−11event/cycle, respec-
tively, at N= 20, 000 cycles. The failure risk when considering the load interference effect is
54% of the analyzed risk under base stress. It is thus shown that the failure risk is reduced
when the interference effect of random loads is considered. When the variable amplitude
load interference effect is considered, Cp in Equation (2) is not always equal to 1, causing a
lower crack growth rate than that of the equal amplitude load calculation, which in turn
leads to a lower failure risk.

The distribution of the stress scatter coefficient X was changed to obey U(1, 0.0332)

and U(1, 0.0502), and the results obtained after repeating the above analysis are shown in
Figure 9. Comparing Figures 8 and 9 shows that when the variance of X decreases, the
reduction in failure risk caused by load interference decreases compared with control group
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1 and control group 2. Because the stress difference obtained by sampling is small, the
interference effect becomes weak and the risk is reduced.
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At N= 20, 000 cycles and a variance of 0.050, the failure risk considering load interfer-
ence is 63% of the risk of analysis under base stress. At N= 20, 000 cycles and a variance of
0.033, the failure risk considering load interference is 73% of the risk of analysis under base
stress. These results show that even under the condition of small variance, considering the
effect of load interference still causes a significant decrease in risk value.

4.2. Comparison of Different Calculation Methods

To verify the accuracy and efficiency of the method of crack length distribution evo-
lution described in Section 2.2, a series of Monte Carlo samplings (MCSs) were carried
out with different sample numbers

(
103, 104, 105) for comparison under the condition of

X∼ U(1, 0.0502). Using the crack length distribution evolution method, 500 groups were
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divided to ensure sufficient accuracy. Each method involved 10 repeated calculations. The
disk failure risk results at 20,000 flight cycles are shown in Figure 10, and the statistical
analysis of these results is shown in Table 3.
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Table 3. Statistical results after repeated calculations by different methods.

Method Average Failure
Risk

Maximum
Deviation Variance Time Cost

(t/tfastmethod)

Fast method 2.062× 10−11 7.095× 10−14 1.625× 10−27 1

103 MCSs 2.063× 10−11 1.803× 10−12 7.669× 10−25 2.1

104 MCSs 2.072× 10−11 8.539× 10−13 1.531× 10−25 21.1

105 MCSs 2.059× 10−11 3.152× 10−13 3.576× 10−26 215.4

By comparing the maximum deviation and variance of different samples in Table 3, it
can be seen that, for Monte Carlo sampling, the higher the number of samples, the higher
the precision and the longer the computation time. The crack length distribution evolution
method can achieve higher accuracy than 105 Monte Carlo sampling. At the same time, the
computational efficiency is approximately 215 times higher than that of the Monte Carlo
sampling. The crack length distribution evolution method has probabilistic information in
each group. In turn, accuracy can be guaranteed even with a small number of calculations.

In addition, the results of the crack length distribution evolution method vary with
different calculation numbers, which is caused by the variation in random load sequences
from one calculation to another. Although the random loads were different for each
simulation, the deviation in disk failure risk was less than 0.35% when sampling with a
specific stress scatter coefficient distribution. In contrast, the results of the MCS method
vary not only due to load sampling but also due to defect distribution sampling such that
the variety of failure risk values using MCS is greater than that using the crack length
distribution evolution method.

5. Conclusions

Current probabilistic failure risk analysis systems cannot analyze the interference
effect of random loads with guaranteed accuracy and efficiency. Therefore, this paper
established an analysis method for life-limited parts considering the interference effect of
random variable amplitude loads by changing the load characterization method, selecting
a calculation model considering load interference, and developing a new acceleration
algorithm for the analysis of failure probability. Probabilistic failure risk analysis of the



Aerospace 2023, 10, 301 11 of 12

compressor disk considering the interference effect was thereby executed. By comparing the
simulation results considering random load interference with those of a constant amplitude
load, the influence of the load interference effect on failure risk was clarified. By comparing
the crack length distribution evolution method with the Monte Carlo sampling method,
the accuracy and efficiency of the crack length distribution evolution method were clarified.
The main conclusions are as follows:

• Compared with the traditional constant amplitude load analysis in failure risk esti-
mation, considering the interference effects of random variable amplitude loads will
significantly reduce failure risk. This decreasing degree of failure risk will increase
with an increase in the variance of the stress scatter coefficient X. The reason for this
phenomenon is that the load interference effect hinders crack propagation;

• Compared with the Monte Carlo sampling method, the crack length distribution
evolution method can achieve the same accuracy with a smaller number of calculations.
The crack length distribution evolution method offers probabilistic information in
each group

In conclusion, failure analysis considering the random load interference effect can
obtain more accurate failure risk prediction and provide new insights into aeroengine
safety design.
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