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Abstract: In this paper, a full state-constrained anti-disturbance dynamic surface control method is
proposed for six-degree-of-freedom unmanned helicopter systems under full state constraints and
disturbances. Firstly, due to the underactuated characteristics of six-degree-of-freedom unmanned
helicopter systems, an input–output feedback linearization method is used to transform the complex
nonlinear systems into facilitated-control nonlinear ones. Based on the transformed systems, the
nonlinear disturbance-observer-based control, backstepping control and Barrier Lyapunov function
methods are used to construct the flight controller via uniting the state constraint control and dynamic
surface control technologies. Then, Lyapunov stability theory is adopted for analysing the closed-loop
tracking error systems, which confirms that the tracking errors are bounded under the proposed
flight control scheme. Finally, a simulation in the MATLAB/Simulink environment verifies that the
unmanned helicopter system can constrain all states under the action of the designed controller, with
good dynamic performance.

Keywords: unmanned helicopter; nonlinear disturbance observer; backstepping control; state-constrained;
dynamic surface control

1. Introduction

Unmanned aerial vehicles (UAVs) are common flying machines which are widely
used in many fields of application, such as the military, agriculture, and others, and have
demonstrated strong practical abilities. Indeed, UAVs can be divided into fixed-wing UAVs
and unmanned helicopters according to their different flight principles. The unmanned
helicopter has numerous advantages, including vertical take-off and landing, low-speed
flying, fixed point hovering, and so on, compared to the fixed-wing UAV. Over the past
few decades, with the development of composite materials, control theory, navigation and
communication systems, unmanned helicopters have entered a new stage of development
and received more and more attention [1,2]. However, unmanned helicopter systems have
the characteristics of nonlinearity, strong coupling and being under-actuated, which make
them vulnerable to the influence of disturbance during flight, which means the controller
design becomes a difficult problem to overcome [3]. In recent years, many control methods
have been used for the controller design of unmanned helicopter systems. In [4], an input-
shaping and model-following control method was proposed to study the adaptive tracking
control problem of helicopter hanged flight. In [5], the authors used the linear quadratic
regulator control method to study the approach and landing of the helicopter on a limited
platform, such as a moving vessel. In [6], the data-driven control problem was discussed for
unmanned helicopters without model knowledge, in which the proposed control method
was based on model-free adaptive control and the integration and variance approach, and
the controller was designed using the input and output data. In [7], a control scheme
was proposed by combining a state feedback linear controller and an H∞ controller for
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reducing the adverse effects of helicopter icing conditions. The disturbance issues were
mentioned for unmanned helicopter systems in parts of the above articles, which resulted
in dynamic disturbances that can seriously affect the flight safety of helicopters. Therefore,
it is necessary to study the advanced anti-disturbance control theory.

The anti-disturbance control is an important research direction in control theory do-
main. Based on the development of anti-disturbance control theory, many anti-disturbance
control methods had been proposed, for example, the disturbance-observer-based con-
trol [8], active-disturbance rejection control [9] and H∞ robust control [10], and so on.
Among these excellent anti-disturbance control technologies, the disturbance-observer-
based control scheme is an effective method to reject the influence of disturbances, in
which the disturbance observer is used to estimate the disturbances, whose estimation
is applied in the feedforward controller, and ensures that the controller achieves good
control performance. Hence, the disturbance-observer-based control scheme is widely used
in various control systems. In [11], stochastic systems were investigated under multiple
heterogeneous disturbances, which included parts of the known information disturbances,
such as being H∞-norm bounded and induced by white noise, and a random disturbance
observer was proposed via combining it with the H∞ control method to achieve distur-
bance suppression and attenuation. In [12], a shipboard platform system with unknown
disturbance was studied, and the anti-disturbance controller was designed by uniting
the nonlinear disturbance observer and vectorial backstepping technique. In [13], for the
anti-disturbance attitude control problem of spacecraft, the extended state observer and
backstepping control methods were employed to suppress disturbances. In [14], the author
studied the anti-disturbance control problem of UAVs with unknown disturbance by using
a sliding-mode control method. In [15], the disturbance-suppression problem of a space
robot arm in a space environment was studied with the sliding-mode control method.
Unmanned helicopters fly in the full-disturbances environment. Many disturbances affect
the flight quality of helicopters, such as gusts, turbulence and wind shear. For these reasons,
the anti-disturbance control is adopted based on the disturbance-observer-based control
scheme to solve the robust control issue for helicopter systems. In our past works [16,17],
the multiple random disturbances were discussed for helicopter nonlinear systems us-
ing composite anti-disturbance control schemes. Therefore, the anti-disturbance control
issues are solved for helicopters, which would promote the control performance of the
flight controller.

Furthermore, in order to further enhance the flying safety and stability for helicopters,
it is necessary to constrain the intermediate control variables when accomplishing satisfac-
tory performance and disturbance suppression ability. The constraint control technology
has a wide range of applications in control theory, and there are many areas in practical
engineering whose control variables need to be maintained within specified limits. In [18],
a full state-constrained prescribed performance control problem was investigated through
the adaptive fuzzy control method. In [19], the authors used the backstepping control
and Barrier Lyapunov function methods to solve the state constraint problem of nonlinear
switching systems. In [20], for the adaptive tracking control problem with asymmetric
full state constraints, a control objective with bounded error was achieved by using the
unified barrier function and the command filtered backstepping control methods. In [21], a
state-constraint control problem of a class of electromagnetic active suspension systems
was studied with a cotangent nonlinear state function with the neural network adaptive
control method. In [22], a full state-constrained control problem for nonholonomic systems
with parameter uncertainty was discussed via using the adaptive control method. In [23],
the adaptive tracking control issue was studied for the interconnected nonlinear stochastic
system with full state constraints. The above research results provide many new ideas
for anti-disturbance control and state-constrained control, which are the new approach to
improve the flying dynamic performance of helicopters.

Based on the above studies, in this paper, a flight-tracking controller is designed
for six-degree-of-freedom unmanned helicopter systems with full state constraints and
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disturbances. To enhance the practicability of the proposed controller, the intermediate
control variables are constrained for the helicopter while the flight-tracking control task is
achieved. Firstly, the six-degrees-of-freedom unmanned helicopter system is transformed
by the input–output feedback linearization theory, and the tracking error system of the
unmanned helicopter is obtained; secondly, a nonlinear disturbance observer is designed
to estimate the system disturbance, and the disturbance estimate is used in the subsequent
controller design; Then, in the process of controller design, the nonlinear disturbance
observer, backstepping control, dynamic surface and Barrier Lyapunov function methods
are combined to construct the full state-constrained flight-tracking control scheme. Under
the conditions of full state constraints, the states of the tracking error systems are within the
expected bounded range. Finally, the simulation is carried out in the MATLAB/Simulink
environment to verify the effectiveness of the proposed flight controller.

This paper is organized as follows: in Section 2, we show the modeling process of
helicopter systems; the full state-constrained anti-disturbance flight-tracking controller is
constructed for helicopter systems in Section 3; the stability analysis is shown in Section
4 for helicopter tracking error systems; in Section 5, we give the numerical simulation to
verify the validity of proposed flight control scheme; and Section 6 is the conclusions.

2. Unmanned Helicopter Models

According to the flight characteristics of an unmanned helicopter, the unmanned
helicopter is considered as a six-degree-of-freedom rigid body. By considering the aero-
dynamic forces and moments during flying, the six-degree-of-freedom system models are
established according to the Newton–Euler equations, which are shown as follows [17]:

Ṗ(t) = V(t)

V̇(t) = ge3 +
1
m

R(t) f (t) + d1(t)

Ω̇(t) = H(t)w(t)

Jẇ(t) = −w(t)× Jw(t) + τ(t) + d2(t)

(1)

where P(t) = [x(t) y(t) z(t)]T denote the positions of the helicopter corresponding to the
three coordinate axes, V(t) = [vx(t) vy(t) vz(t)]T denote the velocities of the helicopter,
Ω(t) = [φ(t) θ(t) ψ(t)]T are the roll, pitch and yaw angle of the helicopter, respectively,
and w(t) = [p(t) q(t) r(t)]T are the three angular velocity components of the bodyframe
coordinate system relative to the terrestrial coordinate system. m and g are the mass of
helicopter and gravitational acceleration, J = diag{jxx jyy jzz} is the inertia matrix of the
helicopter, d1(t) and d2(t) denote the interference aerodynamic forces and moments of
the helicopter during flight. R(t) denotes the rotation matrix of the bodyframe coordinate
system relative to the terrestrial coordinate system:

R(t) =

 cθcψ sθsφcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


where s(·), c(·) denote sin(·) and cos(·), H(t) is attitude matrix:

H(t) =

 1 sφsθ

cθ

Cφsθ

cθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ


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w(t)× is a cross-product matrix:

w(t)× =

 0 −r(t) q(t)
r(t) 0 −p(t)
−q(t) p(t) 0


f (t) and τ(t) are the sums of external forces and moments on the centroid of the helicopter,
respectively:

f (t) =

 −sacbTM(t)
casbTM(t)− TT(t)
−cacbTM(t)

 (2)

τ(t) =

zmb(t)TM(t)− ztTT(t) + cmbb(t)
zma(t)TM(t) + cmaa(t)

xtTT(t)−Qm(t)

 (3)

where TM(t) and TT(t) are main rotor thrust and tail rotor thrust, respectively, a(t) and b(t)
are the longitudinal and lateral flapping angles, cma and cmb are the main rotor pitch and roll
moment intensity factors, hm = [xm ym zm]T and ht = [xt yt zt]T are the relative distances
from the main rotor and tail rotor to the centroid of the helicopter on the bodyframe
coordinate system, respectively. Qm(t) = cmqT1.5

M (t) + dmq is the torque generated by the
main rotor, where cmq and dmq are the main rotor torque factors.

The unmanned helicopter is flying with low velocity in the cruising flight phase. The flap-
ping angles a(t) and b(t) are small, which satisfy sa ≈ a(t), sb ≈ b(t), ca = cb ≈ 1, and in this
case, we assume: a(t)TM(t) ≈ 0, b(t)TM(t) ≈ TT(t). Therefore, the sum of external forces
f (t) is re-expressed as f (t) = [0 0 − TM(t)]T , and in this paper [TM(t) TT(t) a(t) b(t)]T is
considered as the system input.

Before designing the controller, in order to simplify the controller design process, the
following Assumption and Lemmas are necessary for building the flight controller, which
are given as:

Assumption 1 ([24]). The disturbance aerodynamic forces and aerodynamic moments satisfy
||ḋ1(t)|| < D1, ||ḋ2(t)|| < D2, where D1 and D2 denotes the unknown boundary.

Lemma 1 ([25]). For any constant ε > 0 and the appropriate dimensional vectors or matrices X
and Y , the following inequality holds:

XTY + YTX 6 εXTX + ε−1YTY

Lemma 2 ([26]). For any constant kb and real variable z(t), the following inequality holds while
z(t) < kb:

ln
k2

b
k2

b − z2(t)
6

z2(t)
k2

b − z2(t)

3. Flight-Tracking Controller Design
3.1. System Transformation

In this paper, we design a state-constrained anti-disturbance flight controller for
unmanned helicopter systems (1) and implement the asymptotic tracking of the expected
tracking signals under the proposed controller. The control outputs are Pd(t) and ψd(t),
which denote the helicopter’s expected position trajectories and yaw angle trajectory,
respectively. In fact, the control inputs of systems (1) are TM(t), TT(t), a(t) and b(t), which
are four-dimensional variables. Apparently, the helicopter systems (1) are the six-degree-of-
freedom rigid body system models, which are typical underactuated nonlinear systems. In
order to achieve the control objective, the input–output feedback linearization method is
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used to obtain new equivalent systems via the systems (1). The flight-tracking controller is
designed under the new systems.

Similar to the analysis process of literature [17], the systems (1) are extended to the
following systems by adding two new variables:

Ṗ(t) = V(t)

V̇(t) = ge3 −
1
m

R(t)TM(t) + d1(t)

ṪM(t) = TM1(t)
ṪM1(t) = TM2(t)

Ω̇(t) = H(t)w(t)

Jẇ(t) = −w(t)× Jw(t) + τ(t) + d2(t)

(4)

The inputs and outputs of new systems (4) are [TM2(t) τT(t)]T and [PT
d (t) ψd(t)]T .

Then, based on (4), a group of new variables are constructed from the systems (4) via using
the input–output feedback linearization methods [17], which are given by:

x1(t) = P(t)− Pd(t)
x2(t) = V(t)− Ṗd(t)

x3(t) = ge3 −
e3

m
R(t)TM(t)− P̈d(t)

x4(t) = −
e3

m
R(t)TM1(t)−

e3

m
R(t)w×(t)TM(t)−

...
Pd(t)

x5(t) = ψ(t)− ψd(t)
x6(t) = α1(t)w(t)− ψ̇d(t)

(5)

where α1(t) = [0 sin φ(t) sec θ(t) cos φ(t) sec θ(t)]. Moreover, new control inputs are
constructed by using the input–output feedback linearization method according to
[TM2(t) τT(t)]T [17], which are given by

u1(t) =
TM(t)

m
R(t)β1 J−1w(t)× Jw(t)− 2TM1(t)

m
R(t)w(t)×e3 −

TM(t)
m

R(t)w(t)×w(t)×e3

− TM2(t)
m

R(t)e3 −
TM(t)

m
R(t)β1 J−1τ(t)− P(4)

d (t)

u2(t) = −α1(t)J−1w(t)× Jw(t) +

[
cφ

cθ
φ̇(t) +

sφsθ

c2
θ

θ̇(t)

]
q(t)−

[
sφ

cθ
φ̇(t)−

cφsθ

c2
θ

θ̇(t)

]
r(t)

+ α1(t)J−1τ(t)− ψ̈d(t)

Indeed, according to [17], [x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)]
T have practical physical

significance, which are the helicopter position tracking errors, velocity tracking errors, accel-
erations generated by controllable join force, force variation rates generated by controllable
join force, yaw angle tracking error and yaw angle rate error, respectively.

From (4) and (5), the new transformed systems are obtained, which are given as:

ẋ1(t) = x2(t)
ẋ2(t) = x3(t) + d1(t)
ẋ3(t) = x4(t)

ẋ4(t) = u1(t)−
TM(t)

m
R(t)β1 J−1d2(t)

ẋ5(t) = x6(t)

ẋ6(t) = u2(t) + α1(t)J−1d2(t)

(6)
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where

β1 =

 0 1 0
−1 0 0
0 0 0


According to the above process, in this paper, the flight-tracking controller is designed

based on the systems (6), u1(t) and u2(t) are the control inputs of systems (6) and x1(t)
and x5(t) are the outputs of systems (6). In what follows, the tracking controllers u1(t) and
u2(t) are constructed such that the control outputs x1(t) and x5(t) converge to arbitrary
bounded scopes, and the other states are constrained within reasonable domains.

3.2. Nonlinear Disturbance Observer Design

In order to suppress the influence of disturbance aerodynamic forces d1(t) and aero-
dynamic moments d2(t) on the helicopter systems, the nonlinear disturbance observers
are used to estimate the disturbances, and substitute the disturbance estimates into the
feedforward controller. For the disturbance aerodynamic forces d1(t), the disturbance
estimator errors d̃1(t) = d1(t)− d̂1(t) are defined and the disturbance observer is designed
as follows:

d̂1(t) = δ1(t) + L1x2(t)

δ̇1(t) = −L1

[
x3(t) + d̂1(t)

]
(7)

where d̂1(t) are the disturbance estimates, L1 = diag{l1, l1, l1} is the disturbance observer
gain matrix and δ1(t) denotes the constructive function. The dynamics of the errors in the
disturbance estimates are:

˙̃d1(t) = ḋ1(t)− ˆ̇d1(t)

= ḋ1(t)− [δ̇1(t) + L1 ẋ2(t)]

= ḋ1(t)− [−L1x3(t)− L1d̂1(t) + L1x3(t) + L1d1(t)]

= −L1d̃1(t) + ḋ1(t) (8)

Note that (4) and (6) are equivalent systems. The disturbance observer of d2(t) is
designed on the basis of systems (4) as follows:

d̂2(t) = δ2(t) + L2 JW(t)

δ̇2(t) = −L2

[
−w(t)× Jw(t) + τ(t) + d̂2(t)

]
(9)

where d̂2(t) are the disturbance estimates, L2 = diag{l2, l2, l2} is the disturbance observer
gain matrix, and δ2(t) denotes the constructive function. The dynamics of the errors in the
disturbance estimates are:

˙̃d2(t) = ḋ2(t)− ˆ̇d2(t)

= ḋ2(t)− [δ̇2(t) + L2 Jẇ(t)]

= ḋ2(t)− [−L2w(t)× Jw(t)− L2τ(t)− L2d̂2(t)− L2w(t)× Jw(t) + L2τ(t) + L2d2(t)

= −L2d̃2(t) + ḋ2(t) (10)

Based on the designed disturbance observers, in what follows the disturbance esti-
mates are introduced into the process of the state-constrained tracking controller.

3.3. State-Constrained Backstepping Controller Design

In this section, a full state-constrained anti-disturbance controller is designed based
on backstepping control, and such that the expected trajectories of position Pd(t) and yaw
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angle ψd(t) are tracked under the error state’s constrained condition. The control flow
graph of the unmanned helicopter is shown in Figure 1:

Figure 1. The position-tracking trajectories of the unmanned helicopter.

The control design mainly includes the design of a nonlinear disturbance observer
and a composite anti disturbance tracking controller based on the combination of distur-
bance compensation and backstepping. The observer obtains disturbance estimates for
feedforward compensation, handles the impact of disturbance on the closed-loop control
system and derives a reference feedback controller based on the backstepping method to
achieve the goal of asymptotically converging the system state. The two work together to
achieve the effect of anti-disturbance tracking control. Even if the disturbance degrades
to zero, the composite controller can maintain the performance of the reference feedback
control and still maintain the asymptotic stability of the system.

Combining the backstepping control scheme with the dynamic surface control method,
the first-order filters are introduced to estimate the virtual control inputs, and the problem
of “differential explosion” is solved for the nonlinear controller. The specific design process
is as follows:

Step 1: Define the tracking error as e1(t) = x1(t). To ensure accurate tracking, the ex-
pected position Pd(t) with adequate tracking control performance, the maximum helicopter
position tracking error values are set as kb1i, and |e1i(0)| 6 kb1i, for i ∈ {1, 2, 3}.

Define the Barrier Lyapunov function candidate V1(t) as:

V1(t) =
1
2

3

∑
i=1

ln
k2

b1i
k2

b1i − e2
1i(t)

(11)

From (6), the derivative of (11) is given as

V̇1(t) = eT
1 (t)C1(t)ė1(t) = eT

1 (t)C1(t)x2(t) (12)

where C1(t) = diag
{

1
k2

b11−e2
11(t)

1
k2

b12−e2
12(t)

1
k2

b13−e2
13(t)

}
. To ensure the nonnegative definite-

ness of (12), the virtual control inputs α1(t) are chosen as:

α1(t) = −k1 A1(t)e1(t)−
ε1

2
C1(t)e1(t) (13)

where k1 > 1
k2

b1i−e2
1i

for i = 1, 2, 3 is controller gain, ε1 > 0 is the positive constant, and

A1(t) = C−1
1 (t).

To solve the “differential explosion” problem that arises during the backstepping
controller designed process, a first-order filter with time constant λ1 is constructed, and
its outputs are substituted for the virtual control inputs α1(t). The initial values of this
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filter are the same as the initial values of the virtual control inputs. The filter is designed
as follows:

λ1 ẋ2c(t) + x2c(t) = α1(t), x2c(0) = α1(0) (14)

Define the errors between the filter outputs and the virtual control inputs as γ2(t) =
x2c(t)− α1(t). Then, the dynamic of γ2(t) is given by:

γ̇2(t) = ẋ2c(t)− α̇1(t) = −
γ2(t)

λ1
− α̇1(t) (15)

Step 2: Define the errors of the first dynamic surface as e2(t) = x2(t)− x2c(t). We
choose the Barrier Lyapunov function candidate V2(t) as:

V2(t) =
1
2

3

∑
i=1

ln
k2

b2i
k2

b2i − e2
2i(t)

(16)

where kb2i > 0, for i ∈ {1, 2, 3}, are the maximum tracking errors of e2i(t). The derivative
of (16) along with (6) is shown as:

V̇2(t) = eT
2 (t)C2(t)ė2(t) = eT

2 (t)C2(t)
[

x3(t) + d1(t) +
γ2(t)

λ1

]
(17)

where C2(t) = diag
{

1
kb2

21−e2
21(t)

1
kb2

22−e2
22(t)

1
kb2

23−e2
23(t)

}
.

Similar with the Step 1, in order to guarantee the nonnegative definiteness of V̇2(t),
the virtual control inputs α2(t) are chosen as:

α2(t) = −k2 A2(t)e2(t)− A2(t)C1(t)e1(t)−
ε2

2
C2(t)e2(t)−

ε3

2
C2(t)e2(t)− d̂1(t)−

γ2(t)
λ1

(18)

where k2 > 1
k2

b2i−e2
2i

for i = 1, 2, 3 is the controller gain, and ε2 > 0 and ε3 > 0 are positive

constants, A2(t) = C−1
2 (t).

We design the second first-order filter as:

λ2 ẋ3c(t) + x3c(t) = α2(t), x3c(0) = α2(0) (19)

and define the errors between the filter outputs and the virtual control inputs as γ3(t) =
x3c(t)− α2(t)

The dynamic of γ3(t) is given by:

γ̇3(t) = ẋ3c(t)− α̇2(t) = −
γ3(t)

λ2
− α̇2(t) (20)

Step 3: The error of the second dynamic surface is defined as e3(t) = x3(t)− x3c(t).
The Barrier Lyapunov function candidate V3(t) is chosen as:

V3(t) =
1
2

3

∑
i=1

ln
k2

b3i
k2

b3i − e2
3i(t)

(21)

where kb3i > 0, i = {1, 2, 3}, are the maximum acceleration errors of the helicopter-
controllable join force. The derivative of V3(t) along with (6) is given as:

V̇3(t) = eT
3 (t)C3(t)ė3(t) = eT

3 (t)C3(t)
[

x4(t) +
γ3(t)

λ2

]
(22)

where C3(t) = diag
{

1
kb2

31−e2
31(t)

1
kb2

32−e2
32(t)

1
kb2

33−e2
33(t)

}
.
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To ensure the nonnegative definiteness of V̇3(t), the virtual control inputs α3(t) are
chosen as:

α3(t) = −k3 A3(t)e3(t)− A3(t)C2(t)e2(t)−
ε4

2
C3(t)e3(t)−

γ3(t)
λ2

(23)

where k3 > 1
k2

b3i−e2
3i

for i = 1, 2, 3 is controller gain, ε4 > 0 is a positive constant and

A3(t) = C−1
3 (t).

We design the third first-order filter as:

λ3 ẋ4c(t) + x4c(t) = α3(t), x4c(0) = α3(0) (24)

and define the errors between the filter outputs and the virtual control inputs as γ4(t) =
x4c(t)− α3(t). Then, the dynamic of this error γ4(t) is shown as

γ̇4(t) = ẋ4c(t)− α̇3(t) = −
γ4(t)

λ3
− α̇3(t) (25)

Step 4: The errors of the third dynamic surface are defined as e4(t) = x4(t)− x4c(t).
The Barrier Lyapunov function candidate V4(t) is chosen as:

V4(t) =
1
2

3

∑
i=1

ln
k2

b4i
k2

b4i − e2
4i(t)

(26)

where kb4i, i ∈ {1, 2, 3} are the maximum force variation rate errors from the helicopter-
controllable join force. The derivative of V4(t) along with (6) is given by:

V̇4(t) = eT
4 (t)C4(t)ė4(t) = eT

4 (t)C4(t)
[

u1(t)−
TM(t)

m
R(t)J−1d2(t) +

γ4(t)
λ3

]
(27)

where C4(t) = diag
{

1
kb2

41−e2
41(t)

1
kb2

42−e2
42(t)

1
kb2

43−e2
43(t)

}
.

To ensure the nonnegative definiteness of V̇4(t), the virtual control inputs u1(t) are
chosen as:

u1(t) =− k4 A4(t)e4(t)− A4(t)C3(t)e3(t)−
ε5
2

TM(t)
m

R(t)J−1 TM(t)
m

J−1RT(t)C4(t)e4(t)

+
TM(t)

m
R(t)J−1d̂2(t)−

γ4(t)
λ3

(28)

where k4 > 1
k2

b4i−e2
4i

, for i = 1, 2, 3, is controller gain and ε5 > 0 is a positive constant,

A4(t) = C−1
4 (t).

Step 5: Define the error term e5(t) = x5(t) and define the Barrier Lyapunov function
candidate V5(t) as:

V5(t) =
1
2

ln
k2

b5
k2

b5 − e2
5(t)

(29)

where kb5 > 0 is the maximum helicopter yaw angle tracking error. From (6), the derivative
of is shown as:

V̇5(t) =
e5(t)ė5(t)
k2

b5 − e2
5(t)

=
e5(t)x6(t)
k2

b5 − e2
5(t)

(30)

To ensure the nonnegative definiteness V̇5(t), the virtual control input α5(t) is cho-
sen as:

α5(t) = −k5

[
k2

b5 − e2
5(t)

]
e5(t)− ε6

e5(t)
k2

b5 − e2
5(t)

(31)
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where k5 > 1
k2

b5−e2
5

is controller gain, and ε6 > 0 is a positive constant. The fourth first-order

filter is designed as:
λ4 ẋ6c(t) + x6c(t) = α5(t), x6c(0) = α5(0) (32)

Then, the error between the filter output and the virtual control input is defined as
γ6(t) = x6c(t)− α5(t) and the dynamic of γ6(t) is given by:

γ̇6(t) = ẋ6c(t)− α̇5(t) = −
γ6(t)

λ4
− α̇5(t) (33)

Step 6: The error of the fourth dynamic surface is defined as e6(t) = x6(t)− x6c(t) and
the Barrier Lyapunov function candidate V6(t) is chosen as:

V6(t) =
1
2

ln
k2

b6
k2

b6 − e2
6(t)

(34)

where kb6 > 0 is the maximum helicopter yaw angle rate error. The derivative of V6(t) is:

V̇6(t) =
e6(t)ė6(t)
k2

b6 − e2
6(t)

=
e6(t)

[
u2(t) + α1(t)J−1d2(t) +

γ6(t)
λ4

]
k2

b6 − e2
6(t)

(35)

To ensure the nonnegative definiteness of V̇6(t), the control inputs u2(t) are chosen as:

u2(t) =− k6

[
k2

b6 − e2
6(t)

]
e6(t)−

k2
b6 − e2

6(t)
k2

b5 − e2
5(t)

e5(t)−
ε7

2
[
k2

b6 − e2
6(t)

]α1(t)J−1 J−1αT
1 (t)e6(t)

− α1(t)J−1d̂2(t)−
γ6(t)

λ4
(36)

where k6 > 1
k2

b6−e2
6

is controller gain, and ε7 > 0 is the positive constant.

Remark 1. As assumed in many other studies [27], Ω ⊂ D is a positive invariant set of the
virtual control laws α̇1(t), α̇2(t), α̇3(t), α̇5(t), V : D → R is a continuous differentiable function
satisfying V̇(α̇i) ≤ 0 for i = 1, 2, 3, 5 within Ω, E is the set of all points within Ω satisfying
V̇(α̇i) = 0, and M is the maximal invariant set within E.

Remark 2. In this paper, an anti-disturbance flight controller is constructed for the helicopter
systems via the disturbance observer, backstepping controller and BLF methods. During the
helicopter flying, all of the tracking errors of helicopter systems are constrained in limitative scopes,
which have many advantages for improving the dynamic performance of helicopter systems. Firstly,
the helicopter would be safer under our proposed control scheme. For example, the variable x3(t)
denotes the driving force acceleration of the helicopter, which is constrained in a limitative scope
would avoid helicopter overturning. Secondly, the dynamic performance of helicopter would be better
using our designed controller. For instance, the variable x1(t) is the position tracking error, which is
constrained in a limitative scope would avoid the big overshoot, and enhance the flying performance.

4. Stability Analysis

Theorem 1. Consider the tracking error systems of unmanned helicopter (6) with disturbances,
design the nonlinear disturbance observers (7) and (9), the virtual control laws (13), (18), (23) and
(31), and tracking controller (28) and (36). For given some parameters kbji > 0, j = 1, 2, 3 and
i = 1, 2, 3, 4, kbh > 0, h = 5, 6, the tracking errors of unmanned helicopter systems (6) converge
to the arbitrary bounded scopes with full state constraints. If there exist some parameters εj > 0,
j = 1, 2..., 13, ki > 0, i = 1, 2..., 6, such that the following conditions hold: k1 > 1

k2
b1i−e2

1i
, k2 >

1
k2

b2i−e2
2i

, k3 > 1
k2

b3i−e2
3i

, k4 > 1
k2

b4i−e2
4i

, k5 > 1
k2

b5−e2
5
, k6 > 1

k2
b6−e2

6
, k̄7 = 2

λ1
− ε−1

1 − ε10, k̄8 = 2
λ2
−
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ε−1
2 − ε11, k̄9 = 2

λ3
− ε−1

4 − ε12, k̄10 = 2
λ4
− 2ε−1

6 − 2ε13, k̄11 = 2l1 − ε−1
3 − ε8, k̄12 = 2l2 −

ε−1
5 − ε−1

7 − ε9.

Proof. According to the above discussion, choose the Lyapunov function candidate V(t) as:

V(t) =V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) +
1
2

γT
2 (t)γ2(t) +

1
2

γT
3 (t)γ3(t)

+
1
2

γT
4 (t)γ4(t) +

1
2

γT
6 (t)γ6(t) +

1
2

d̃1
T
(t)d̃1(t) +

1
2

d̃2
T
(t)d̃2(t) (37)

Combining (12), (17), (22), (27) and (30), we have:

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t) + γT
2 (t)γ̇2(t) + γT

3 (t)γ̇3(t)

+ γT
4 (t)γ̇4(t) + γ6(t)γ̇6(t) + d̃1

T
(t)̇̃d1(t) + d̃2

T
(t)̇̃d2(t)

= −k1eT
1 (t)e1(t) + eT

1 (t)C1(t)γ2(t)−
ε1
2

eT
1 (t)C1(t)C1(t)e1(t)− k2eT

2 (t)e2(t)

+ eT
2 (t)C2(t)γ3(t) + eT

2 (t)C2(t)d̃1(t)−
ε2
2

eT
2 (t)C2(t)C2(t)e2(t)

− ε3
2

eT
2 (t)C2(t)C2(t)e2(t)− k3eT

3 (t)e3(t) + eT
3 (t)C3(t)γ4(t)

− ε4
2

eT
3 (t)C3(t)C3(t)e3(t)− k4eT

4 (t)e4(t)−
TM(t)

m
eT

4 (t)C4(t)R(t)J−1d̃2(t)

− ε5
2

T2
M(t)
m2 eT

4 (t)C4(t)R(t)J−1 J−1RT(t)C4(t)e4(t)− k5eT
5 (t)e5(t)

+
e5(t)γ6(t)
k2

b5 − e2
5(t)
− ε6

eT
5 (t)e5(t)[

k2
b5 − e2

5(t)
]2 − k6eT

6 (t)e6(t) +
e6(t)α1(t)J−1d̃2(t)

k2
b6 − e2

6(t)

− ε7
2

eT
6 (t)e6(t)[

k2
b6 − e2

6(t)
]2 α1(t)J−1 J−1αT

1 (t) + γT
2 (t)γ̇2(t) + γT

3 (t)γ̇3(t) + γT
4 (t)γ̇4(t)

+ γT
6 (t)γ̇6(t)− l1d̃T

1 (t)d̃1(t) + d̃T
1 (t)ḋ1(t)− l2d̃T

2 (t)d̃2(t) + d̃T
2 (t)ḋ2(t)

According to Lemma 1 and Young’s inequality, there exist ε1 > 0, ε2 > 0, ε3 > 0, ε4 >
0, ε5 > 0, ε6 > 0, ε7 > 0, ε8 > 0, ε9 > 0 such that:

eT
1 (t)C1(t)γ2(t) 6

ε1
2

eT
1 (t)C1(t)CT

1 (t)e1(t) +
ε−1

1
2

γT
2 (t)γ2(t)

eT
2 (t)C2(t)γ3(t) 6

ε2
2

eT
2 (t)C2(t)CT

2 (t)e2(t) +
ε−1

2
2

γT
3 (t)γ3(t)

eT
2 (t)C2(t)d̃1(t) 6

ε3
2

eT
2 (t)C2(t)CT

2 (t)e2(t) +
ε−1

3
2

d̃T
1 (t)d̃1(t)

eT
3 (t)C3(t)γ4(t) 6

ε4
2

eT
3 (t)C3(t)CT

3 (t)e3(t) +
ε−1

4
2

γT
4 (t)γ4(t)

− TM(t)
m

eT
4 (t)C4(t)R(t)J−1d̃2(t) 6

ε5
2

T2
M(t)
m2 eT

4 (t)C4(t)R(t)J−1 J−1RT(t)C4(t)e4(t) +
ε−1

5
2

d̃T
2 (t)d̃2(t)

e5(t)γ6(t)
k2

b5 − e2
5(t)

6 ε6
eT

5 (t)e5(t)[
k2

b5 − e2
5(t)

]2 + ε−1
6 γT

6 (t)γ6(t)

e6(t)α1(t)J−1d̃2(t)
k2

b6 − e2
6(t)

6
ε7
2

eT
6 (t)e6(t)[

k2
b6 − e2

6(t)
]2 α1(t)J−1 J−1αT

1 (t) +
ε−1

7
2

d̃T
2 (t)d̃2(t)

d̃T
1 (t)ḋ1(t) 6

ε8
2

d̃T
1 (t)d̃1(t) +

ε−1
8
2

ḋ
T
1 (t)ḋ1(t)

d̃T
2 (t)ḋ2(t) 6

ε9
2

d̃T
2 (t)d̃2(t) +

ε−1
9
2

ḋ
T
2 (t)ḋ2(t)
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According to (15), (20), (25) and (33), using the Lemma 1 and Young’s inequality, there
exist ε10 > 0, ε11 > 0, ε12 > 0, ε13 > 0 such that:

γT
2 (t)γ̇2(t) 6 −

γT
2 (t)γ2(t)

λ1
+

ε10

2
γT

2 (t)γ2(t) +
ε−1

10
2

α̇T
1 (t)α̇1(t)

γT
3 (t)γ̇3(t) 6 −

γT
3 (t)γ3(t)

λ2
+

ε11

2
γT

3 (t)γ3(t) +
ε−1

11
2

α̇T
2 (t)α̇2(t)

γT
4 (t)γ̇4(t) 6 −

γT
4 (t)γ4(t)

λ3
+

ε12

2
γT

4 (t)γ4(t) +
ε−1

12
2

α̇T
3 (t)α̇3(t)

γ6(t)γ̇6(t) 6 −
γT

6 (t)γ6(t)
λ4

+ ε13γT
6 (t)γ6(t) + ε−1

13 α̇T
5 (t)α̇5(t)

Moreover, from Lemma 2, the following inequalities hold:

1
2

3

∑
i=1

ln
k2

b1i
k2

b1i − e2
1i(t)

6 eT
1 (t)C1(t)e1(t)

1
2

3

∑
i=1

ln
k2

b2i
k2

b2i − e2
2i(t)

6 eT
2 (t)C2(t)e2(t)

1
2

3

∑
i=1

ln
k2

b3i
k2

b3i − e2
3i(t)

6 eT
3 (t)C3(t)e3(t)

1
2

3

∑
i=1

ln
k2

b4i
k2

b4i − e2
4i(t)

6 eT
4 (t)C4(t)e4(t)

1
2

ln
k2

b5
k2

b5 − e2
5(t)

6
eT

5 (t)e5(t)
k2

b5 − e2
5(t)

1
2

ln
k2

b6
k2

b6 − e2
6(t)

6
eT

6 (t)e6(t)
k2

b6 − e2
6(t)

Hence, we have:

V̇(t) 6 −k1eT
1 (t)e1(t)− k2eT

2 (t)e2(t)− k3eT
3 (t)e3(t)− k4eT

4 (t)e4(t)− k5eT
5 (t)e5(t)

− k6eT
6 (t)e6(t)−

1
2

k̄7γT
2 (t)γ2(t)−

1
2

k̄8γT
3 (t)γ3(t)−

1
2

k̄9γT
4 (t)γ4(t)−

1
2

k̄10γT
6 (t)γ6(t) (38)

− 1
2

k̄11d̃T
1 (t)d̃1(t)−

1
2

k̄12d̃T
2 (t)d̃2(t) + D

where D =
ε−1

10
2 α̇T

1 (t)α̇1(t) +
ε−1

11
2 α̇T

2 (t)α̇2(t) +
ε−1

12
2 α̇T

3 (t)α̇3(t) + ε−1
13 α̇T

5 (t)α̇5(t) +
ε−1

8
2 ḋ

T
1 (t)ḋ1(t) +

ε9
2 d̃T

2 (t)d̃2(t) +
ε−1

9
2 ḋ

T
2 (t)ḋ2(t), for i = 1, 2, 3

By defining λ = min
{

k1, k2, k3, k4, k5, k6, k̄7, k̄8, k̄9, k̄10, k̄11, k̄12
}

, (38) can be written as:

V̇ 6 −2λV + D (39)

Thus the unmanned helicopter tracking error systems (6) can converge to the expected
bounded range.

5. Numerical Simulation

In order to verify the state-constrained flight-tracking controller designed in this paper.
The parameters presented in Table 1 are selected as the physical parameters of unmanned
helicopter and simulated by MATLAB/Simulink [28]:
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Table 1. Parameters of unmanned helicopter.

Parameter(unit) Parameter Description Parameter (Unit) Parameter Description

m = 8 kg quality of the helicopter Jxx = 0.26 kg ·m2 moment of rotation
Jyy = 0.35 kg ·m2 moment of rotation Jzz = 0.29 kg ·m2 moment of rotation

Cma = 107 (N ·m/rad) pitch moment intensity factor Cmb = 199 (N ·m/rad) rolling moment intensity
factor

CMQ = 0.0044 (M ·N− 1
2 ) main rotor torque factor DMQ = 0.6304 (M ·N− 1

2 ) main rotor torque factor

xm = 0 m

distance between the center of
the main rotor and the x-axis
of the helicopter’s center of

gravity

zm = 0.284 m

distance between the center of
the main rotor and the z-axis
of the helicopter’s center of

gravity

xt = 0.915 m
distance between the center of

the tail and the x-axis of the
helicopter’s center of gravity

zt = 0.104 m
distance between the center of

the tail and the z-axis of the
helicopter’s center of gravity

The initial states of the unmanned helicopter are:

P(0) = [2 2 1.5]Tm, ψ(0) = −0.1rad

The expected position and yaw of the unmanned helicopter are:

Pd = [10cos(0.2t) 10sin(0.2t) 5 + 0.1t]Tm, ψd = 0.1sin(0.1t)rad

In order to verify the anti-disturbance ability of proposed control method, the distur-
bances of the unmanned helicopter are set as:

d1 = [1.5 sin(0.5t) 0.8 sin(0.4t) 1.3 sin(0.6t)]T ,

d2 = [0.5 sin(0.45t) 0.6 sin(0.5t) 0.6 sin(0.4t)]T .

The simulation results of the unmanned helicopter are shown in Figures 2–10. The
position tracking trajectories of the unmanned helicopter are given in Figure 2, which is
a 3D figure, in which the helicopter could achieve the position-tracking task with good
control performances. Since the unmanned helicopter is under the action of the full
state-constrained flight-tracking controller, the velocities of the helicopter, accelerations
generated by controllable join force and force variation rates generated by controllable
join force are all constrained. Therefore, the positions of all three axes track the desired
trajectories asymptotically with a relatively gentle trend, and maintain the tracking states in
the subsequent process. The Figure 3 presents the position error curves on the three axes of
the unmanned helicopter, which converge to the desired bounded range under the action
of state constraint controller. Moreover, the maximum errors of position variables do not
exceed 1× 10−2 m. Obviously, the helicopter has high control accuracy with the constructed
anti-disturbance flight controller. The Figure 4 shows the unmanned helicopter attitude
angular curves. All these helicopter intermediate control variables are also bounded and
kept within a reasonable range which means, though the attitude angles are not the control
target variables, these important variables are also in the bounded scopes. Hence, the results
from this figure declare the helicopter could safely fly under our full state-constrained
control scheme. The control inputs of the unmanned helicopter are shown in Figure 5. To
suppress the influence of disturbances, the control inputs display the corresponding waves
with the feasible scopes. Figures 6 and 7 represent the disturbance forces and disturbance
moments d1(t), d2(t) and their estimated curves.
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Figure 2. Three−dimensional image of position tracking trajectories of the unmanned helicopter.
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Figure 3. Position tracking error curves of the unmanned helicopter.
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Figure 4. Attitude angle curves of the unmanned helicopter.



Aerospace 2023, 10, 471 15 of 18

0 10 20 30 40 50 60

t/s

50

100

150

T
M

(t
)/

N

(a) main rotor torque

0 10 20 30 40 50 60

t/s

0

5

10

T
T
(t

)/
N

(b) tail rotor torque

0 10 20 30 40 50 60

t/s

0

0.2

0.4

a
(t

)/
°

(c) longitudinal flapping angle

0 10 20 30 40 50 60

t/s

-0.2

-0.1

0

b
(t

)/
°

(d) lateral flapping angle

Figure 5. Control input curves of the unmanned helicopter.
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Figure 6. The curves of disturbance forces and their estimates.
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Figure 7. The curves of disturbance moments and their estimates.
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Figure 8. Position curves of the unmanned helicopter.
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Figure 9. Velocity curves of the unmanned helicopter.
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Figure 10. Attitude angle curves of the unmanned helicopter.

In order to demonstrate the advantages of our full state-constrained anti-disturbance
control scheme, a typical nonlinear control method is applied for designing the flight-
tracking controller without using the state-constrained control. The typical nonlinear
control method is constructed by combining the nonlinear disturbance observer technology
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and backstepping control method, which does not adopt the full state-constrained control
scheme. The simulation results are shown in Figures 8–10, which represent the comparison
of the unmanned helicopter position, velocity and attitude angle under the action of the full
state-constrained flight-tracking controller and the backstepping controller, respectively,
in which the helicopter systems have the same initial conditions. From the figures, it
can be seen that the positions, velocities and attitude angles of the unmanned helicopter
can be ensured to be constrained within the desired range under the action of the full
state-constrained flight-tracking controller to avoid safety problems. Apparently, the curves
of the positions, velocity and attitude angles have the smaller overshoot using our flight
controller, which implies the helicopter has better control dynamic performance under the
proposed flight control scheme.

6. Conclusions

In this paper, the anti-disturbance flight-tracking control problem is studied for un-
manned helicopter under full state constraints and disturbances. Firstly, the input–output
feedback linearization method is adopted for the unmanned helicopter system to reduce
the complexity of controller design. Secondly, two nonlinear disturbance observers are
used to estimate these system disturbances. Thirdly, a Barrier Lyapunov function method is
combined with the backstepping control technology to construct the full state-constrained
anti-disturbance flight-tracking controller. Then, the virtual control laws and their deriva-
tives are estimated by the dynamic surface method to reduce the degree of “differential
explosion” caused by nonlinear controller for the high-order system. Finally, the system
stability is guaranteed by using the semi-global stability theory, and the effectiveness of
designed controller is verified by numerical simulation.
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