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Abstract: This paper is focused on structural scalability studies of a new generation of civil tiltrotor
wingbox structures. Starting from a reference wingbox, developed under the H2020 Clean Sky 2
NGCTR-TD T-WING project, a geometric scaling was performed to upscale the concept up to a
larger class tiltrotor named “NGCTR”. Given the wing and the wingbox geometry, a multi-objective
optimization, based on genetic algorithms, was performed to find for the NGCTR, among different
materials and layups, the best composite wing in terms of weight that satisfies stiffness and crash
requirements. The crash requirement plays an important role in regards to wing weight performance.
It was found that not all materials investigated in this study succeeded in satisfying both stiffness and
crash requirements. The results in terms of minimum structural mass as the target of the optimization
process show that the mass ratio of the optimized up-scaled wing is near the geometrical scale factor:
1.58 vs. 1.29. Furthermore, the solution found by the optimizer NGCTR upscaled wing is comparable
with other tiltrotor data coming from a literature study. The difference in terms of the ratio between
wing structural weight and tiltrotor MTOW is ∆% = +1.4: an acceptable small overestimation of
weight compared to a design, optimization, and scalability method that is easily adaptable and
effective. The study presented in this work is, in fact, part of a broader activity on scalability and
constitutes its first phase, based on low-fidelity models. The scalability study will continue with
a further phase (indicated as “phase 2”), in which more reliable models will be set up, allowing a
better estimation of the wing’s structural weight and further optimization. The results shown in this
manuscript concern phase 1 only and can be considered a starting point at the System Requirements
Review level of the up-scaled wing. This phase allowed for a fast exploration of the available solutions
by making a first assessment of the main requirements and by aiding in the material choice at the
very beginning of the design.

Keywords: scalability; NGCTR; T-WING; composite wing; optimization; genetic algorithm; tiltrotor

1. Introduction

Designing any new complex product requires numerous working hours and expensive
experimental tests. A good example is a civil tiltrotor wing design project, where the
development cost represents a significant part of the final product cost.

Tiltrotor is a hybrid aeronautical system due to its capability to take off and land like a
helicopter and, by means of configuration changes in flight, acts like a turboprop aircraft
with a considerably higher cruise speed than a helicopter.
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The present paper is focused on structural scalability studies applied to the next-
generation civil tiltrotor—technology demonstrator (NGCTR-TD) wingbox. Figure 1 is a
rendered view of the NGCTR-TD. The purpose of this study is to assess if the wingbox
of the technology demonstrator is up-scalable to a larger class of tiltrotor. The scope of
the NGCTR-TD Wing research project (T-WING project under H2020 Clean Sky 2 [1–3])
is to design, manufacture, and qualify a new high lift, low drag optimized wing capable
of improving downwash impingement in helicopter mode and of increasing the total fuel
capacity of the NGCTR-TD under development by Leonardo Helicopters Division (LHD).
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From a general point of view, the tiltrotor configuration is considered a step beyond
the state of the art in terms of performance, design, architecture, and product supportability.
This was recently confirmed by the US Government Accountability Office, which identified
a tiltrotor vehicle as a vehicle for the future long-range assault aircraft (FLRAA) [4]. The
methodology developed in this paper allows a quick scale-up and preliminary validation
of the tiltrotor wing structure starting from the Technology Demonstrator (TD) data. This
approach is more efficient than the standard approach based on main component redesign
once the main vehicle characteristics change (e.g., weight, chord, wingspan, etc.). The
need to have such a tool is justified for tiltrotors as the configuration is relatively new
for the aeronautical industry and its market. In the future years, down-scaled (i.e., aerial
urban mobility vehicles) and up-scaled (i.e., civil and military) tiltrotors with respect to
NGCTR-TD will be developed by the main airframers. The market prospects predict an
increasing demand for disc-rotor technologies in the civil field [5]: business flights, air
medical, search and rescue applications, and others.

In NextGen, tiltrotor is expected to have a wider range of capabilities than today
and support varying levels of total system performance. In terms of flight operational
performance, a wider range of capabilities regarding cruise speed, cruise altitudes, climb
and descent rates, noise, and emissions will exist. A key aspect of NGCTR is providing
environmental protection that allows sustained aviation growth.

The tiltrotor wing is one of the most critical airframe subsystems of the entire aircraft
due to several requirements, often contrasting each other, to be fulfilled [6]. As a first
step, the wing structure shall be sized in such a way as to avoid the typical aeroelas-
tic instability that characterizes the tiltrotor, namely whirl flutter. Wing bending and
torsional stiffness have a fundamental role in pitch-whirl stability; therefore, there is



Aerospace 2023, 10, 478 3 of 29

often a need to properly tailor the composite structure to meet the requirements while
maintaining the structural weight to a minimum. Another specific concern of tiltrotors
is the airframe mode placement: those modes involve significant movement of the hub
center in the rotor disc plane directions (usually caused by local deformation of the rotor
and nacelle supporting structure) and shall have their frequency outside of prescribed
bands to avoid forced response oscillations. In addition, the lowest elastic airframe
mode shall have a frequency not lower than a prescribed value to avoid coupling with
aeromechanical modes. Finally, the wingbox architecture shall be capable of hosting fuel
bladders, hydraulic systems, electrical systems, flight sensor routing, and interconnect-
ing drive shafts by respecting redundancy and segregation requirements. Therefore, it
is important to study and develop the wing in an integrated way by using low-fidelity
models (in the early design stages) and high-fidelity models (in the more advanced
stages) and methodologies. Most of these methodologies can also recur to optimization
routines for replicating the wingbox structural design of the technological demonstrator
model in the full-size scaled version by means of sizing a well-prescribed structural
layout with an exact scaled-up external geometry.

Optimizing topologically a structure has proven to be an efficient tool in minimizing
weight for several engineering fields, and its interest has exponentially grown in the past
few years with the recent progress in aeronautical applications such as unmanned aerial
systems (UAS) [7–9].

The TD wingbox is characterized by a three-spar concept that guarantees proper
segregation among the various systems hosted by the wing. The aft spar has a curved
shape to maximize the available internal space for fuel, thus matching the aircraft’s
range requirement. The wing design must be compatible with requirements concerning
strength, stiffness, and structure weight and, at the same time, the need to have a
highly integrated production concept. The wing must also meet certain crashworthiness
requirements provided by LHD. A particularly critical need, the subject of the optimiza-
tion study presented in this work, concerns the protection of any cabin occupants from
equipment externally mounted (including the wing) in a crash situation. To alleviate
the inertia loads due to the whole wing mounted on the fuselage, a frangible wing
section has been incorporated to fail well before the full inertial load level is achieved.
Nonetheless, the wing frangible section has to be strong enough to withstand nominal
and off-nominal flight and ground load conditions. This means that after the wing’s
outboard portion has broken, the cabin needs only to withstand the weight of the re-
maining portion of the wing, thus reducing the risk of fuselage crushing and serious
consequences for passengers. All these stiffness requirements collide with the need to
have a wing structure as light as possible to guarantee more payload or a longer range
for the up-scaled future tiltrotor. All these requirements made the NGCTR-TD wing
design very challenging. These challenging aspects highlighted the need to develop and
use quick and easy-to-implement tools that employed methods, with a certain degree
of fidelity and whose results allowed to gain confidence and paved the way for subse-
quent stages of design refinement. The intuition was to entrust the structural up-scaling
to a multi-objective optimization (MOO) process, based on genetic algorithms (GA).
Based on stochastic global search methods, GAs provide several potential solutions to a
given problem and, through the utilization of probabilistic transition rules, simulate the
mechanism of natural biological evolution by applying the principle of survival of the
fittest to produce better and improved approximations to a solution. At each generation,
a replacement set of individuals is created by selecting individuals according to their
level of fitness in the problem domain and coupling them together using operators
borrowed from natural genetics. This process leads to the evolution of populations of
individuals that are better suited to their environment than their “parents”, just as in
natural adaptation. The average performance of individuals in a population is expected
to increase, and the process terminates when some criteria are satisfied, e.g., a certain
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number of generations, a mean deviation in the population, or when a particular point
in the search space is encountered [10].

The purpose of the current work is not only to achieve the stiffness objectives with the
minimum structural weight of the wing but also to compare the goodness of the results
obtained with those of other tiltrotor manufacturers in a real-world scenario. In this regard,
a summary of the tiltrotor data is collected below. In general, unlike fixed-wing aircraft,
there is insufficient data available on tiltrotor wing designs to establish a statistical database
for wing weight prediction. Detailed preliminary research on the weights of the wings
of existing tiltrotors or in the design or prototyping phase was carried out, considering
references [11–22].

Table 1 summarizes the results of this state-of-the-art research, such as: the maximum
take-off weight of the tiltrotor W0, the structural weight of the wing Ww, and the ratio
between the two weights Ww/W0. It can be seen how the ratio between the two weights
is kept almost constant among the tiltrotors considered. This value is included in a range
from 6.1% to 7.3%.

Table 1. Wing weights and MTOW of reference literature tiltrotors.

W0 (kg) Ww (kg) Ww/W0 (%) Reference

XV-15 5896 429 7.3 [14–16]
Excalibur 7322 521 7.1 [17,18]

Erica 10,000 680 6.8 [19]
NASA Large Civil Tiltrotor 48,842 3012 6.2 [20]

NASA Heavy Lift Rotorcraft 56,035 3992 7.1 [21]
NASA 150-passengers CT_1 66,832 4042 6.1 [22]
NASA 150-passengers CT_2 66,958 4076 6.1 [22]

The present work is divided as follows: (i) after an introductive part, a first section
presents the TD wingbox and the scaling objectives; (ii) a second part introduces the scaling
objectives and constraints; (iii–iv) the third and fourth parts introduce methodologies, tools,
and the mathematical architecture of the proposed optimization scheme; (v) the fifth part
is to be considered a demonstrative appendix on the instability due to buckling and how
it is treated by the optimization tool; and (vi) finally, in the sixth part, results and lessons
learned are provided.

2. Scalability Objectives: From Basic T-Wing Configuration to the Up-Scaled
Wing Layout

The wing design is very peculiar to tiltrotor aircraft. It features characteristics and
constraints that are very different from conventional fixed-wing aircraft, and therefore it
presents specific challenges. A key goal was to reduce the complexity of the wing by making
it straight with no dihedral or sweep, thus providing easier assembly of the interconnecting
shaft and eliminating the need for a mid-wing gearbox. In the TD wing, named T-Wing,
downwash impingement is improved by the design of two movable surfaces: an outboard
flaperon (blue in Figure 2), about 28% of the total chord and about 32% of the semi-
wingspan, which rotates downwards by 70◦ and upwards by 30◦, and a morphing surface
(green in Figure 2), about 45% of the total chord and about 32% of the semi-wingspan,
which can rotate upwards by 5◦ and downwards by 80◦ in helicopter mode to reduce the
wing area beneath the proprotors. T-Wing is a multi-cell carbon composite torque box. The
composite spars, front and middle, are located at 7% and 19.1% chord, respectively. A third
curved spar (rear) is located at 45.8% chord.
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The scalability process is aimed at investigating the feasibility of adopting, for the
up-scaled wing, the same structural criteria and technologies used for TD wingbox
design. This activity has the aim of obtaining the best structural compromise, with an
acceptable weight penalty, through the comparison of different composite materials
(mechanical properties) and layups. The work shown in this paper is the 1st phase
of the scalability process assessment, as shown in the dashed rectangle in Figure 3.
This 1st phase relies on quick tools based on engineering formulas to allow finding
optimized solutions with minimum computational effort. At this step, the preliminary
optimization problem is addressed: to identify the optimal solution that minimizes the
structural weight and simultaneously satisfies stiffness requirements coming from whirl
flutter clearance and crashworthiness. The crashworthiness requirement is imposed as a
constraint, i.e., it is imposed as the failure of the structure around the frangible section,
while maintaining a minimum margin of safety (MoS) elsewhere in the wing, under
the vertical load factor experienced during such a crash event. The simplified choice of
the optimization constraint of having a low MoS in the so-called frangible section and
a higher MoS in the other locations was based on the preliminary information coming
from linear static crash analyses [23,24]. Certainly, this is a low-fidelity approach that is
meant to be the starting point of the subsequent phase of analysis, which will rely on
higher-fidelity models and tools. The plan is to build, in the 2nd phase of the scalability
studies, a global finite element model starting from the optimized sizing, which will be
used to assess strength, buckling, flutter, crash, and ditching.
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3. Multi-Objective Optimization Tool—Multicella and Methods

An in-house optimization environment named Multicella, originally aimed at perform-
ing preliminary calculations on composite wingbox structures for strength and buckling
analysis purposes, has been implemented with a Multi-Objective GA optimization process.

Multicella is a MATLAB™ (ver. R2017b, MathWorks, Natick, MA, USA) code whose
core solver is based on engineering formulas for thin-walled structures [25]. As a result of
the optimization tool, it was possible to preliminarily size the skins, spars, and stringers
of the NGCTR-TD pre-defined wingbox architecture for minimum structural mass. These
sizing results were used to build a first (global) wing FE model that was used at the
preliminary design review (PDR) level, which—in turn—was then used to build a detailed
FEM at the critical design review (CDR) level.

MOO finds optimal tradeoffs between competing objective functions. MOO involves
minimizing or maximizing multiple objective functions subjected to a set of constraints.
MOO is widely used in many fields, such as engineering (construction design, chemical
process, manufacturing, engine design . . . ), finance (risk return in portfolio management),
and economics (consumer demand supply study, monetary policy, production possibilities
frontier . . . ). For the T-Wingbox structure, Multicella was used as the solver to allow the
calculation of the different up-scaled wingbox architecture objectives to be optimized, thus
feeding the MOO part of the analysis. More in detail, MOO output is a Pareto front, consti-
tuted by design points of non-dominated optimal solutions whose fitness was calculated by
Multicella. On the Pareto front, a solution is a wingbox with its overall structural mass (to
be minimized) and the MoS (with respect to strength, buckling, whirl flutter stiffness, and
crash, to be maximized). This work is mainly focused on whirl flutter and crash problems;
furthermore, par. 5 shows a brief demonstration of the Buckling Multicella solver. Some
results are provided to correlate numerical aspects of the optimization with theoretical and
engineering aspects.

The MO optimization phase is based on a GA due to its capabilities to explore a huge
space constituted by a lot of design variables with numerous local maxima and minima.
The Multicella solver receives the following as inputs: the wing planform, the airfoil shape,
the shear, bending, torque, and tension loads along the wingspan, and a material database
(density, elastic, and shear moduli of the lamina material, the composite stacking sequences
for skin and stringers, the material strength allowable, and the critical buckling load). The
tool is able to calculate, for a multiple-cell wingbox section, the following: internal normal
and shear stresses and their corresponding MoS, buckling MoS, torsional and flexural
stiffness (beam segments), and structural mass.

Regarding materials, for optimization purposes, five different materials were consid-
ered. In more detail, MAT01 and MAT05 are composite materials of the fabric type. MAT03
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and MAT04 are unidirectional tape laminates, whereas MAT02 is a unidirectional tape plus
impregnated woven fabric. The mechanical properties of each material used in the study
are contained in Table 2.

Table 2. Materials used in the optimization process—mechanical properties.

Materials

MAT01 MAT02 MAT03 MAT04 MAT05

Solvay CYCOM®

977-2A HTA
Solvay CYCOM®

977-2/IMS UD
Toray M60J Toray M46J

Tape
Toray M46J

Fabric

Longitudinal Young’s module E11 [N/m2] 5.96 × 1010 1.47 × 1011 3.30 × 1011 2.54 × 1011 1.26 × 1011

Transverse Young’s module E22 [N/m2] 5.61 × 1010 1.03 × 1010 1.00 × 1010 1.00 × 1010 1.26 × 1011

Shear module G12 [N/m2] 3.10 × 109 7.00 × 109 5.00 × 109 5.00 × 109 4.00 × 109

Poisson’s ratio ν12 0.064 0.350 0.3 0.3 0.3
Density [kg/m3] 1522 1600 1666 1600 1600
Tensile strength

[MPa] 722.6 2280 2010 2022 689

Compressive strength
[MPa] 810 1725 785 925 407

Concerning the material data, if the material is orthotropic (e.g., CFRP laminate),
the properties are inputted to Multicella as laminate equivalent engineering properties
(preliminary calculated by means of the classical lamination theory—once lamina level
properties and lamination sequence are known, by using a dedicated spreadsheet named
laminate.xls and introduced in the optimization input database).

The optimization was performed in two steps in order to better identify the most
relevant contributions to the up-scaled wing mass.

1. Stiffness optimization with respect to stiffness requirements coming from whirl
flutter clearance.

2. Combined case: optimization with respect to crash and stiffness.

• Stiffness Optimization

Whirl flutter is a dynamic aeroelastic instability that may occur in a flexibly mounted
engine and propeller system. The elastic modes of the system are coupled by the gyroscopic
effects of the turning rotor disk, resulting in complex mode shapes of the mechanical system.
The propeller vibration causes a change in the propeller blades’ angle of attack that will
result in the generation of unsteady aerodynamic forces. Due to that, the vibrations could
become unstable for aeroelastic mode interactions and could result in engine, nacelle, or
whole wing failures [26–28]. Therefore, the wing structure must have a stiffness distribution
in order to avoid the onset of the whirl flutter phenomenon: the whirl flutter requirement is
implemented in the optimization tool as a constraint on the wing stiffness values (flexural
and torsional) as a result of a parametric whirl flutter analysis.

• Crashworthiness Investigation Criteria

To define the crashworthiness requirement for the NGCTR wing, the first step was to
identify the desired frangible section.

A MATLAB® tool has been developed that, starting from the distribution of the masses,
calculates the load acting along the wing during the crash load condition factor (nz = 5
high-level design requirement) by integrating the inertia forces and providing the shear
and bending moment diagrams.

For the calculation of the inertia forces on the wing, the mass of the entire structure is
considered (wingbox, movable surfaces, fuel, and systems). The MATLAB® function out-
puts forces and moments (Fx, Fy, Fz, Mx, My, and Mz). Starting with the mass distributions
of the LHD’s FEM dynamic model, the distributions of shear force and bending moment
along the wingspan are obtained, as shown in Figure 4.
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The crashworthiness requirements are implemented in the optimization process to
have the minimum, near-to-zero, MoS at the wing frangible section and a low, positive MoS
elsewhere in the wing. This constraint ensures that, for given design loads, the material
offers minimum strength in the frangible section.

In order to also consider the stiffness requirements, a penalty (minus 1) on the MoS is
added for solutions that do not respect the torsional stiffness requirements.

The results of the optimization are Pareto fronts showing the wingbox solutions
compatible with these optimization constraints.

4. Mathematical Architecture of Multicella Tool

In the following, the mathematical architecture of the proposed process and the
presented optimization scheme have been clarified.

In the case of several objective functions to be simultaneously optimized, optimization
solvers find the optimal tradeoffs between the competing objective functions.

The wingbox structure can be considered a compound engineering system whose
design has many objectives to be minimized or maximized, and this leads to a MOO
problem. MOO Multicella, based on a GA and written in MATLAB® language, has been
used to optimize the wingbox structure. This robust and efficient tool provides a set of
optimal solutions for a MOO problem since the final decision is always a trade-off.

Optimization objectives are the wing structural mass (to be minimized) and the
strength and buckling MoS (to be maximized). Additionally, the points on the Pareto front
are labeled with the wingbox torsional stiffness and the wingbox first bending normal
mode (calculated off-line, at the end of the optimization phase) to restrict feasible solutions
to comply with other design requirements. As optimization variables, the thicknesses
and areas of the different structural parts (wingbox panels and stringers) of the wingbox
are chosen.

The following input data are needed by the program:

• Semi-wing plan form;
• aerofoil shape;
• caps chord-wise length (that multiplied by thickness gives their areas);
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• load beam characteristics (shear, tension, bending, and torque, i.e., Fx, Fy, Fz, Mx, My,
and Mz at each section where the stress has to be evaluated) at representative buttock
lines of the wing span;

• material database that is used for structural elements in the section (caps and panels
modeling spars and skins). The database is composed of:

1. density, elastic, and shear moduli of the lamina material;
2. the composite stacking sequences for skin and stringers;
3. the composite material strength characteristics (tensile, compressive, and shear

allowables) and buckling loads.

• wing buttock lines at which the output has to be calculated.

The optimization tool is able to calculate, for a multiple-cell wingbox section, the
following quantities:

• Internal normal and shear stresses and corresponding MoS;
• buckling MoS;
• torsional and flexural stiffness;
• total and span-wise structural mass estimation, with also a subdivision among the

structural components (skin, spar, stringer, and webs).

Figure 5 shows an overview of the input files containing parameters implemented in
Multicella for a generic case study in order to provide a reference and setting support for
all parameters used.
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Multi-Objective Optimization Tool Technical Description

Figure 6 illustrates the block diagram of the Multicella code operational flow and the
architecture of the optimization tool, whose description is extensively discussed below. The
structural analysis and optimization process can be divided into different phases. At each
step, a dedicated set of files is used. The various phases can be summarized as follows:

• Wing Geometry
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Wingbox geometry is expressed through a series of input files. These files are captured
by the main MATLAB® code before the optimization of skin thickness and cap areas
is started.

The input files defining wing geometry are:

# prof.dat

It contains information on the geometry of the wing profile in terms of normalized
point coordinates with respect to the chord, in a suitable reference system. The origin of
the reference system is placed on the leading edge. The x-axis is along the wing cross-
section chord and directed from the leading edge to the trailing edge; the vertical z-axis is
directed upwards.

# panel.dat

It identifies the connections between the points of prof.dat making up the profile; in
such a manner, the front spar, the middle spar, the rear spar, the lower skin, and the upper
skin of the section are defined.

# chords.dat

This file contains the variation of the chord along the wingspan (y-axis), starting from
the root and moving towards the tip of the wing.

# stringer.dat

This file indicates the points of prof.dat where the stringers are positioned and their
corresponding lengths.

• Wing Segmentation

The second step consists of dividing the wing into structural groups whose thicknesses
will be optimized.

The files containing the grouping information are divided into grouping for strength
analysis and grouping for buckling analysis.
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1. Grouping for strength analysis:

# station_calc.dat

This file contains the sections along the wingspan where the tension and shear stresses
will be calculated. This file subdivides skin and stringers spanwise. Generally, ribs and
other “discontinuities” because of movable surfaces define the spanwise segmentation.

# panelGrouping.dat

Each line of this file corresponds to a group of panels contained in panel.dat that define
a part of the skin whose thickness is intended to be optimized as a whole.

# Spanwise.dat

It contains the identification of the sections (along the wing) and defines the segments
for the buckling analysis.

2. Grouping for buckling analysis:

For wing skin supported by stiffeners, the buckling can be considered to arise in panels
delimited by the stringers and the ribs of the wingbox; two files provide the panels to be
analyzed for buckling purposes, respectively along the chord and the wingspan:

# panelBucklingChordwise.dat is similar to panelGrouping.dat. It groups panels
contained in panel.dat to identify panels for buckling analysis;

# panelBucklingSpanwise.dat basically identifies the wing sections where ribs are present.

• Material database

# EGnu.dat

This file contains the homogenized values of the mechanical properties (elastic
modulus along both directions, shear modulus, and Poisson’s ratio) for several laminates
that can be used for wing panels and caps (different thicknesses and different fiber
orientations and layups). Lamina mechanical properties can be introduced for various
temperature conditions.

• Wing loading conditions

# WingLoad4Optxxx.mat

It consists of an array containing, for various wing stations, the six beam load com-
ponents Fx, Fy, Fz, Mx, My, and Mz (forces and moments with respect to the three axes of
the cross-section: x-axis from the leading to the trailing edge, y-axis spanwise from root to
tip, and z-axis upwards). This file is generated from the load conditions provided by LHD
(shear, bending, torsion, etc.).

• Buckling limit loads

Buckling is the failure of a structural element when a portion of the element moves
normally to the direction of the primary load application. The deformation alters the
mechanism by which loads are transmitted. It is the combined loading of compression and
shear stress components that forces the buckle to occur. When the skin is not thick, the
buckling stress of the skin may be comparable to the yield stress of the material.

Calling “q” the angle obtained from the composition of compression and shear loads,
two extreme cases emerge:

� q = 0 when a compressive force alone is applied to the panel;
� q = 90◦ when a shear force alone is applied to the panel;
� 0 < q < 90◦ for combined load conditions.

For a fixed q angle, the compression and shear forces are defined by a certain gain
between them. The buckling limit loads are calculated offline for the laminates that will be
used in the optimization process and are thus stored in a MATLAB®® file:

# BucklingPreProWing.mat. This file is a 5D multidimensional matrix. It contains
buckling loads for:
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1. the two dimensions of the panels tested at Buckling in the optimization process
(derived from panelBucklingChordwise.dat and panelBucklingSpanwise.dat files);

2. the angle q: from 0◦ to 90◦with a step of 1◦ deg;
3. the lay-ups database used for panels (expressed as the number of plies of

laminates database);
4. the load conditions are cold temperature dry (CTD) or elevated temperature

wet (ETW).

For each panel under investigation, the critical buckling load is calculated by means
of the Rayleigh–Ritz method based on the plate’s potential energy, as reported in §6.

5. Up-Scaled Wing Multi-Objective Optimization and Results

The GA has the significant advantage of searching a population of points in parallel,
not a single point, making the optimization process very fast. The T-Wing preliminary
design and the structural scalability process are MOO problems; thus, there is not one
single solution but a family of Pareto-optimal solutions. The GA is potentially useful for
identifying these alternative solutions simultaneously; however, the choice of an ultimate
better solution is left to the user. The general form of GAs is presented in Figure 7.
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The first step of the GA is initialization [29]. This generates, often randomly, a pop-
ulation from which new generations are formed. At this point, it needs to define the
terminating condition too, so that the algorithm stops running once an acceptable solution
is found [30]. The second step is the crossover. Crossover is one of the genetic operators
used in producing new candidates using the features of the existing ones. The crossover
procedure consists of three parts. The first one selects two parents from the population.
Then the crossover points are selected. The selection of crossover points is performed
randomly, so that the distribution from which the points are drawn is uniform [31,32]. Once
the points are defined, two offsprings are generated by interchanging the values between
the two parents. In the GA crossover, the operator spreads the advantageous characteristics
of the members around the population. Focusing on the third step in the GA, mutation
is the operator that causes totally new characteristics to appear in the members of the
population. In many cases, the mutations, of course, result in offspring that are worse than
the other members, but sometimes the result has such characteristics that make it better.
Firstly, the mutation operation selects a member from the population to be mutated and
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a point of mutation. Then, the values at the point of mutation are replaced by another
value that is picked randomly from the set of all possible values. After the population
is manipulated using the genetic operators, the fitness of each of the new offspring is
evaluated. For this one, it needs to have a fitness function to be evaluated. In the selection,
the weakest individuals in the population are eliminated. The fit offsprings survive to the
next generation.

The present section is devoted to the assessment of the scalability of the NGCTR-TD
composite wingbox up to the larger class “NGCTR” (MTOW = 30,865 lb) by considering
the most relevant requirements that had a big impact on the TD wing sizing, namely whirl
flutter and crashworthiness requirements.

The results are provided as Pareto fronts. Pareto front is a set of points that verifies the
property that each one of these points is not dominated by another one (no point exists that
has better properties on all the optimization objectives).

On the Pareto fronts depicted in Figures 8–12, the blue points represent all the points
analyzed by the optimization algorithm under the assumption of composite layups, with
continuous thickness variability. The red points are definitely Pareto points. The green
points are derived from the red points and represent feasible optimization solutions (solu-
tions compliant with layups with discrete thicknesses). The cyan points are a subset of the
green points (best among them). For each material, optimizations have been performed
with respect to:

# Flexural stiffness ∆EIxx [%];
# fore and aft stiffness ∆EIzz [%];
# torsional stiffness ∆GJ [%];
# the maximum of (∆EIxx [%], ∆EIzz [%], ∆GJ [%]);
# the sum of (∆EIxx [%], ∆EIzz [%], ∆GJ [%]);
# ∆GJ [%] and crashworthiness.
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The performed MOO was aimed at minimizing the structure weight and at minimizing
the absolute differences between the structural stiffness of the solution under consideration
and the corresponding required stiffness to comply with whirl flutter and frangible section
requirements. For a given solution, for Figures 8–12, the y-axis reports values representing
the minimum of the absolute stiffness differences along the wingspan.

The crash optimization was performed by taking into consideration the crashwor-
thiness constraint and verifying that the solutions fulfill the stiffness requirement as well.
As said before, the constraint of the crash optimization problem is that under crash loads,
the wing fails around the frangible section, while maintaining a minimum MoS elsewhere
in the wing. In this case, on the y-axis, a safety margin is reported that represents the
minimum difference between the solution MoS and the one required along the wingspan.
It is possible to note that the Pareto fronts of the crash optimization generally present
two clouds/branches of data (an upper branch and a lower branch) due to the penalty
applied to solutions that do not fulfill the whirl flutter requirement (the lower branch is
composed of the ensemble of points that do not respect the whirl flutter requirements). The
Pareto fronts reported in this paper are those related to the optimization of the up-scaled
wing with respect to both stiffness and crashworthiness requirements. The optimization
process, with the same crash and whirl flutter requirements, was also repeated for the tech
demonstrator’s T-Wingbox: graphs relating to this analysis are not shown, but only the
final weight of the selected optimal solution is reported in order to allow, in paragraph 6, a
comparison between geometric scaling and weights.

In Table 3, a summary of the optimized results is reported in terms of the structural
mass of the up-scaled wingbox. The crash data have to be read as “wing optimized with
respect to whirl flutter stiffness requirement plus crash”. Where the value reported is
“na”, it means that there is room for optimization below the laminate minimum thickness
and the minimum laminate thicknesses of the considered database satisfy the requirement
under consideration. Where a value equal to “NE” for crash is reported, it means that an
optimized solution that is compliant with both whirl flutter and crash cannot be found for
that particular material and the layups of the composite database.

Table 3. Up-scaled wing optimization results.

Up-Scaled Wing Structural Mass (lbs)

EIxx EIzz GJ max (EIxx, EIzz, GJ) sum (EIxx, EIzz, GJ) WF + CRASH

MAT01 2138 1936 3589 2667 2260 NE
MAT02 1495 1443 2362 1921 1502 NE
MAT03 na na 1566 na na 2527
MAT04 na na 1905 na na 3743
MAT05 1213 1089 2254 1472 1224 2933
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In the histogram of Figure 13, the up-scaled optimized wing mass is reported with
respect to each optimization performed. Red, blue, grey, yellow, and dark blue bars are the
optimized solutions with respect to each stiffness (grey is with respect to torsional stiffness,
the most demanding one). The green bar is the optimized solution with respect to whirl
flutter (torsional stiffness) and crash. The following considerations can be drawn for the
upscaled wing:

# Optimization using the max or sum norm does not allow to obtain a solution with the
minimum possible weight (suboptimal results obtained) due to the trade-off of the
optimizer to reduce contemporarily all the stiffness differences concerning the targets.

# By optimizing the wing concerning whirl flutter, the leading stiffness is the torsional
stiffness (grey color in the histogram); this is fully in accordance with respect to the
NGCTR-TD wing design heritage.

# Crashworthiness requirements have a non-negligible impact on the weight; this is
also in accordance with the T-Wing design heritage. This is due to the large masses
at the wing tip, which cause high loads to develop on the wing under the crash
vertical load factor. MAT01 and MAT02 are not able to fulfill both whirl flutter and
crashworthiness requirements.

# The maximum weight saving that fulfills both whirl flutter and crashworthiness is
reached with MAT 03 Toray M60J; the other materials have solutions that are heavier
with respect to MAT 03.
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The results are reported in percentage terms in Figure 14 to better appreciate the
difference between each solution with respect to the optimal one.
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Below is the information on the geometry of the wingbox of the upscaled wing
derived from the optimization study, leaving some fundamental considerations for the
final paragraph. The up-scaled wing has a chord of 96.7 inches (2456 mm) and is divided
into two half wings, linked by an upper splice fitting, each one has a span of 289.8 inches
(7360 mm). The NGCTR wing has two movable surfaces: an outboard flaperon, about 28%
(27.1 inches—687.6 mm) of total chord and 83.98 inches (2113 mm) span, and a morphing
surface, about 45% (43.5 inches—1105 mm) of total chord and 86.26 inches (2191 mm) span.
The airfoil of the NGCTR Wing is the same as the T-Wing airfoil, as well as the percentage
of wingspan and chord occupied by the moveable surfaces and the number of ribs along
the wing. The first rib is located 30.9 inches from the wing–fuselage attachment. The tip rib
is positioned at 258.3 inches from the wing–fuselage attachment. Rib spacing is listed in
Table 4. The number of wingbox stringers considered to be the best choice based on the
present study is equal to 9.

Table 4. NGCTR—wingspan % rib spacing.

RIB 1 RIB 2 RIB 3 RIB 4 RIB 5 RIB 6

11.96% 29.08% 47.13% 63.27% 80.35% 100%

A final consideration concerns the ribs of the wingbox. Ribs are used to hold the
cover panel in a contour shape and to limit the length of skin-stringer panels to an efficient
column compressive strength. Ribs are likely to be located at each morphing and flap hinge.
The rib spacing is determined by panel-size considerations, to which reference should be
made. Some adjustments in the rib spacing may be desirable to get the hinge rib locations
to coincide with the rib stations. With a view on preliminary structural optimization,
since the weight of the ribs is a significant amount of the total wingbox structure, it is
important to include the ribs in the overall optimization consideration of the structure.
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This is illustrated in Figure 15 [33], where the relative weight of the ribs and cover panels
refers to the spanwise. For this graph, all design criteria (mostly concerning buckling) for
covers and ribs are satisfied. It is advantageous to select a larger rib spacing. Once the
primary wing structure has been defined, based on a set of load conditions, stress analysis
and optimization are started to define the distribution of the thickness of the covers along
the wingspan. About the wing covers, the wing bending loads that cause compression at
the upper surface of the wing are generally higher than those causing compression at the
lower surface. This requires that the stiffening elements along the upper surface be more
efficient and also more closely spaced than those on the lower surface.
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The torsional moments are primarily resisted by the skin and the front and rear
spars. The air loads act on the wing panels, which transmit them to the ribs. The
latter transfer them as shear loads to the main spar structures, distributing the load
in proportion to the stiffnesses of the webs. The use of multi-spar allows a reduction
in rib stresses and better support for the spanwise bending material. Furthermore, by
considering a generic panel (a × b dimensions), as the panel aspect ratio (a/b) increases
due to the increase in spar number in the cross-section, the critical buckling load of the
covers gets higher. Hence, the covers can be designed with less thickness, resulting in
mass savings [34–36]. Additionally, the thickness of the ribs cannot go below a certain
limit due to manufacturing constraints.

Among the various optimization process inputs, there is also the rib spacing defined
based on preliminary calculation runs in such a way as to remain within the range
for which the overall weight of the wing structure does not increase (“optimum rib
spacing” interval in Figure 15). The rib spacing is contained in Table 4 in terms of
wingspan percentage.

6. Buckling Optimization Analysis Results

The Rayleigh–Ritz method, based on the plate’s potential energy, has been imple-
mented in the optimization process to determine the critical buckling load [34,37,38].

By considering a generic panel (a × b dimensions) of Figure 16, this allows the
introduction of the buckling of simply supported orthotropic plates under combined
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loads [39–41]. The generic plate is simultaneously loaded with an Nx uniaxial compressive
load and an Nxy shear load in the plane.
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For the plate subjected to combined loads, we assumed the only applied loads were a
uniaxial compression load in the x direction and an in-plane shear load. Introducing the
constant, µ:

µ =
Nxy

Nx
⇒ Nx = −N, Nxy = −µN

For simply supported plates subjected to in-plane shear load, the boundary conditions
have the following expressions:
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where ωmn, xmn, and ymn are the series coefficients, and m and n are positive integers. We
now split the total potential energy functional for the Rayleigh–Ritz method into three
parts (bending, shear, and external forces):

Π = Ub + Us + Up (2)

where
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where m ± p and n ± q are odd numbers.
Substituting the Fourier approximations for ω, φx, and φy gives:
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m, n, p, and q in Equations (8)–(10) are positive integers and run from 1 to ∞. I10 is
valid for m ± p, n ± q odd numbers; otherwise, zero. Equations (8)–(10) can be expressed
in matrix form: 
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(11)

A simplified version of Equation (11) is given by:mat1 mat2 mat3
matt mat5 mat6
mat7 mat8 mat9


x
y
w

 =


0
0
0

 (12)

Equation (12) is implemented in the optimization tool. To find the critical buckling
load N, Multicella solves det[M X J] = 0. The accuracy of the result depends on the number
of xmn, ymn and ωmn terms.

Figure 17 shows the airfoil of the wingbox as descripted by circle markers/coordinates.
These points, opportunely grouped, represent the plates along the chord, i.e., in the plane
of the airfoil, the thickness of which has been optimized for the buckling analysis.
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Starting from an initial structural reference of the wingbox in terms of stiffness (M.S.)
and structural weight, using the same materials and the same loads, the following examples
of scalability with respect to buckling were carried out:

A. Geometric scalability: 30% chord increment.
B. Change in the dimensions of the panels subjected to buckling load: this is equivalent

to inserting a stringer along the airfoil (as shown in Figure 18).
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The Pareto fronts for the cases examined are shown in Figure 19. In particular,
Figure 19a above relates to the reference starting wingbox, while Figure 19b in the middle and
Figure 19c below relate to the cases of raising the string and inserting a stringer, respectively.
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For each Pareto front, the two best optimal solutions in terms of MS and wing structural
weights were considered.

In the first case, by increasing the chord length by 30%, the following are observed:

• an increase in weight of the wing of about 10%;
• an increase in stiffness.

Since a linear increase in total weight does not correspond to an increase in the chord,
it can be concluded that the optimization tool decreases the thicknesses of the panels as the
stiffness increases.

In the second case, with a string increase of 30% and the insertion of an additional
stringer, the following are observed:

• a weight increase in the wing of about 4% compared to the reference wingbox.
• a 6.5% decrease in the weight of the scaled wing with extra stringer, compared to the

only up-scaled wing.

Therefore, the stiffening offered by the additional stringer is such that the optimization
tool provides thicknesses to the structure, which overall is lightened.
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7. Conclusions

In the present paper, a preliminary structural scalability assessment related to the
wingbox of a tiltrotor was executed. Starting from the baseline wingbox, it was geometri-
cally scaled up to a larger class of tiltrotor by preserving its structural concept (multi-spar
configuration with an aft curved spar). Five different materials were considered in the
analysis that solved a multi-objective optimization problem with respect to whirl flutter
stiffness and crash requirements. The results show that the best solution (minimum-weight
solution) was accomplished with high-modulus CFRP material. The geometrical scale
factor that was used to upscale from the TD wing to the up-scaled version is equal to 1.289,
whereas the ratio between the structural weight of the two best solutions (TD wing/up-
scaled wing) resulted in 1.338, which is a value exceeding about 3.6% with respect to the
geometrical scale factor (Table 5).

Table 5. NGCTR-TD versus NGCTR optimization results.

Ratio

Wing geometrical scale factor 1.289
Wing weight (% by MTOW) 1.584

Optimized weight vs. WF + CRASH 1.338

Figure 20 shows that the ratio between the structural weight of the wing and the
design MTOW of the NGCTR is around 8.19%, which is higher than the average value
referred to for other tiltrotors taken from the literature.
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Figure 20. NGCTR (up-scaled wing) with respect to literature trend.

None of the existing tiltrotors was certified civil, and unfortunately, the wing weight
data of certified tiltrotors are not accessible. Despite the high percentage of the up-scaled
optimized wing with respect to NGCTR MTOW—which is over the trend—and based on
the mature experience within the TD wing, it is deemed that a great margin of optimization
can be achieved by using more refined tools (e.g., high-fidelity FEA) in the subsequent
design phases of an up-scaled wing.
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CDR Critical design review
CTD Cold temperature dry
ETW Elevated temperature wet
FRC IADP Fast RotorCraft innovative aircraft demonstrator platform
GA Genetic algorithm
LHD Leonardo Helicopters Division
MOO Multi-objectives optimization
MoS Margin of safety
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Subscripts
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