
Citation: Kim, D.; Lee, B.; Sung, S.

Observability-Driven Path Planning

Design for Securing

Three-Dimensional Navigation

Performance of LiDAR SLAM.

Aerospace 2023, 10, 492. https://

doi.org/10.3390/aerospace10050492

Academic Editor: Yan (Rockee)

Zhang

Received: 29 March 2023

Revised: 13 May 2023

Accepted: 19 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Observability-Driven Path Planning Design for Securing
Three-Dimensional Navigation Performance of LiDAR SLAM
Donggyun Kim 1 , Byungjin Lee 2 and Sangkyung Sung 2,*

1 Department of Aerospace Information Engineering, Konkuk University, Seoul 05029, Republic of Korea;
kdgyun88@naver.com

2 Department of Mechanical and Aerospace Engineering, Konkuk University, Seoul 05029, Republic of Korea
* Correspondence: sksung@konkuk.ac.kr; Tel.: +82-2-450-4176

Abstract: This paper presents an efficient method for securing navigation performance by suppressing
divergence risk of LiDAR SLAM through a newly proposed geometric observability analysis in a three-
dimensional point cloud map. For this, observability characteristics are introduced that quantitatively
evaluate the quality of the geometric distribution of the features. To be specific, this study adapts a 3D
geometric observability matrix and the associated condition number for developing numerical benefit.
In an extensive application, we implemented path planning in which the enhanced SLAM performs
smoothly based on the proposed method. Finally, to validate the performance of the proposed
algorithm, a simulation study was performed using the high-fidelity Gazebo simulator, where the
path planning strategy of a drone depending on navigation quality is demonstrated. Additionally,
an indoor autonomous vehicle experimental result is presented to support the effectiveness of the
proposed algorithm.

Keywords: observability; SLAM; path planning; condition number; experiment

1. Introduction

For the last decade, demand for automation has strongly increased due to rising labor
costs and the non-face-to-face social environment. Autonomous driving technology has
become a representative elementary technology for implementing such automation, and
therefore, the importance of autonomous driving as a key component to realize indoor and
outdoor vehicle missions, such as with delivery robots or serving robots in restaurants, is
increasingly emphasized. Specifically, navigation technology that can provide the exact
information about positioning and attitude determination is essential for autonomous
driving technology. In particular, among technologies related to navigation, SLAM is being
extensively deployed in many application fields due to advancements in sensor and data
processing technology.

Since SLAM is fundamentally a technology that simultaneously performs precise map
generation and relative localization based on the generated map, LiDAR and cameras
are widely used to obtain measurement values for environmental map construction. In
SLAM implementation, either 2D LiDAR or 3D LiDAR can be selectively used depending
on the application purpose and hardware platform. For instance, 2D LiDAR has the
advantage that real-time processing is possible even in a low-performance processor as
the amount of data is relatively small. However, it is challenging to adopt it in a 6-DOF
environment. Vehicles that operate on a flat surface, such as robot cleaners or serving robots,
are typical applications. Comparatively, 3D LiDAR can be effectively used in 6-DOF pose
estimation problem, yet it requires extensive resources due to its real-time and optimizing
computation process based on a vast number of point cloud measurements. In contrast,
VIO technology using cameras is known for its relatively low-cost sensors and significant
performance improvements based on the wide algorithm deployment and applications

Aerospace 2023, 10, 492. https://doi.org/10.3390/aerospace10050492 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10050492
https://doi.org/10.3390/aerospace10050492
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-9279-8483
https://orcid.org/0000-0001-9895-3448
https://doi.org/10.3390/aerospace10050492
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10050492?type=check_update&version=2

Aerospace 2023, 10, 492 2 of 17

in robot vision technology. However, it has limitations such as the inability to provide
depth information with a single sensor, vulnerability to optical changes, and decreased
performance in environments with insufficient feature point tracking.

SLAM technologies using LIDAR and cameras have developed competitively based on
their unique characteristics, but recently, convergence research is being conducted in a way
that complements and combines the heterogeneous characteristics of these sensors. In gen-
eral, it is known that the proposed LVIOs (LiDAR/visual inertial odometry) have a smaller
estimation error than the existing LIOs and VIOs [1,2]. For instance, LVI-SAM [1] presents
an improved position and attitude estimation accuracy using a LiDAR, camera, and IMU
sensors. In this design, VIO (visual inertial odometry) and LIO (LiDAR inertial odometry)
form the underlying subsystems, utilizing open-source software such as VINS-Mono [3]
and LIO-SAM [4]. When a failure is detected in one of the two subsystems, the system
decides to operate independently. If both see sufficient features, the combined mode oper-
ates, where VIO selectively extracts depth information from features measured by LiDAR.
LIO uses VIO’s odometry information when initial estimation for LiDAR scan-matching is
activated. However, this imposes a significant computational burden as simultaneous point
cloud processing tasks are associated with each algorithm implementation. FAST-LIVO [2]
uses a single-system state matrix to estimate the state and resolve these issues. In detail,
the LIO of this SLAM is based on Fast-LIO2 [5], while VIO employs an in-house algorithm
based on SVO [6]. For implementation, its VIO utilizes map information from LIO and
combines LiDAR data with the measurement level during visual feature extraction. In
particular, Fast-LIVO eliminates the extraction and matching stage that takes a significant
amount of time, and thus pose can be estimated quickly in the suggested direct integration
scheme. However, this approach essentially relies on the quality of state initialization.

SLAM technology, by its very nature, is a method of solving numerical optimization
problems by using a local feature map at each instance, where inevitably, pose estimation
errors gradually diverge. As a result, errors in the pose estimation accumulate and prop-
agate to distort the exploration map from the true environmental map. Several methods
have been suggested to address this issue. The well-known loop closure technique is a
representative approach that corrects the accumulated error when revisiting a location
marked in the past trajectory. While loop closure was initially developed to improve the
estimation performance of SLAM, it has also been expanded to mission-combined tasks
such as Active SLAM [7].

Active SLAM research suggests suppressing error divergence by adding route points
for loop closing during route planning. This representative research case allows the linking
of mission planning with navigation stability in the autonomous exploration of unknown
regions. The authors of [8] present a route plan for loop closing in an occupancy grid
map. This paper proposes D* using negative edge weights for shortest-path planning.
Through this method, the robot improves the error of position estimation while searching.
Paper [9] deals with the exploration method of autonomous underwater vehicles in a 3D
environment. The authors propose an algorithm for determining the next search point using
a joint map and state entropy. In both articles, path planning is performed while estimation
error is suppressed to avoid navigation divergence. It is clear that path planning techniques
coupled with loop closure to prevent navigation divergence have the disadvantage of
degraded performance compared with existing optimized path planning techniques based
on objective cost functions.

Despite differences in their measurement data, LiDAR SLAM and vision SLAM have
fundamentally similar mechanisms, i.e., creating a local map and estimating the position
and attitude through feature registration with the global map. Therefore, position and
attitude estimation cannot be performed if feature tracking or map matching fails. One
of the cases where matching fails is high maneuverability or fast movement. If the sensor
field of view deviates from the local feature point map of the previous epoch, there is
no matching part between the map and the sensor data and pose estimation becomes
impossible. Another case is when features cannot be extracted from the onboard sensor

Aerospace 2023, 10, 492 3 of 17

value. Cases in which feature points cannot be extracted may vary depending on the type
and characteristics of the sensor. In the case of image sensors, this occurs when targets are
indistinguishable from the background color or images are contaminated by light scattering,
for example. In contrast, in the case of LIDAR, feature tracking quality is highly affected by
the completeness of point cloud data, which is determined by limitations in the effective
measurement distance or precision of the adopted sensor.

SLAM feature quality cannot be guaranteed in situations where there are environ-
mental peculiarities. For example, artificial environments such as buildings and roads
are fundamentally composed of many straight lines. Generally, lines can better represent
the geometric information of space than points, thus papers [10–12] perform SLAM by
extracting line features. Furthermore, the authors of [13] perform SLAM using plane fea-
tures extracted in indoor environments as geometric information about surfaces, and the
proposed method takes into account the detection of plane objects of various shapes and
sizes for achieving performance. The extraction of geometric objects such as lines and
planes is less affected by dynamic obstacles, enabling estimation of position and attitude
with relatively high stability and accuracy. However, even these line-based techniques
cannot guarantee performance in environments where the same type of geometric structure,
such as in corridors or tunnels without obstacles, is repeated. In [14], a special marker
called the ArUco is employed to overcome pose divergence in such monotonous flying
environments. This marker is uniquely fixed to the reference coordinate system and thus
can provide the relative pose between the marker and the vehicle in the factor graphed
ArUco-LiDAR navigation system. However, this approach requires burdensome prelimi-
nary installation of a global marker with high accuracy. Considering another aspect, the
authors of [15] investigated the structural impact of the navigation environment on the
estimation performance. Specifically, they analyzed the observability of a navigation sys-
tem in an environment where geometric features such as points, lines, and planes can be
measured by sensors. In [15], simulation studies demonstrated the directions in which each
feature cannot be observed and based on this, presented quantitative error analysis results
for the area of reduced observability. However, the approach has limitations in that it is
not extended to path planning and navigation stability as attempted in Active SLAM, and
there was no experimental verification of the proposed algorithm.

Accordingly, this paper proposes a method for securing navigation performance in
drone exploration missions that considers the limited field of view (FOV), detection dis-
tance, and loadability characteristics of LiDAR, and suggests an algorithm for such missions.
Notably, the proposed analysis method suggests applying measurement observability un-
der the geometric variation of explored environments. To achieve this, the paper attempts to
identify in advance the environments in which matching is complex. In the 3D point cloud
map, the vehicle’s specific location is predicted and used for analyzing its 3D geometric
structure. Specifically, this paper proposes using geometric observability and condition
numbers in the 3D point cloud map. Thereby, the location where LiDAR SLAM becomes
vulnerable is determined in advance. Consequently, the projected location is reflected in the
route planning algorithm to secure a successful mission, where the navigation performance
is guaranteed during the planned mission trajectories.

2. Observability Analysis

LiDAR SLAM typically uses matching algorithms such as NDT or ICP to estimate
the position and map [16,17]. For the point cloud registration, a characteristic shape or
topography is mostly required. This implies, in turn, that SLAM performance degrades
essentially when the matching is difficult when operating in places such as corridors and
tunnels. To overcome this limitation, we propose an observability analysis of LiDAR
measurements via the geometric topography. The analysis incorporates the rank and
condition number from the induced observability model. Based on this, the divergence
tendency of SLAM’s estimate at a predicted position can be evaluated and employed in
designing a refined path.

Aerospace 2023, 10, 492 4 of 17

2.1. Observability Model

In this paper, the observation matrix is closely related to LiDAR SLAM realization
according to the surrounding terrain at a specific position. LiDAR measurement data are
affected by the pose of the vehicle; therefore, position, velocity, and attitude are first defined
as the states for observability analysis. In this regard, the states and measurements are
organized as in the following way:

X =

Pn

Vn

Φb

, Z =

z1
z2
...

m×1

(1)

The measurement is defined in the relationship between the wall and a specific position
P. Therefore, the size of the measurement matrix usually increases with the number of
walls [18].

Figure 1 is a schematic diagram of the method for finding the geometrical character-
istics of the surrounding objects measured through LiDAR at a specific location P. The
measurement Z is obtained according to the geometric relationship between a specific
position P and the surrounding planes. Observability is analyzed with an orthogonal
vector

→
o i and two points

→
p i,r and

→
p i,v on the wall measured at a specific position P.

→
r i is

the relative distance between a specific position P and the point
→
p i,v on the wall.

→
v i is the

relative direction vector between a specific position P and another point on the wall
→
p i,v.

Aerospace 2023, 10, 492 4 of 17

SLAM’s estimate at a predicted position can be evaluated and employed in designing a

refined path.

2.1. Observability Model

In this paper, the observation matrix is closely related to LiDAR SLAM realization

according to the surrounding terrain at a specific position. LiDAR measurement data are

affected by the pose of the vehicle; therefore, position, velocity, and attitude are first de-

fined as the states for observability analysis. In this regard, the states and measurements

are organized as in the following way:

𝑋 = [
𝑃𝑛

𝑉𝑛

𝛷𝑏

], 𝑍 = [
𝑧1

𝑧2

⋮
]

𝑚×1

 (1)

The measurement is defined in the relationship between the wall and a specific posi-

tion P. Therefore, the size of the measurement matrix usually increases with the number

of walls [18].

Figure 1 is a schematic diagram of the method for finding the geometrical character-

istics of the surrounding objects measured through LiDAR at a specific location 𝑃. The

measurement Z is obtained according to the geometric relationship between a specific po-

sition 𝑃 and the surrounding planes. Observability is analyzed with an orthogonal vector

�⃗�𝑖 and two points �⃗�𝑖,𝑟 and �⃗�𝑖,𝑣 on the wall measured at a specific position 𝑃. 𝑟𝑖 is the

relative distance between a specific position 𝑃 and the point �⃗�𝑖,𝑣 on the wall. �⃗�𝑖 is the

relative direction vector between a specific position 𝑃 and another point on the wall �⃗�𝑖,𝑣.

Figure 1. Geometric relationship between a specific position 𝑃 and surrounding walls.

𝑟𝑖 = �⃗�𝑖,𝑟 − �⃗⃗� (2)

�⃗�𝑖 =
�⃗�𝑖,𝑣 − �⃗⃗�

‖�⃗�𝑖,𝑣 − �⃗⃗�‖
 (3)

𝑙 is the vertical distance from the wall to a specific location 𝑃. Thus, the measure-

ment at 𝑃 is expressed as:

𝑧𝑖 =
𝑙

cos 𝜃
=

�⃗�𝑖 · 𝑟𝑖
�⃗�𝑖 ∙ �⃗�𝑖

 (4)

Figure 1. Geometric relationship between a specific position P and surrounding walls.

→
r i =

→
p i,r −

→
P (2)

→
v i =

→
p i,v −

→
P

‖ →p i,v −
→
P ‖

(3)

l is the vertical distance from the wall to a specific location P. Thus, the measurement
at P is expressed as:

zi =
l

cos θ
=

→
o i·
→
r i

→
o i·
→
v i

(4)

Aerospace 2023, 10, 492 5 of 17

Next, to derive the observability model, the Lie derivative is to adapted to determine
observability in the 3D search domain [19]. Assuming there is one wall surrounding the
vehicle, the Lie derivative matrix is given as:

Oi =

−→o
T
i

→
o

T
i ·
→
v i

01×3
−→o

T
i ·
→
r i(

→
o

T
i ·
→
v i

)2 ·αi

01×3
−→o

T
i

→
o

T
i ·
→
v i

−→o
T
i ·
→
V(

→
o

T
i ·
→
v i

)2 ·αi

03×3 03×3
−→o

T
i ·
→
r i(

→
o

T
i ·
→
v i

)2 ·[αi]×

(5)

where
αi = −

→
o

T
i ·
[→

v i

]
×

(6)

Note that Equation (5) is the observability matrix for one wall. For this system to
be observable, a full rank (i.e., rank = 9) is required. When one wall is detected, the
rank increases by 1 in each position and velocity, and increases by 2 in attitude. In the
multiple wall detection case, rank increases along each wall’s orthogonal vector direction
x, y, and z-axis. Equation (7) presents the accumulated observability matrix for multiple
walls detection.

O =

−→o
T
1

→
o

T
1 ·
→
v 1

01×3
−→o

T
1 ·
→
r 1(

→
o

T
1 ·
→
v 1

)2 ·α1

−→o
T
2

→
o

T
2 ·
→
v 2

01×3
−→o

T
2 ·
→
r 2(

→
o

T
2 ·
→
v 2

)2 ·α2

...
...

...

01×3
−→o

T
1

→
o

T
1 ·
→
v 1

−→o
T
1 ·
→
V(

→
o

T
1 ·
→
v 1

)2 ·α1

01×3
−→o

T
2

→
o

T
2 ·
→
v 2

−→o
T
2 ·
→
V(

→
o

T
2 ·
→
v 2

)2 ·α2

...
...

...

03×3 03×3
−→o

T
1 ·
→
r 1(

→
o

T
1 ·
→
v 1

)2 ·[α1]×

03×3 03×3
−→o

T
2 ·
→
r 2(

→
o

T
2 ·
→
v 2

)2 ·[α2]×

...
...

...

(7)

The observability matrix is constructed with a size (5 × i) × 9 when there are i
walls. The system proves observable when detecting two vertical walls and at least one
top or bottom plane. However, in some cases, full rank can be satisfied even with only
one horizontal plane and one wall. To avoid this kind of weak observability status, the
sensitivity of the matrix is further identified by defining the condition number as below:

κ(O) = δmax(O)/δmin(O) (8)

Aerospace 2023, 10, 492 6 of 17

where δmax(O) and δmin(O) are the maximum and minimum singular values of the ob-
servability matrix, respectively. By dividing these two singular values, the observability
matrix’s condition number can be obtained as defined in Equation (8). The smaller the
value of the condition number, the stronger the independence of each row and column,
and thus, the more robust the singularity of the matrix [20,21]. In our approach, the degree
of local observability is also measured by the condition number in Equation (8) for the
derived observability matrix.

2.2. Geometric Detection

In this section, we present a topological illustration of point cloud data considering the
geometric relationship between the predicted vehicle pose information and the surrounding
walls in a map. First, at each epoch, the position, velocity, and attitude need to be computed
to fix the geometry against the planes within a map and thus construct an observability
matrix. Assuming the position is allocated in advance via virtual planning, the rest state
can be predicted through the vehicle’s dynamics control result.

Figure 2 shows the sequential steps to obtain the state prediction for a given target
position. The position control block implements a PID algorithm, which receives Pc and
outputs the control speed Vc. Pc is the difference between the specific position P and the
previous specific position. Then, the velocity control block receives the control velocity Vc
and outputs the control acceleration Ac. Finally, the quaternion attitude Qc is computed by
using the desired yaw ψ and control acceleration Ac.

Aerospace 2023, 10, 492 6 of 17

be computed to fix the geometry against the planes within a map and thus construct an

observability matrix. Assuming the position is allocated in advance via virtual planning,

the rest state can be predicted through the vehicle’s dynamics control result.

Figure 2 shows the sequential steps to obtain the state prediction for a given target

position. The position control block implements a PID algorithm, which receives 𝑃𝑐 and

outputs the control speed 𝑉𝑐. 𝑃𝑐 is the difference between the specific position 𝑃 and the

previous specific position. Then, the velocity control block receives the control velocity 𝑉𝑐

and outputs the control acceleration 𝐴𝑐. Finally, the quaternion attitude 𝑄𝑐 is computed

by using the desired yaw 𝜓 and control acceleration 𝐴𝑐.

Figure 2. Velocity and attitude prediction controller structure.

For a given vehicle’s pose prediction, geometric observability analysis requires to-

pography such as walls, ceilings, and floors, and classification of the topography needs to

be realized around a specific point in 3D point cloud map data. To this end, a point cloud

within the sensor range of a specific location is extracted from the 3D point cloud map.

These extracted points are processed once again considering the attitude of the vehicle

and the field of view of the adopted LiDAR. In this way, the walls can be found in the

processing data. Figure 3 shows an exemplary point cloud generation with surrounding

wall based on the suggested mechanism.

Figure 3. Point clouds generation via topological detection scheme.

The technique for finding the wall is based on the split and merge algorithm. The

split and merge algorithm calculates the vertical distance of all points on the line connect-

ing the first and last points. If the point with the farthest vertical distance is larger than a

threshold, the line is divided around this point. By repeating this process, the line fitting

is performed. The lines created at this time are considered as formally separated but vir-

tually connected lines, where straight wall can be piece-wise distinguished for efficiency.

The distance between each point is calculated, and the connection is disconnected when

the distance exceeds a certain length. The middle point of the line is put into the normal

estimation function of the PCL (point cloud library) to calculate the wall’s normal vector.

In addition, the normal vector is calculated by extracting the floor surface from previously

processed data to match the sensor’s measurement data [22]. Note that this normal vector

Figure 2. Velocity and attitude prediction controller structure.

For a given vehicle’s pose prediction, geometric observability analysis requires topog-
raphy such as walls, ceilings, and floors, and classification of the topography needs to be
realized around a specific point in 3D point cloud map data. To this end, a point cloud
within the sensor range of a specific location is extracted from the 3D point cloud map.
These extracted points are processed once again considering the attitude of the vehicle
and the field of view of the adopted LiDAR. In this way, the walls can be found in the
processing data. Figure 3 shows an exemplary point cloud generation with surrounding
wall based on the suggested mechanism.

Aerospace 2023, 10, 492 6 of 17

be computed to fix the geometry against the planes within a map and thus construct an

observability matrix. Assuming the position is allocated in advance via virtual planning,

the rest state can be predicted through the vehicle’s dynamics control result.

Figure 2 shows the sequential steps to obtain the state prediction for a given target

position. The position control block implements a PID algorithm, which receives 𝑃𝑐 and

outputs the control speed 𝑉𝑐. 𝑃𝑐 is the difference between the specific position 𝑃 and the

previous specific position. Then, the velocity control block receives the control velocity 𝑉𝑐

and outputs the control acceleration 𝐴𝑐. Finally, the quaternion attitude 𝑄𝑐 is computed

by using the desired yaw 𝜓 and control acceleration 𝐴𝑐.

Figure 2. Velocity and attitude prediction controller structure.

For a given vehicle’s pose prediction, geometric observability analysis requires to-

pography such as walls, ceilings, and floors, and classification of the topography needs to

be realized around a specific point in 3D point cloud map data. To this end, a point cloud

within the sensor range of a specific location is extracted from the 3D point cloud map.

These extracted points are processed once again considering the attitude of the vehicle

and the field of view of the adopted LiDAR. In this way, the walls can be found in the

processing data. Figure 3 shows an exemplary point cloud generation with surrounding

wall based on the suggested mechanism.

Figure 3. Point clouds generation via topological detection scheme.

The technique for finding the wall is based on the split and merge algorithm. The

split and merge algorithm calculates the vertical distance of all points on the line connect-

ing the first and last points. If the point with the farthest vertical distance is larger than a

threshold, the line is divided around this point. By repeating this process, the line fitting

is performed. The lines created at this time are considered as formally separated but vir-

tually connected lines, where straight wall can be piece-wise distinguished for efficiency.

The distance between each point is calculated, and the connection is disconnected when

the distance exceeds a certain length. The middle point of the line is put into the normal

estimation function of the PCL (point cloud library) to calculate the wall’s normal vector.

In addition, the normal vector is calculated by extracting the floor surface from previously

processed data to match the sensor’s measurement data [22]. Note that this normal vector

Figure 3. Point clouds generation via topological detection scheme.

Aerospace 2023, 10, 492 7 of 17

The technique for finding the wall is based on the split and merge algorithm. The split
and merge algorithm calculates the vertical distance of all points on the line connecting the
first and last points. If the point with the farthest vertical distance is larger than a threshold,
the line is divided around this point. By repeating this process, the line fitting is performed.
The lines created at this time are considered as formally separated but virtually connected
lines, where straight wall can be piece-wise distinguished for efficiency. The distance
between each point is calculated, and the connection is disconnected when the distance
exceeds a certain length. The middle point of the line is put into the normal estimation
function of the PCL (point cloud library) to calculate the wall’s normal vector. In addition,
the normal vector is calculated by extracting the floor surface from previously processed
data to match the sensor’s measurement data [22]. Note that this normal vector is used as
orthogonal vector

→
o i in Figure 1 and serves an essential role in the observability analysis.

In the subsequent sections, two results are demonstrated for verifying the proposed
concept. First, the effectiveness of the proposed observability criteria in complex environ-
ment is validated, and then the associated path planning performance will be addressed.

3. Observability Verification Study
3.1. Simulation Results

For algorithm verification, a virtual environment was configured and tested in Gazebo.
Gazebo is a 3D simulation program for robots and uses a physics engine similar to reality,
where drone movements or algorithms can be verified in a virtual environment. It also
generates and outputs various sensor data such as IMU, LiDAR, and camera data [23]. In
Gazebo, sensor data are obtained by simulating the IMU and Ouster’s OS0-32 LiDAR used
in the experiments. The SLAM algorithm obtained a point cloud map using LIO-SAM,
which is a graph-based SLAM using LiDAR and IMU. When creating a map, a 3D point
cloud map is created by extracting the surface and edge of the features, with which the
density of the map can be adjusted [4].

In the simulation, there was a complex indoor environment with a number of walls
and ceilings. Depending on the environment, the condition number of the observability
can vary drastically. The maximum distance of the LiDAR was set to a radius of 10 m.

The first environment was inside a 15 m × 15 m room closed on four sides, as shown
in Figure 4. Observability condition numbers were calculated at intervals of 0.1 m for a
10 m × 10 m area from the center of the room. The simulation result was full rank in all
areas calculated, and the condition number was calculated to have a value of 80 or less.
This means that navigation can be performed well in all areas with LiDAR measurements.

Aerospace 2023, 10, 492 7 of 17

is used as orthogonal vector �⃗�𝑖 in Figure 1 and serves an essential role in the observability

analysis.

In the subsequent sections, two results are demonstrated for verifying the proposed

concept. First, the effectiveness of the proposed observability criteria in complex environ-

ment is validated, and then the associated path planning performance will be addressed.

3. Observability Verification Study

3.1. Simulation Results

For algorithm verification, a virtual environment was configured and tested in Ga-

zebo. Gazebo is a 3D simulation program for robots and uses a physics engine similar to

reality, where drone movements or algorithms can be verified in a virtual environment. It

also generates and outputs various sensor data such as IMU, LiDAR, and camera data

[23]. In Gazebo, sensor data are obtained by simulating the IMU and Ouster’s OS0-32 Li-

DAR used in the experiments. The SLAM algorithm obtained a point cloud map using

LIO-SAM, which is a graph-based SLAM using LiDAR and IMU. When creating a map, a

3D point cloud map is created by extracting the surface and edge of the features, with

which the density of the map can be adjusted [4].

In the simulation, there was a complex indoor environment with a number of walls

and ceilings. Depending on the environment, the condition number of the observability

can vary drastically. The maximum distance of the LiDAR was set to a radius of 10 m.

The first environment was inside a 15 m × 15 m room closed on four sides, as shown

in Figure 4. Observability condition numbers were calculated at intervals of 0.1 m for a 10

m × 10 m area from the center of the room. The simulation result was full rank in all areas

calculated, and the condition number was calculated to have a value of 80 or less. This

means that navigation can be performed well in all areas with LiDAR measurements.

Figure 4. Condition number map in an environment with surrounding walls.

The second case was an environment where three sides are closed, with one open

side, as shown in Figure 5. As in the previous experiment, condition numbers were calcu-

lated at 0.1 m intervals for a 10 m × 10 m area. From the simulation results in Figure 5, it

can be seen that the area close to the open surface was not calculated. In that area, the wall

on the left was not measured due to the LiDAR max range. This phenomenon occurs when

the rank is seven because the orthogonal vector of the wall is not found in the x-axis di-

rection. Since it is not full rank, it is impossible to calculate the condition number. This

Figure 4. Condition number map in an environment with surrounding walls.

Aerospace 2023, 10, 492 8 of 17

The second case was an environment where three sides are closed, with one open side,
as shown in Figure 5. As in the previous experiment, condition numbers were calculated at
0.1 m intervals for a 10 m × 10 m area. From the simulation results in Figure 5, it can be
seen that the area close to the open surface was not calculated. In that area, the wall on the
left was not measured due to the LiDAR max range. This phenomenon occurs when the
rank is seven because the orthogonal vector of the wall is not found in the x-axis direction.
Since it is not full rank, it is impossible to calculate the condition number. This means that
the features cannot be found in the x-axis direction. There is a high possibility that SLAM
will diverge in that region.

Aerospace 2023, 10, 492 8 of 17

means that the features cannot be found in the x-axis direction. There is a high possibility

that SLAM will diverge in that region.

Figure 5. Condition number map in an environment where the left side is open and three sides are

closed.

The third case was a corridor wall environment with an open top and bottom, as

shown in Figure 6. The experimental conditions were the same as in the previous experi-

ment. It can be observed that in almost all areas, the condition number was not calculated.

In some places, condition numbers were computed. However, since the values were too

large, this rather degrades the performance of the SLAM result. For a comprehensive test

based on the above observation, a simulation was performed in the complex maze envi-

ronment shown in Figure 7.

Figure 6. Condition number map in an environment where the upper and lower surfaces are open.

Figure 5. Condition number map in an environment where the left side is open and three sides
are closed.

The third case was a corridor wall environment with an open top and bottom, as shown
in Figure 6. The experimental conditions were the same as in the previous experiment.
It can be observed that in almost all areas, the condition number was not calculated. In
some places, condition numbers were computed. However, since the values were too large,
this rather degrades the performance of the SLAM result. For a comprehensive test based
on the above observation, a simulation was performed in the complex maze environment
shown in Figure 7.

For the observability analysis, three paths were prepared, as shown in Figure 7a. The
environment was composed of a path with no obstacles, a path with complex obstacles,
and a path with simple obstacles. The maximum distance of LiDAR was also set to a radius
of 15 m. In Figure 7b, it can be observed that a full rank was mostly maintained around
the corridor area with detection of obstacles (i.e., middle corridor). The condition number
was also calculated to provide relatively low values through the corridor. However, in
areas without a detected target (e.g., upper and lower corridor), it was observed that the
condition number remained high irrespective of full rank condition. In addition, it can
be observed that the condition number contour was closely related to the measurement
reachability against the detected walls.

Aerospace 2023, 10, 492 9 of 17

Aerospace 2023, 10, 492 8 of 17

means that the features cannot be found in the x-axis direction. There is a high possibility

that SLAM will diverge in that region.

Figure 5. Condition number map in an environment where the left side is open and three sides are

closed.

The third case was a corridor wall environment with an open top and bottom, as

shown in Figure 6. The experimental conditions were the same as in the previous experi-

ment. It can be observed that in almost all areas, the condition number was not calculated.

In some places, condition numbers were computed. However, since the values were too

large, this rather degrades the performance of the SLAM result. For a comprehensive test

based on the above observation, a simulation was performed in the complex maze envi-

ronment shown in Figure 7.

Figure 6. Condition number map in an environment where the upper and lower surfaces are open.
Figure 6. Condition number map in an environment where the upper and lower surfaces are open.

Aerospace 2023, 10, 492 9 of 17

(a) (b)

Figure 7. (a) Maze environment in Gazebo simulator. (b) Condition number map of maze environ-

ment.

For the observability analysis, three paths were prepared, as shown in Figure 7a. The

environment was composed of a path with no obstacles, a path with complex obstacles,

and a path with simple obstacles. The maximum distance of LiDAR was also set to a ra-

dius of 15 m. In Figure 7b, it can be observed that a full rank was mostly maintained

around the corridor area with detection of obstacles (i.e., middle corridor). The condition

number was also calculated to provide relatively low values through the corridor. How-

ever, in areas without a detected target (e.g., upper and lower corridor), it was observed

that the condition number remained high irrespective of full rank condition. In addition,

it can be observed that the condition number contour was closely related to the measure-

ment reachability against the detected walls.

3.2. Results for The Real Environment

A similar map configuration was applied to an experimental environment for perfor-

mance verification. The place is an underground parking lot with columns at even inter-

vals and an environment with some parked cars. A point cloud map of the parking lot

was first acquired through SLAM. The observability and condition number was calculated

at 0.1 m intervals in the map.

In Figure 8, it is illustrated how the condition number map changes depending on

the detecting distance of LiDAR. The maximum distance of LiDAR was set to 5 m, 7.5 m,

10 m and 20 m, respectively, as shown in the figure. It is observed the result is poor at a

shorter maximum distance of LiDAR because the walls were rarely measured. Especially

in case of 5 m, in almost all locations, the wall was not measured correctly. Therefore, it

can be confirmed that there are many locations where the condition number has not been

calculated because full rank condition was not satisfied. In the case of 20 m distance, it

was observed that full rank was mostly established where the condition number remained

low by recognizing the walls sufficiently at each location.

Figure 7. (a) Maze environment in Gazebo simulator. (b) Condition number map of maze environment.

3.2. Results for the Real Environment

A similar map configuration was applied to an experimental environment for perfor-
mance verification. The place is an underground parking lot with columns at even intervals
and an environment with some parked cars. A point cloud map of the parking lot was first
acquired through SLAM. The observability and condition number was calculated at 0.1 m
intervals in the map.

In Figure 8, it is illustrated how the condition number map changes depending on
the detecting distance of LiDAR. The maximum distance of LiDAR was set to 5 m, 7.5 m,
10 m and 20 m, respectively, as shown in the figure. It is observed the result is poor at a
shorter maximum distance of LiDAR because the walls were rarely measured. Especially
in case of 5 m, in almost all locations, the wall was not measured correctly. Therefore, it
can be confirmed that there are many locations where the condition number has not been
calculated because full rank condition was not satisfied. In the case of 20 m distance, it was
observed that full rank was mostly established where the condition number remained low
by recognizing the walls sufficiently at each location.

Aerospace 2023, 10, 492 10 of 17Aerospace 2023, 10, 492 10 of 17

Figure 8. Condition number map for each LiDAR maximum distance in an underground parking

lot.

4. Observability-Driven Path Planning

4.1. Algorithm Implementation

Based on the results in Section III, the pose estimation reliability of SLAM was quan-

titatively evaluated for further mission application. Naturally, this can be applied to a

path planning problem of a robot or drone so that it is possible to reach the destination by

avoiding the divergence risk during navigation. In this context, this section proposes to

design a path planning strategy by applying the geometric observability analysis tech-

nique to RRT* [24].

Fundamentally, the observability-driven path planning technique introduces an ob-

servability index into the obstacle collision determination step of the existing RRT*. When

creating a path, if an obstacle exists or the condition number is not good, the node at the

corresponding location is removed. Through this, a randomly generated branch node is

created as a candidate region capable of improving observability quality. Therefore, it has

a feature capable of guaranteeing navigation performance when the entire route is con-

structed to satisfy the criterion.

Figure 8. Condition number map for each LiDAR maximum distance in an underground parking lot.

4. Observability-Driven Path Planning
4.1. Algorithm Implementation

Based on the results in Section 3, the pose estimation reliability of SLAM was quan-
titatively evaluated for further mission application. Naturally, this can be applied to a
path planning problem of a robot or drone so that it is possible to reach the destination by
avoiding the divergence risk during navigation. In this context, this section proposes to
design a path planning strategy by applying the geometric observability analysis technique
to RRT* [24].

Fundamentally, the observability-driven path planning technique introduces an ob-
servability index into the obstacle collision determination step of the existing RRT*. When
creating a path, if an obstacle exists or the condition number is not good, the node at the
corresponding location is removed. Through this, a randomly generated branch node is
created as a candidate region capable of improving observability quality. Therefore, it
has a feature capable of guaranteeing navigation performance when the entire route is
constructed to satisfy the criterion.

The pseudo-code of the observability-driven path planning algorithm is summarized
in Algorithm 1. In the algorithm, the function at each step is described in detail as follows.

Aerospace 2023, 10, 492 11 of 17

Algorithm 1 Observability-Driven Path Planning.

1: τ ← Initialize Tree
2: τ ← InsertNode(∅, zinit, τ)
3: (Mocto, S)← MapConv
4: for i = 1 to i = N do
5: zrand ← Sample(i, S)
6: znearest ← Nearest(τ, zrand)
7: znew ← Steer(znearest, zrand)
8: Ncond ← Observability(Mocto, znew)
9: if 1 ≤ Ncond ≤ NmaxThen
10: Znear ← Near(τ, znew, r)
11: zmin ← ChooseParent(Znear, znew, znearest)
12: τ ← InsertNode(zmin, znew, τ)
13: τ ← Rewire(τ, Znear, zmin, znew)
14: end if
15: end for
16: return τ

1. MapConv: This function receives a point cloud map from SLAM and returns Octomap
Mocto and map size S. Octomap is an Octree-based map with substantial advantages of
fast search and efficient memory management. The reason for converting to Octomap
is for the walls search algorithm before observability calculation.

2. Sample: Returns a random position zrand in map size S.
3. Nearest: Among the nodes of the path tree τ, the node znearest closest to zrand is

searched and returned.
4. Steer: Calculates the distance and direction between znearest and zrand. If the distance

exceeds a certain distance, a new node location znew is created at a limited distance in
the direction calculated with znearest as the center.

5. Observability: This function calculates observability and Condition Number Ncond.
The wall detection method finds walls close to the node location znew. It also serves
as obstacle avoidance by returning 0 if the wall or obstacle is too close. Orthogonal
vectors are extracted from the searched walls. The observability and Condition
Number Ncond are calculated using the extracted orthogonal vector and the location
of the vector.

6. Near: A function that finds nodes within a certain radius centered on znew.
7. ChooseParent: Finds and returns the node zmin that makes the cost of znew the smallest

among Znear.
8. InsertNode: A node connected to zmin as a parent and znew as a child applies the tree τ.
9. Rewire: When znew is set as a parent among Znear, nodes with a smaller cost are found

and changed.

4.2. Simulation and Experimental Result

A simulation study was first performed to verify the observability-driven path plan-
ning algorithm. The simulation environment is the same as in the maze of Figure 7. The
start and end points of the route are arbitrarily placed at both ends of the open area, and
the maximum detection range of LiDAR is set to 15 m. It is evident that the shortest path is
to pass through the lower corridor without any obstacles on it.

Figure 9 shows the tree of the constructed path based on the observability-driven
path planning algorithm in Algorithm 1. As observed in the figure, no nodes are created
through the lower corridor despite its distance advantage. Additionally, the upper corridor
has discontinuity of the tree. This is due to the degraded condition number through the
passage in the third room, where it is noted that the LiDAR measurements cannot satisfy the
required rank of the observability matrix in the middle of passage. On the other hand, the
path located in the middle corridor provides an optimal path without loss of observability

Aerospace 2023, 10, 492 12 of 17

quality for a given lidar measurement distance and FOV coverage. Through this, it is
possible to avoid a path in which the SLAM navigation solution is degraded because
observability is not guaranteed regardless of path length. Consequently, this results in a
successful mission in an exploration area where error correction such as loop closure is
not available.

Aerospace 2023, 10, 492 12 of 17

through the lower corridor despite its distance advantage. Additionally, the upper corri-

dor has discontinuity of the tree. This is due to the degraded condition number through

the passage in the third room, where it is noted that the LiDAR measurements cannot

satisfy the required rank of the observability matrix in the middle of passage. On the other

hand, the path located in the middle corridor provides an optimal path without loss of

observability quality for a given lidar measurement distance and FOV coverage. Through

this, it is possible to avoid a path in which the SLAM navigation solution is degraded

because observability is not guaranteed regardless of path length. Consequently, this re-

sults in a successful mission in an exploration area where error correction such as loop

closure is not available.

Figure 9. Tree of path planning algorithm in the maze environment. The blue dot is the starting

point, the magenta dot is the destination, and the black dot is the point cloud map. The line repre-

sents the ODPP tree, and the color varies according to the condition number. Higher values are

shown in red, and lower values are in yellow.

For performance evaluation, the proposed ODPP was compared with the conven-

tional path planning method, i.e., RRT*. The following Figure 10 shows the localization

performance of LiDAR SLAM (i.e., LIO-SAM) with different sensor ranges and planning

methods. In the upper left subplot, it can be observed that localization error increases to

greater than 10 m in the x-axis due to the degraded observability. In contrast, the localiza-

tion error is maintained within the sub-meter level due to good observability condition.

Furthermore, it can be noted that if the LiDAR range is extensively enlarged, then the

localization error becomes negligible between the conventional RRT* and the proposed

ODPP scheme (as illustrated in the right subplots in the following Figure 10).

Figure 9. Tree of path planning algorithm in the maze environment. The blue dot is the starting point,
the magenta dot is the destination, and the black dot is the point cloud map. The line represents the
ODPP tree, and the color varies according to the condition number. Higher values are shown in red,
and lower values are in yellow.

For performance evaluation, the proposed ODPP was compared with the conventional
path planning method, i.e., RRT*. The following Figure 10 shows the localization perfor-
mance of LiDAR SLAM (i.e., LIO-SAM) with different sensor ranges and planning methods.
In the upper left subplot, it can be observed that localization error increases to greater than
10 m in the x-axis due to the degraded observability. In contrast, the localization error is
maintained within the sub-meter level due to good observability condition. Furthermore, it
can be noted that if the LiDAR range is extensively enlarged, then the localization error
becomes negligible between the conventional RRT* and the proposed ODPP scheme (as
illustrated in the right subplots in the following Figure 10).

To test the proposed algorithm experimentally, an indoor autopilot test using the
sensor platform onboard an autonomous vehicle was conducted. The motion of the ve-
hicle is precisely manipulated by four-wheel motor control through the onboard micro-
computer board, STMicroelectronic’s ARM Cortex-M4. Intel’s NUC11PAHi7 was used
as the computing and mission planning platform and the OS is Ubuntu 18.04; ROS
uses melodic.

The onboard sensor module contains LiDAR and IMU. In detail, LiDAR is Ouster’s OS0-32
(horizontal field of view is 360◦, Vertical FoV is±45◦, Max range: 50 m) and IMU is Vectornav’s
VN-100. Figure 11 shows the detailed block diagram of the hardware configuration.

Aerospace 2023, 10, 492 13 of 17
Aerospace 2023, 10, 492 13 of 17

Figure 10. RRT* vs. ODPP Algorithm by LiDAR Max Range.

To test the proposed algorithm experimentally, an indoor autopilot test using the

sensor platform onboard an autonomous vehicle was conducted. The motion of the vehi-

cle is precisely manipulated by four-wheel motor control through the onboard microcom-

puter board, STMicroelectronic’s ARM Cortex-M4. Intel’s NUC11PAHi7 was used as the

computing and mission planning platform and the OS is Ubuntu 18.04; ROS uses melodic.

The onboard sensor module contains LiDAR and IMU. In detail, LiDAR is Ouster’s

OS0-32 (horizontal field of view is 360°, Vertical FoV is ±45°, Max range: 50 m) and IMU

is Vectornav’s VN-100. Figure 11 shows the detailed block diagram of the hardware con-

figuration.

Figure 11. Test platform schematic diagram. Green dotted line: mission computer composed of

NUC. Blue dotted line: vehicle controller based on Cortex-M4. Black dotted line: actuator hardware.

Figure 10. RRT* vs. ODPP Algorithm by LiDAR Max Range.

Aerospace 2023, 10, 492 13 of 17

Figure 10. RRT* vs. ODPP Algorithm by LiDAR Max Range.

To test the proposed algorithm experimentally, an indoor autopilot test using the

sensor platform onboard an autonomous vehicle was conducted. The motion of the vehi-

cle is precisely manipulated by four-wheel motor control through the onboard microcom-

puter board, STMicroelectronic’s ARM Cortex-M4. Intel’s NUC11PAHi7 was used as the

computing and mission planning platform and the OS is Ubuntu 18.04; ROS uses melodic.

The onboard sensor module contains LiDAR and IMU. In detail, LiDAR is Ouster’s

OS0-32 (horizontal field of view is 360°, Vertical FoV is ±45°, Max range: 50 m) and IMU

is Vectornav’s VN-100. Figure 11 shows the detailed block diagram of the hardware con-

figuration.

Figure 11. Test platform schematic diagram. Green dotted line: mission computer composed of

NUC. Blue dotted line: vehicle controller based on Cortex-M4. Black dotted line: actuator hardware.
Figure 11. Test platform schematic diagram. Green dotted line: mission computer composed of NUC.
Blue dotted line: vehicle controller based on Cortex-M4. Black dotted line: actuator hardware.

To observe the path decision characteristics depending on navigation quality, the test
environment was designed such that it was difficult to guarantee the SLAM performance.
As shown in Figure 12b, a straight wall space without any obstacle was employed, which is
similar to the lower corridor in Figure 9.

Aerospace 2023, 10, 492 14 of 17

Aerospace 2023, 10, 492 14 of 17

To observe the path decision characteristics depending on navigation quality, the test

environment was designed such that it was difficult to guarantee the SLAM performance.

As shown in Figure 12b, a straight wall space without any obstacle was employed, which

is similar to the lower corridor in Figure 9.

(a) (b)

Figure 12. Experimental environment; (a) complicated obstacles; and (b) straight corridor.

To check the observability quality distribution, the condition number map was first

drawn. Figure 13 shows the condition number map over the experimental environment.

Due to the constraints of the experimental environment, we calculated observability and

the condition number by limiting the LiDAR maximum range to a radius of 6 m, while

condition number maps were formed at 0.1 m intervals. Specifically, in Figure 13, it is

observed that the condition number is high in the middle region of the lower lane; i.e., a

straight path without obstacles. In the middle of the path, the condition number itself is

unavailable as the rank condition is not met. As a result, the distributed score map can be

effectively used for candidate node generation during the path planning process in a real

experiment. In Figure 13, a color bar indicating condition number (1/100) graphically il-

lustrates the candidate region of navigation performance.

Figure 13. Condition number map in experimental environment.

Figure 12. Experimental environment; (a) complicated obstacles; and (b) straight corridor.

To check the observability quality distribution, the condition number map was first
drawn. Figure 13 shows the condition number map over the experimental environment.
Due to the constraints of the experimental environment, we calculated observability and
the condition number by limiting the LiDAR maximum range to a radius of 6 m, while
condition number maps were formed at 0.1 m intervals. Specifically, in Figure 13, it is
observed that the condition number is high in the middle region of the lower lane; i.e., a
straight path without obstacles. In the middle of the path, the condition number itself is
unavailable as the rank condition is not met. As a result, the distributed score map can
be effectively used for candidate node generation during the path planning process in a
real experiment. In Figure 13, a color bar indicating condition number (1/100) graphically
illustrates the candidate region of navigation performance.

Aerospace 2023, 10, 492 14 of 17

To observe the path decision characteristics depending on navigation quality, the test

environment was designed such that it was difficult to guarantee the SLAM performance.

As shown in Figure 12b, a straight wall space without any obstacle was employed, which

is similar to the lower corridor in Figure 9.

(a) (b)

Figure 12. Experimental environment; (a) complicated obstacles; and (b) straight corridor.

To check the observability quality distribution, the condition number map was first

drawn. Figure 13 shows the condition number map over the experimental environment.

Due to the constraints of the experimental environment, we calculated observability and

the condition number by limiting the LiDAR maximum range to a radius of 6 m, while

condition number maps were formed at 0.1 m intervals. Specifically, in Figure 13, it is

observed that the condition number is high in the middle region of the lower lane; i.e., a

straight path without obstacles. In the middle of the path, the condition number itself is

unavailable as the rank condition is not met. As a result, the distributed score map can be

effectively used for candidate node generation during the path planning process in a real

experiment. In Figure 13, a color bar indicating condition number (1/100) graphically il-

lustrates the candidate region of navigation performance.

Figure 13. Condition number map in experimental environment.
Figure 13. Condition number map in experimental environment.

Figure 14 shows the autopilot experimental result using the sensor measurement
onboard the vehicle. Here, the experimental conditions were the same as in Figure 13
with a LiDAR maximum range of 6 m. Observing the tree of RRT* in the figure, the
vehicle chooses to pass through the upper passage and reaches the destination point. In
view of the location of the departure and arrival points, the shortest path is through the
obstacle-free way. However, in this case, full rank condition cannot be achieved due

Aerospace 2023, 10, 492 15 of 17

to horizontal measurement deficiency. Thus, the suggested observability-driven path
planning algorithm allocates a high-risk tree in this region, and accordingly the node
cannot be created. Therefore, a route is created on the upper path where pillars or cars
are recognized.

Aerospace 2023, 10, 492 15 of 17

Figure 14 shows the autopilot experimental result using the sensor measurement

onboard the vehicle. Here, the experimental conditions were the same as in Figure 13 with

a LiDAR maximum range of 6 m. Observing the tree of RRT* in the figure, the vehicle

chooses to pass through the upper passage and reaches the destination point. In view of

the location of the departure and arrival points, the shortest path is through the obstacle-

free way. However, in this case, full rank condition cannot be achieved due to horizontal

measurement deficiency. Thus, the suggested observability-driven path planning algo-

rithm allocates a high-risk tree in this region, and accordingly the node cannot be created.

Therefore, a route is created on the upper path where pillars or cars are recognized.

Figure 14. Tree of path planning algorithm in the experimental environment.

Given the final path as shown in Figure 15, the condition number was calculated to

be less than 150. When analyzed through the condition number map, it was confirmed

that the performance of SLAM was good at values below 200. Therefore, there is little

possibility of divergence of SLAM due to matching failure during route driving. When

the vehicle traveled along this route, it arrived at the destination without distortion of the

map or divergence of location.

Figure 15. The condition number of the path finally selected in path planning.

Figure 14. Tree of path planning algorithm in the experimental environment.

Given the final path as shown in Figure 15, the condition number was calculated to
be less than 150. When analyzed through the condition number map, it was confirmed
that the performance of SLAM was good at values below 200. Therefore, there is little
possibility of divergence of SLAM due to matching failure during route driving. When the
vehicle traveled along this route, it arrived at the destination without distortion of the map
or divergence of location.

Aerospace 2023, 10, 492 15 of 17

Figure 14 shows the autopilot experimental result using the sensor measurement

onboard the vehicle. Here, the experimental conditions were the same as in Figure 13 with

a LiDAR maximum range of 6 m. Observing the tree of RRT* in the figure, the vehicle

chooses to pass through the upper passage and reaches the destination point. In view of

the location of the departure and arrival points, the shortest path is through the obstacle-

free way. However, in this case, full rank condition cannot be achieved due to horizontal

measurement deficiency. Thus, the suggested observability-driven path planning algo-

rithm allocates a high-risk tree in this region, and accordingly the node cannot be created.

Therefore, a route is created on the upper path where pillars or cars are recognized.

Figure 14. Tree of path planning algorithm in the experimental environment.

Given the final path as shown in Figure 15, the condition number was calculated to

be less than 150. When analyzed through the condition number map, it was confirmed

that the performance of SLAM was good at values below 200. Therefore, there is little

possibility of divergence of SLAM due to matching failure during route driving. When

the vehicle traveled along this route, it arrived at the destination without distortion of the

map or divergence of location.

Figure 15. The condition number of the path finally selected in path planning.

Figure 15. The condition number of the path finally selected in path planning.

5. Results and Discussion

This study addresses the problems caused by map distortion or location estimation
failure while driving with LiDAR SLAM. The goal was to identify topographically unfavor-
able locations for SLAM using observability analysis. When analyzing the observability
rank in the 3D point cloud map, there were cases in which the SLAM diverged even with
the full rank. The results of this paper were obtained by applying the condition number
to these cases. This result was applied to the route planning algorithm to confirm that the
vehicle reached the destination without divergence in navigation.

Aerospace 2023, 10, 492 16 of 17

The observability analysis in this paper can be applied to Vision SLAM. Vision SLAM
has a higher probability of map distortion compared with 3D LiDAR. The reason for this is
that the FoV is relatively narrow. Therefore, it could be extended to a study determining
which direction the camera should look from a specific location. In the future, this study will
expand the path planning algorithm to an unknown environment exploration algorithm.
Through this, we plan to research autonomous mapping without map distortion.

Author Contributions: Conceptualization, D.K.; methodology, B.L.; software, D.K.; validation, D.K.
and S.S.; formal analysis, D.K.; investigation, D.K.; resources, B.L.; data curation, D.K.; writing—
original draft preparation, D.K.; writing—review and editing, S.S.; visualization, D.K.; supervision,
S.S.; project administration, S.S.; funding acquisition, S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Korean National Research Fund (NRF-2022R1A2C1005237),
the Unmanned Vehicles Core Technology Research and Development Program through the National
Research Foundation of Korea (NRF-2020M3C1C1A01086408) and a Korea Research Institute for
defense Technology planning and advancement (KRIT) grant funded by the Korea government
(DAPA (Defense Acquisition Program Administration)) (KRIT-CT-22-030, 2023).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shan, T.; Englot, B.; Ratti, C.; Rus, D. LVI-SAM: Tightly-Coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping. In

Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 5692–5698. [CrossRef]

2. Zheng, C.; Zhu, Q.; Xu, W.; Liu, X.; Guo, Q.; Zhang, F. FAST-LIVO: Fast and Tightly-Coupled Sparse-Direct LiDAR-Inertial-Visual
Odometry. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan,
23–27 October 2022; pp. 4003–4009. [CrossRef]

3. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

4. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-Coupled Lidar Inertial Odometry via Smoothing
and Mapping. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 25–29
October 2020; pp. 5135–5142. [CrossRef]

5. Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073.
[CrossRef]

6. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast Semi-Direct Monocular Visual Odometry. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 15–22. [CrossRef]

7. Carrillo, H.; Reid, I.; Castellanos, J.A. On the Comparison of Uncertainty Criteria for Active SLAM. In Proceedings of the 2012
IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2080–2087. [CrossRef]

8. Maurovic, I.; Seder, M.; Lenac, K.; Petrovic, I. Path Planning for Active SLAM Based on the D* Algorithm with Negative Edge
Weights. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1321–1331. [CrossRef]

9. Palomeras, N.; Carreras, M.; Andrade-Cetto, J. Active SLAM for Autonomous Underwater Exploration. Remote Sens. 2019,
11, 2827. [CrossRef]

10. Lim, H.; Jeon, J.; Myung, H. UV-SLAM: Unconstrained Line-Based SLAM Using Vanishing Points for Structural Mapping. IEEE
Robot. Autom. Lett. 2022, 7, 1518–1525. [CrossRef]

11. Jung, K.Y.; Kim, Y.E.; Lim, H.J.; Myung, H. ALVIO: Adaptive Line and Point Feature-Based Visual Inertial Odometry for Robust
Localization in Indoor Environments. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 171–184. [CrossRef]

12. Zhang, C. PL-GM:RGB-D SLAM with a Novel 2D and 3D Geometric Constraint Model of Point and Line Features. IEEE Access
2021, 9, 9958–9971. [CrossRef]

13. Bavle, H.; De La Puente, P.; How, J.P.; Campoy, P. VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems. IEEE
Access 2020, 8, 60704–60718. [CrossRef]

14. Qiu, Z.; Lin, D.; Jin, R.; Lv, J.; Zheng, Z. A Global ArUco-Based Lidar Navigation System for UAV Navigation in GNSS-Denied
Environments. Aerospace 2022, 9, 456. [CrossRef]

15. Yang, Y.; Huang, G. Observability Analysis of Aided INS with Heterogeneous Features of Points, Lines, and Planes. IEEE Trans.
Robot. 2019, 35, 1399–1418. [CrossRef]

16. Einhorn, E.; Gross, H.M. Generic NDT Mapping in Dynamic Environments and Its Application for Lifelong SLAM. Rob. Auton.
Syst. 2015, 69, 28–39. [CrossRef]

https://doi.org/10.1109/ICRA48506.2021.9561996
https://doi.org/10.1109/IROS47612.2022.9981107
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/IROS45743.2020.9341176
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/ICRA.2012.6224890
https://doi.org/10.1109/TSMC.2017.2668603
https://doi.org/10.3390/rs11232827
https://doi.org/10.1109/LRA.2022.3140816
https://doi.org/10.1007/978-981-16-4803-8_19
https://doi.org/10.1109/ACCESS.2021.3049801
https://doi.org/10.1109/ACCESS.2020.2983121
https://doi.org/10.3390/aerospace9080456
https://doi.org/10.1109/TRO.2019.2927835
https://doi.org/10.1016/j.robot.2014.08.008

Aerospace 2023, 10, 492 17 of 17

17. Mendes, E.; Koch, P.; Lacroix, S. ICP-Based Pose-Graph SLAM. In Proceedings of the SSRR 2016—International Symposium on
Safety, Security and Rescue Robotics, Lausanne, Switzerland, 23–27 October 2016; pp. 195–200. [CrossRef]

18. Lee, B.; Kim, D.G.; Lee, J.; Sung, S. Analysis on Observability and Performance of INS-Range Integrated Navigation System
Under Urban Flight Environment. J. Electr. Eng. Technol. 2020, 15, 2331–2343. [CrossRef]

19. Mirzaei, F.M.; Roumeliotis, S.I. A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and
Performance Evaluation. IEEE Trans. Robot. 2008, 24, 1143–1156. [CrossRef]

20. Gao, S.; Wei, W.; Zhong, Y.; Feng, Z. Rapid Alignment Method Based on Local Observability Analysis for Strapdown Inertial
Navigation System. Acta Astronaut. 2014, 94, 790–798. [CrossRef]

21. Yeon, S.; Doh, N.L. Observability Analysis of 2D Geometric Features Using the Condition Number for SLAM Applications. In
Proceedings of the International Conference on Control, Automation and Systems, Gwangju, Republic of Korea, 20–23 October
2013; pp. 1540–1543. [CrossRef]

22. Bavle, H.; Sanchez-Lopez, J.L.; de la Puente, P.; Rodriguez-Ramos, A.; Sampedro, C.; Campoy, P. Fast and Robust Flight Altitude
Estimation of Multirotor UAVs in Dynamic Unstructured Environments Using 3D Point Cloud Sensors. Aerospace 2018, 5, 94.
[CrossRef]

23. Chen, S.; Zhou, W.; Yang, A.S.; Chen, H.; Li, B.; Wen, C.Y. An End-to-End UAV Simulation Platform for Visual SLAM and
Navigation. Aerospace 2022, 9, 48. [CrossRef]

24. Karaman, S.; Frazzoli, E. Sampling-Based Algorithms for Optimal Motion Planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/SSRR.2016.7784298
https://doi.org/10.1007/s42835-020-00510-w
https://doi.org/10.1109/TRO.2008.2004486
https://doi.org/10.1016/j.actaastro.2013.10.003
https://doi.org/10.1109/ICCAS.2013.6704133
https://doi.org/10.3390/aerospace5030094
https://doi.org/10.3390/aerospace9020048
https://doi.org/10.1177/0278364911406761

	Introduction
	Observability Analysis
	Observability Model
	Geometric Detection

	Observability Verification Study
	Simulation Results
	Results for the Real Environment

	Observability-Driven Path Planning
	Algorithm Implementation
	Simulation and Experimental Result

	Results and Discussion
	References

