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Abstract: Firing test campaigns were carried out on a 200 N thrust-class hybrid rocket engine, using
gaseous oxygen as an oxidizer and a paraffin-wax-based fuel. Different fuel grain lengths were
adopted to extend the fuel characterization under different operating conditions, and to evaluate
rocket performances and internal ballistics in the different configurations. In addition to data collected
under a 220 mm propellant grain length, two further test campaigns were carried out considering
130 mm and 70 mm grain lengths. Two different injector types were adopted in the 130 mm configu-
ration; in particular, a showerhead injection system was used with the aim to contain high-amplitude
pressure oscillations observed during some firing tests in this engine configuration. Parameters such
as the chamber pressure and temperature inside the graphite nozzle, space-averaged fuel regression
rate and nozzle throat diameter were measured. The results allowed for the investigation of different
issues related to hybrid rockets (e.g., fuel regression rate, engine performance, nozzle ablation under
different conditions). The focus was mainly directed to the nozzle heat transfer, through the recon-
struction of the convective heat transfer coefficient for different tests in the 70 mm grain length engine
configuration. The reconstruction took advantage of the experimental data provided by the nozzle
embedded thermocouple. Then, the experimental convective heat transfer coefficient was used to
validate the results from some empirical correlations. The results showed significant differences
between the experimental convective heat transfer coefficients when considering tests with different
oxidizer mass flow rates. Furthermore, the predictions from the empirical correlations proved to be
more reliable only in cases characterized by oxidizer-rich conditions.

Keywords: hybrid rocket engine; paraffin; high fuel regression rate; testing; nozzle heat transfer

1. Introduction

The renewed interest in hybrid rockets is due to several reasons, including the growing
demand for cheaper access to space due to the increase in the number of small satellites,
and the simultaneous need for mini-launchers capable of precise multi-payload/multi-orbit
injections. Indeed, for many applications, such as small launchers and sounding rockets,
the potential advantages of hybrid rockets with respect to solid and liquid rockets are
undeniable, and they have been widely discussed in the literature [1]. Several companies
are currently developing hybrid rockets for commercial applications, mainly targeting the
small-satellite market [2]. Among the advantages of hybrid rockets, simplicity and safety
play an important role. For this purpose, the use of liquefying fuels is definitely favorable
since they are characterized by very high regression rates, with respect to conventional
pyrolyzing fuels, thus keeping the engine design simple, i.e., a single-port fuel grain, while
preserving high engine performances. Because of these characteristics, paraffin-based fuels
have been largely investigated in the past.
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Nevertheless, some critical aspects need to be further assessed to increase the knowl-
edge on hybrid rocket engines. For example, general and reliable scale laws for the engine
design, as well as the nozzle heat transfer and ablation phenomena in paraffin-based fuel
systems, still require more studies. Concerning the latter topic, while numerical studies
can be found in the literature [3], extensive experimental data concerning nozzle heat
transfer and thermal protection material erosion rates are difficult to find, especially when
considering paraffin-based fuel engines operating in a wide range of oxidizer-to-fuel (OF)
mixture ratios. In fact, the numerical models—which are able to predict the chemical inter-
actions between the reacting flow and the protective material with good reliability—have
mostly been validated using experimental data from solid rocket motors [4]. However,
in hybrid engines, different physical and chemical conditions (e.g., combustion products,
oxygen concentration) with respect to solid motors can be found, requiring an extension
of the validation of numerical models. Different experimental data and numerical meth-
ods for estimating nozzle throat erosion can be found in the literature when considering
fuels other than paraffin-based fuels, such as high-density polyethylene (HDPE) [5] or
hydroxyl-terminated polybutadiene (HTPB) [6].

In this context, studies on hybrid propulsion with paraffin-based fuels have been
initiated, developing and testing different engines in the thrust class of 100 to 1000 N [7,8].
In this study, following the experimental activities performed on a paraffin-based 200 N
engine [9], where a 220 mm propellant grain length was adopted to perform an extensive
firing test campaign, additional firing tests were conceived, reducing the propellant grain
length to 130 mm and 70 mm. The fuel blend formulation was unchanged, being mainly
composed of SASOL® 0907, and the oxidizer was gaseous oxygen. The main objective
was the fuel characterization at increased OF values, including an evaluation of the new
operating conditions of engine performance and nozzle heat transfer. The latter topic is
mainly treated here, considering the lack of extensive graphite nozzle characterization of
oxygen/paraffin-based fuel engines operating at different OF values. The experimental
results showed that nozzle throat erosion was extremely limited in the adopted graphite
G348 material, as long as the OF values remained below the stoichiometric value during
the 4 s of firing. In the new engine configurations (70 mm and 130 mm grain length), the
graphite nozzle was modified to host an embedded thermocouple. Taking advantage of the
temperature measurement by the nozzle embedded thermocouple, a reconstruction of the
nozzle wall convective heat transfer coefficient was performed for some tests in the 70 mm
grain length engine configuration. The results were used to validate numerical models and
typical empirical correlations often adopted for nozzle convective heat transfer estimation.

2. Experimental Setup
2.1. Description of 200 N Rocket Engine

The 200 N thrust-class engine layout is shown in Figure 1. It is composed of a replace-
able injection system (axial conical mono-injector with a 6 mm exit diameter, or showerhead
injector made of 13 elements, each with a 1.5 mm diameter), a pre-combustion chamber, a
propellant grain, an aft mixing chamber and a graphite nozzle. The different parts were
contained inside a shell made of steel. A new case, named shell-short, was realized with a
shorter length to host the 70 mm propellant grain. Furthermore, an extension of 50 mm
was realized to host the 130 mm grain. One of the shell-shorts was constructed via the
ALM (additive layer manufacturing) process using the CIRA EBM (electron beam melting)
machine (see Figure 2b). The engine ignition was established with a methane/oxygen
mixture with a spark plug. Two high-frequency pressure transducers, Setra C206, were
separately located in the engine pre-chamber and aft chamber. The graphite nozzle hosted
an embedded thermocouple, type K, for temperature acquisition in the proximity of the
nozzle throat.
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The rocket had an axisymmetric combustion chamber, with a 69 mm case inner
diameter and a variable length. The motor forward closure can accommodate both the
converging nozzle injector and the showerhead injector.

Upstream and downstream of the solid grain, a dump plenum (25 mm long with a
44 mm inner diameter) and an aft mixing chamber (38 or 58 mm long with a 45 mm inner
diameter) were set up, respectively. A graphite converging–diverging nozzle with a 9.8 mm
throat diameter and an area expansion ratio equal to 2.87 was employed.

Figure 2a shows a propellant grain adopted in the engine before a test, in the 70 mm
configuration. Figure 2b shows the 200 N thrust-class engine shell (named shell-short,
to make a distinction with respect to the shell adopted for the 220 mm grain length)
constructed with the ALM technique, manufactured using the CIRA EBM machine. Two
wings were added to the shell to directly fix the engine to the test bench, without the use of
additional clamps, which are usually adopted.

2.2. Test Facility Description

The test facility has a versatile experimental setup primarily designed for firing hybrid
rocket engines of several sizes [9]. The equipment includes a test rig and a general-purpose
data acquisition system, which allow several types of tests to be performed.

Figure 3 shows the piping and instrumentation schematic of the test rig. Gaseous
oxygen is supplied by a reservoir connected to several cylinders; an electronic pressure
regulator (TESCOM ER3000) sets the operating pressure along the motor feed line. The
oxygen mass flow rate is evaluated through gas temperature and pressure measurements
upstream of the throat of a chocked Venturi tube placed along the line. Nitrogen is purged
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into the chamber for the burn-out and in case of an emergency shutdown. The gaseous
methane feed line, used for the engine ignition, is also highlighted.
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The test facility allows the acquisition of engine thrust by means of four load cells at a
frequency of 5 kHz.

2.3. Test Campaign Conception and Test Matrix

The test campaign was conceived to further investigate the engine performance and
paraffin-fuel behavior under the new operating conditions, considering a gradual increase
in the flame temperature and oxygen concentration coming from the increase in the OF
mixture ratio when reducing the grain length. The test matrix was conceived to explore a
wide range of oxidizer mass flow rates, starting from about 15 g/s up to about 60 g/s. The
assessment also included data obtained with the 220 mm grain length from [9], in addition
to the 70 mm and 130 mm test results. Higher oxidizer-to-fuel mixture ratios associated
with the 70 mm grain length engine configuration were also used to eventually determine
ablation phenomena in the graphite nozzle, due to the increase in the oxygen concentration
and flame temperatures.

Concerning the labeling (Figure 4), L refers to the grain length of 220 mm tested in
the previous campaign [9], M refers to the 130 mm grain length engine configuration with
the showerhead injector, S refers to the 70 mm grain length engine configuration with
mono-injector and MU refers to the 130 mm grain length engine configuration adopting
the mono-injector.
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Finally, there was a difference in the aft chamber length. Specifically, the L engine
configuration adopted a post-chamber length equal to 58 mm, while in the M/MU and S
engine configurations, the post-chamber length was 38 mm.

The nominal test matrix is reported in Table 1.

Table 1. Nominal test matrix.

Test 1S 2S 3S 4S 5S 6S 1MU 2MU 3MU 4M 5M 6M 7M 8MU

Oxygen mfr,
g/s 30 40 50 60 60 25 30 40 50 30 40 15 60 60

Burning
time, s 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3. Experimental Results
3.1. Experimental Acquisitions and Measurements

Data were acquired at a rate of 5 kHz. All the signals were processed and down-
sampled at 100 Hz with a boxcar average. The main parameters directly acquired in the
firing tests, with the relative uncertainty, were as follows:

• Chamber pressure (±7·103 Pa);
• Engine thrust (±0.05 N);
• Oxidizer mass flow rate (±1 g);
• Nozzle temperature (±5 ◦C).

The quantities measured after the firing test were the fuel grain mass consumption
(∆M f ) and the nozzle throat diameter.

Starting from the fuel grain mass consumption and the burning time, the average fuel
mass flow rate was calculated as

.
m f =

∆M f

tb
(1)

The final space-averaged port diameter was calculated from the mass loss as

D̂2 =

√
D2

1 +
4
π

∆M f

ρ f L
(2)

where D1 and L are the initial grain diameter and length, respectively. The time–space-
averaged port diameter was then calculated as

D =
D1 + D̂2

2
(3)

and the average oxidizer mass flux was calculated as

Gox =
4

.
mox

πD2 (4)

Finally, the time–space-averaged fuel regression rate was calculated as

.
r =

D̂2 − D1

2tb
(5)

Table 2 summarizes the main experimental results, including the effective oxygen mass
flow rate, burning time, initial and final nozzle throat diameters, average oxidizer mass
flux, average fuel regression rate, average overall oxidizer-to-fuel mixture ratio, average
chamber pressure and average thrust. The engine burning time was computed starting
from the half of the pressure rise to the half of the final pressure drop.
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Table 2. Main experimental results.

Test
Effective

Oxygen Mass
Flow Rate, g/s

Burning
Time, s

Initial
Nozzle
Throat

Diameter,
mm

Final
Nozzle
Throat

Diameter,
mm

Average Oxidizer
Mass Flux, kg/m2s

Average
Regression
Rate, mm/s

Average
Overall
Mixture

Ratio

Average
Chamber
Pressure,

Bar

Average
Thrust,

N

1S 31.2 ± 0.29 4.2 9.8 9.8 72.37 ± 2.69 2.02 ± 0.05 3.36 ± 0.09 6.60 53.48

2S 42.5 ± 0.37 4.2 9.8 9.8 86.70 ± 2.85 2.38 ± 0.05 3.51 ± 0.08 9.12 83.67

3S 50.6 ± 0.44 4.2 9.8 9.8 98.86 ± 3.12 2.51 ± 0.05 3.94 ± 0.08 10.86 99.83

4S 60.4 ± 0.52 4.2 9.8 10.2 119.01 ± 3.78 2.48 ± 0.05 4.79 ± 0.10 12.10 119.53

5S 60.0 ± 0.51 4.2 10.2 10.45 120.52 ± 3.90 2.49 ± 0.05 4.94 ± 0.10 11.39 113.65

6S 25.9 ± 0.25 4.2 10.45 10.45 64.41 ± 2.56 1.80 ± 0.05 3.11 ± 0.09 - 42.06

1MU 30.8 ± 0.28 4.2 10.9 10.9 64.96 ± 2.11 2.28 ± 0.05 1.02± 0.05 8.55 84.2

2MU 41.2 ± 0.36 4.2 10.9 10.9 76.49 ± 2.49 2.67 ± 0.05 1.07± 0.05 10.91 120.81

3MU 46.0 ± 0.40 4.2 10.9 10.9 81.51 ± 2.65 2.82 ± 0.05 1.23± 0.05 11.88 139.23

4M 30.4 ± 0.28 4.2 10.9 10.9 67.06 ± 2.18 2.15 ± 0.05 1.15± 0.05 8.01 83.53

5M 41.0 ± 0.36 4.2 10.9 10.9 85.10 ± 2.76 2.35 ± 0.05 1.76± 0.05 10.73 117.98

6M 14.6 ± 0.17 4.2 10.9 10.9 39.89 ± 1.55 1.59 ± 0.05 1.61± 0.05 3.58 28.34

7M 62.7 ± 0.54 4.2 10.9 10.9 111.32 ± 3.62 2.78 ± 0.05 1.67± 0.05 16.48 161.79

8MU 61.8 ± 0.53 4 10.9 10.9 110.13 ± 2.58 2.93 ± 0.05 1.50± 0.05 15.16 145.54

As shown in the results, in all cases, the effective oxidizer mass flow rate and burning
time were very close to the nominally required conditions. Tests 4S and 5S were the only
tests to show graphite nozzle throat erosion. In these tests, the effective oxidizer mass flow
rate reached the maximum value, about 60 g/s, and the average oxidizer-to-fuel mixture
ratio was between 4.8 and 4.9, leading to a highly oxidizing environment. Note that the
initial nozzle throat diameter was slightly different for the M/MU tests, since in the second
test campaign, another nozzle was adopted.

In the following figures, the acquired signals—pressure, thrust and nozzle temperature
—are shown. For the sake of clarity, the curves were grouped using only some tests. Unless
specified, the pressure signals in the engine post-combustion chamber can be considered to
be similar to those in the pre-chamber, and therefore only the latter are reported.

The pressure signals and thrust acquisitions are reported in Figure 5a,b, respectively,
for the S tests. Note that the pressure for test 6S is not available, as the PT did not acquire
data due to paraffin occlusion.

The pressure acquisitions for the MU and M tests are reported in Figure 6a,b, respec-
tively. They are separated for the sake of clarity. The tests performed with the conical
mono-injector were characterized by high-pressure oscillations, despite the increase in the
oxidizer mass flow rate (60 g/s in test 8MU). Switching to the showerhead injection system
(M tests) led to a completely different behavior, where the engine showed good combustion
stability in all the testing conditions.

Comparing the high-frequency (5 kHz) pressure acquisitions, the down-sampled
trends were confirmed, pointing out pressure oscillations between 30 and 40% of the
average value in the unstable MU conditions, which were reduced to the order of 5% in the
M cases.

The observed oscillating phenomenon has not yet been reported in the literature.
Numerical simulations were carried out, which pointed to major differences in the fluid
dynamics among the two injection systems.
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Figure 6. Pressure acquisitions in the engine post-chamber for the MU (a) and M (b) tests.

Figure 7 shows the thrust acquisitions for the MU (a) and M (b) tests. The curves
exhibit the same trends as those observed for the pressure. Specifically, tests 4M and 7M
showed a visible increase in thrust over the firing time, while for tests 3MU and 8MU,
the trend was the opposite. For all the other tests, the thrust values were nearly constant
with the firing time. Considering that, in all cases, the nozzle throat diameter remained
unchanged, the engine thrust was related to the fuel mass flow rate. In tests 3MU and 8MU,
the engine stability increased over time, leading to a decrease in the fuel regression rate
and thrust. Concerning tests 4M and 7M, the more pronounced increase in engine thrust
over time was probably related to higher axial fuel consumption, which led to a higher
increase in the fuel mass flow rate.
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Figure 7. Engine thrust acquisitions for the MU (a) and M (b) tests.

The temperature profiles in the nozzle are reported in Figure 8 for all of the S (a)
and M/MU (b) tests. Looking at the S tests, it can be noticed that with the increase in
the oxidizer mass flow rate, the temperature increased. This was expected because of the
pressure increase, which directly affected the wall heat flux, while the flame temperatures
were expected to slightly decrease due to the increase in the average oxidizer-to-fuel mixture
ratio over the stoichiometric value. It can also be noticed that the curves were characterized
by peak values (approaching 1000 K for test 6S) upon engine shutdown, except for test 1S.
Comparing the S and M tests, higher values were generally registered in the first case,
even though the average chamber pressure values were lower with respect to the M tests
because of the lower fuel mass flow rate. Clearly, the effect of temperature was predominant
due to the average oxidizer-to-fuel mixture ratio being closer to the stoichiometric value.
Concerning the M tests, the same trend of the curves was observed, characterized by peak
values upon engine shutdown. However, a different trend was observed among the M
tests with the same oxidizer mass flow rate, due to the different engine behaviors, which
affected the fuel regression rate. To provide an example, comparing test 2MU and test
5M, which were performed under the same conditions (oxidizer mass flow rate of 41.2 vs.
41 g/s, respectively), considerably higher temperatures were acquired in the M case. Even
though the average chamber pressure was nearly the same (11.32 vs. 11.29 bar), in the MU
case, the fuel regression rate was significantly higher, leading to a considerable difference
in the average oxidizer-to-fuel mixture ratio (1.07 vs. 1.76). As a consequence, the flame
temperature in the M case was higher (the slope of the T–OF curve is very steep in that OF
range). Note that the average chamber pressure was the same for the two tests, despite the
considerably higher fuel mass flow rate in test 2MU, because of the higher engine efficiency
associated with test 5M. Similar considerations are applicable when comparing test 2M and
test 4 under the same oxidizer mass flow rate conditions.

Figure 9 shows the fuel regression rate values vs. the oxidizer mass flux, for tests
in the S and M/MU configurations. As can be seen, the regression rates of the M tests
were similar (slightly higher) to those of the S tests, even if tests 4S and 5S showed lower
values than expected. This issue was not investigated in depth, but a relationship with
the nozzle throat erosion can be hypothesized since this phenomenon represents a major
difference among tests 4S/5S and the other tests. The MU tests exhibited higher regression
rates with respect to the others. For this reason, tests 1MU/2MU/3U were excluded in the
power law fitting curve reported in the figure. This anomalous recession was attributed to
high-pressure oscillations that emerged during these tests.
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3.2. Preliminary Engine Performance Assessment

The engine performances are summarized in Table 3, including the operating condi-
tions (for the sake of completeness) and the experimentally computed values of characteris-
tic velocity (c*), specific impulse (Isp) and thrust coefficient (CF).

Specifically, the aforementioned parameters were computed with the following formulations:

c∗ =
pc At

.
m f +

.
mox

(6)

Isp =
F

g0 ∗
( .

m f +
.

mox

) (7)

CF =
F

pc At
(8)
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Figure 10 shows the experimental characteristic velocity vs. the mean oxidizer-to-fuel
mixture ratio. The ideal c∗, computed using in CEA software [10] a paraffin-based fuel
with the chemical formula C32H66 at a temperature of 293 K with a formation enthalpy of
−967.8 kJ/mol, is represented by the solid line. It can be observed, that for the M tests,
the c∗ trend increased with OF, as expected for the considered mixture ratio range. The
engine combustion efficiency (c ∗real /c ∗ideal ) in this configuration was close to 0.9. The
characteristic velocities of the S tests were significantly lower and much less sensitive to
OF, leading to a combustion efficiency close to 0.75 in this different engine configuration.

Table 3. Main engine performances calculated for all tests.

Test Effective Oxygen
Mass Flow Rate, g/s

Burning
Time, s

Average
Chamber

Pressure, Bar

Average
Thrust, N

Characteristic
Velocity, m/s

Specific
Impulse (s)

Thrust
Coefficient (-)

1S 31.2 ± 0.29 4.2 6.60 53.48 1229.66 134.65 1.07

2S 42.5 ± 0.37 4.2 9.12 83.67 1258.94 156.09 1.22

3S 50.6 ± 0.44 4.2 10.86 99.83 1290.90 160.37 1.22

4S 60.4 ± 0.52 4.2 12.10 119.53 1301.48 166.87 1.26

5S 60.0 ± 0.51 4.2 11.39 113.65 1310.87 159.25 1.19

6S 25.9 ± 0.25 4.2 - 42.06 - 125.27 -

1MU 30.8 ± 0.28 4.2 8.55 84.2 1295.13 145.03 1.10

2MU 41.2 ± 0.36 4.2 10.91 120.81 1275.56 154.30 1.19

3MU 46.0 ± 0.40 4.2 11.88 139.23 1329.51 170.21 1.26

4M 30.4 ± 0.28 4.2 8.01 83.53 1315.25 149.83 1.12

5M 41.0 ± 0.36 4.2 10.73 117.98 1555.38 186.82 1.18

6M 14.6 ± 0.17 4.2 3.58 28.34 1413.26 122.22 0.85

7M 62.7 ± 0.54 4.2 16.48 161.79 1532.91 164.40 1.05

8MU 61.8 ± 0.53 4 15.16 145.54 1372.76 143.97 1.03
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4. Nozzle Wall Heat Transfer Reconstruction

Using the experimental temperature profiles acquired using the embedded thermo-
couple (TC) in the graphite nozzle material, the experimental nozzle wall heat transfer was
calculated for tests 2S, 4S and 5S, corresponding to the S engine configuration—the most
critical from a thermal point of view. In particular, in tests 4S/5S, nozzle throat erosion
was observed, and therefore the estimation of the corresponding heat transfer to the wall is
relevant. Test 2S, with a lower oxidant mass flow rate, did not show throat erosion, and the
heat transfer estimation was carried out to compare the wall heat transfer differences in
the two testing conditions. In this study, a comparison between the experimental nozzle
wall heat transfer and the modeled one, with different empirical correlations, is presented,
allowing for a preliminary validation of the numerical tool.

4.1. Numerical Setup and Procedure
4.1.1. Procedure for Nozzle Wall Heat Transfer Reconstruction

The iterative procedure adopted to estimate the experimental convective heat transfer
coefficient ( hc) at the nozzle wall is presented in Figure 11. As shown in the figure, the
first convective heat transfer coefficient was imposed on the nozzle hot-gas side wall at
the initial time, with an axial profile distribution derived using the numerical tool, based
on a modified Bartz correlation. With the initial hc boundary condition along the nozzle
wall, a transient thermal simulation was started by means of the ANSYS Fluent commercial
code, simulating the thermal wave propagation inside the solid material. The numerical
temperature values, computed in the TC location, were compared with the experimental
values. Depending on the result of the comparison (the error εabs is defined), the convective
heat transfer coefficient increased or decreased (due to the hc profile error) until the resulting
hc profile distribution over time was found.
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Figure 11. Iterative procedure adopted to estimate the wall hc profile.

As mentioned previously, in the adopted procedure, an hc axial profile distribution
extracted using the numerical tool with the modified Bartz equation was assumed. This
assumption included an approximation due to the fact that the Bartz equation is not
expected to be extremely accurate in the whole nozzle. Nevertheless, the comparison with
the hc profile distribution coming from CFD simulation of the reacting flow [9] seemed to
be in good agreement.

4.1.2. Numerical Setup

Numerical simulations inside the material were carried out with ANSYS Fluent ver.
18.1.0. The 3D domain with boundary conditions and the computational mesh are presented
in Figure 12. As shown in the figure, the walls were considered adiabatic, except for the
hot-gas side nozzle wall, where the convective heat transfer coefficient was applied. In this
case, the free-stream temperature value was set to 3250 K for both tests 2S and 4S, which is
very close to both values returned by RPA (Rocket Propulsion Analysis) [11] under the two
operating conditions. The domain in Figure 12a also shows the thermocouple positioning
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inside the nozzle wall. As previously mentioned, the imposed hc axial profile distribution
was preliminary derived using numerical calculations [7]. The gas properties in these
calculations took into account the OF variation over time, as reported elsewhere [7]. The
computational 3D mesh, as shown in Figure 12b, is a hybrid grid made of tetra elements in
the volume and prism layers along all the domain walls. The mesh details are reported in
Table 4.
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Table 4. Mesh characteristics.

Number of nodes 492,915
Number of cells 2,417,696
1st cell height at wall (m) 10−4

Transient simulations were carried out considering a fixed time step equal to 10−4 s.
A pressure-based solver was adopted, and the solution method included the SIMPLE
scheme for the pressure–velocity coupling and least square cell-based spatial discretization
second-order accuracy.

The graphite material properties used for the calculations are presented in Figure 13,
including the specific heat capacity (a) and the thermal conductivity (b) inside the solid [12].
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4.2. Results of the Reconstruction

The reconstruction was performed for three different tests, specifically tests 2S, 4S and 5S.
As shown in Table 2, tests 4S and 5S were characterized by very similar conditions, and both
presented nozzle throat erosion. Test 2S, characterized by a lower oxidizer mass flow rate
and time–space-averaged OF, did not show appreciable nozzle throat erosion. To reproduce
the experimental temperature trends in Figure 8a, transient simulations were performed by
applying different convective heat transfer coefficient profiles over time (see Figure 11). The
hc profiles shown in Figure 14, at different times, allowed for reproducing the experimental
temperature values measured with the thermocouple with a good approximation. As
shown in the figure, it was necessary to considerably increase the hc values at the beginning
of the simulation, varying from peak values approaching 400 W/m2K at the initial time
to 1200 W/m2K after about 1 s. Subsequently, hc increased to about 1400 W/m2K and
1700 W/m2K in the last two seconds of the test.
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Figure 14. Convective heat transfer coefficient profiles over time applied at the hot-gas side nozzle
wall for test 2S.

Figure 15 shows the result of the reconstruction of tests 4S (a) and 5S (b). Once again,
strong hc variation was necessary at the beginning of the simulation to properly follow the
experimental temperature trends. As shown in the figure, the hc peak values changed by
about one order of magnitude (400 W/m2K to 4000 W/m2K) in the first second. Almost
the same hc profiles were applied in the two different cases, leading to some negative
temperature errors in test 4S and some positive errors in test 5S. This means that the hc
profiles in Figure 15 were slightly underestimated for test 4S and slightly overestimated for
test 5S. With respect to the hc profiles of test 2S, a strong difference was observed, since the
hc values for tests 4S/5S were about 3 times higher.

Figure 16 shows the comparison between the numerical (solid lines) and experimental
(symbols, filled for test 5S) temperature values over time for tests 2S, 4S and 5S. In all cases,
the temperature error εabs (numerical minus experimental temperature; see Figure 11) was
always below the prescribed margin (5% of the experimental value was defined). It is also
shown, as mentioned previously, that the numerical temperature was lower with respect
to the experimental temperature for test 4S at the end of the simulation (meaning that the
applied hc profile needed to be increased slightly), and higher for test 5S (meaning that the
applied hc profile needed to be decreased slightly).
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Different modifications have been proposed in the literature, including the following 

one based on the studies of Ciniaref and Dobrovoliski [15]. Please note that this correlation 
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Figure 16. Numerical (solid line) and experimental (dashed line) temperature profiles vs. time for
test 2S.

This observation is in line with the experimental temperature trends in Figure 8a,
where it can be observed that at the end of the firing, the temperature acquisition for
test 4S showed higher values with respect to test 5S. The difference can be related to the
combination of minor differences in both the engine operating conditions and nozzle throat
radius of curvature.

4.3. Empirical Correlations and Comparison

The prediction of the gas side heat transfer coefficient represents a very complex
problem. Comparisons of analytical results with experimental heat transfer data have
often shown disagreements in the literature [13]. Differences are mainly attributed to the
initial assumptions in the analytical calculations. Conventional formulations adopted to
estimate the convective heat transfer coefficient are usually given in terms of dimensionless
parameters (e.g., Re and Pr) [13]:

hc = 0.026· k
Dh

·Re0.8·Pr
0.4

(9)
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where Dh represents the hydraulic diameter, Re = ρVD/µ and Pr = µcp/k.
Based on experience with turbulent boundary layers, some relatively simple correla-

tions have been developed. The Bartz correlation [14] is a well-known equation used for
the estimation of rocket nozzle convective heat transfer coefficients based on the thermal
properties of combusted gases and isentropic gas equations:

hc =
0.026
D0.2

(
D∗

rc

)0.1( µ0.2

Pr0.6

)
(ρµ)0.8

[(
ρre f

ρ

)0.8(µre f

µ

)0.2
]

(10)

Different modifications have been proposed in the literature, including the following
one based on the studies of Ciniaref and Dobrovoliski [15]. Please note that this correlation
is the default one implemented in the used numerical tool and the one adopted to estimate
the hc axial distributions, which were previously presented.

hc = 0.0162
(

k
D

)
·Pr0.82·Re0.82 (11)

Another correction of the Bartz equation was proposed by Pavli [16]:

hc = 0.023·KT ·
k

Dh
·Re0.8·Pr

0.4
(12)

where KT is a correction factor corresponding to the temperature.
The empirical correlations reported in Equation (11) (default) and Equation (12) were

implemented in the numerical tool to evaluate the results and to compare them with those
presented above. It should be noted that the used numerical tool performed a transient
calculation where the properties of combusted gases (ρ, µ, cp and k) were updated step by
step [7], by means of polynomial interpolations based on data from the RPA combustion
analysis tool [11]. The chemical formula adopted to simulate the paraffin-based fuel was
C32H66.

Figure 17a shows the different hc profiles predicted at the final time (4.2 s), considering
the case of test 4S. Appreciable differences can be observed between the rebuilt experimental
hc and the one predicted with the use of correlations. However, the default correlation
proposed by Ciniaref and Dobrovoliski (Equation (11)) led to smaller differences (6200
vs. 5400 W/m2K peak values), about 15% of the hc peak value, while the correlation
suggested by Pavli (Equation (12)) led to overestimations by about 35% of the hc peak value
(7400 vs.5400 W/m2K). Considering test 2S, Figure 17b shows that the hc predictions using
the correlations were similar to those found for test 4S (hc peak values between 6000 and
8000 W/m2K). This result was expected since the pressure and temperature conditions did
not present remarkable differences. Test 2S was characterized by a lower chamber pressure,
but the OF ratio was closer to the stoichiometric value, leading to an increase in the flame
temperature; therefore, the parameters adopted in the correlations were not expected to
be very different. On the other hand, strong differences were highlighted between the
experimentally rebuilt hc and the predictions using the correlations, once again with higher
overestimations in the case of the Pavli correlation (Equation (12)).

Figure 18 shows the comparison between the experimental hc profiles over time
(0 to 4.2 s) and those obtained with the implementation of the default correlation
(Equation (11)), considering test 4S. Two major differences can be observed, particularly the
strong variation in the experimental hc over time, which was more contained when adopt-
ing the numerical tool, and the hc trend returned by the tool, which predicted decreasing
values over time. The hc variation over time, predicted with the use of the correlation, was
expected to be not too wide, since the variation in the operating conditions over time was
somehow contained. The simulations predicted adiabatic temperature variation over time
between 3300 and 3200 K; at the same time, the pressure also decreased due to nozzle throat
erosion, and thus hc decreased over time. The strong hc variation over time found in the
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experimental reconstruction, on the other hand, was not related to changes in the engine
operating conditions but to strong variation in the fluid properties inside the boundary
layer, depending on the nozzle wall temperature.
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4.4. Discussion

As highlighted previously, a strong difference was observed between the hc rebuilt for
tests 2S and 4S/5S. As shown through the use of correlations, the difference between the
experimental hc values found for tests 2S and 4S/5S was not related to differences in the
pressure and temperature conditions; on the contrary, some higher hc values were even
expected for test 2S. Therefore, some mechanisms occurred in the case of test 2S that were
not evident in tests 4S/5S. From the performed reconstruction calculations, the temperature
profiles inside the nozzle material were extracted to evaluate wall temperature differences
among the different cases. Figure 19 shows the temperature profiles inside the nozzle
material, extracted along the highlighted line, from the TC position to the hot-gas side
nozzle wall, at different simulation times (from 1 s to 4 s) for tests 2S and 4S (representative
of test 5S too). The results refer to the application of the rebuilt convective heat transfer
coefficients presented in Figures 14 and 15a. As shown in the results, a strong difference was
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noted, since in test 2S, the highest temperature value at the nozzle wall approached about
700 K, while for test 4S, this value was obtained only after 1 s (although the temperature
value at the end was about 1300 K). This result suggests that in the case of test 2S, the nozzle
wall temperature remained almost below the gasification temperature of the paraffin-based
fuel blend, which is around 750 K.
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(a) and 4S (b).

This finding suggests that under the conditions of test 2S, a paraffin fuel liquid layer
at the wall could exist, while this event can be excluded in the case of test 4S unless the
first second of the firing test is considered. The paraffin fuel liquid layer acts as a sort
of insulator, and the thermal energy is absorbed, in part, by the endothermic process of
gasification. Thus, the thermal and transport properties of the fluid in the boundary layer
are expected to be very different from those adopted in the empirical correlations, leading
to strong differences in the convective heat transfer coefficient prediction that cannot be
modeled with a simplified model. When the nozzle wall temperature is above the paraffin-
based fuel gasification value, the thermal energy is widely directly transferred from the hot
combustion gases to the nozzle wall. This was the case for tests 4S/5S for most of the firing
time, where the wall temperatures were above the gasification temperature, and the fluid
properties were predicted with good accuracy using the correlations.

This can also be considered the reason why, at the beginning of the firing test, in all
cases, a small hc value must be applied to properly follow the experimental temperature
trend. In fact, until the wall temperature remains below the gasification threshold, the ther-
mal energy is absorbed by the endothermic process of gasification, as the wall temperature
is low.

The reason why tests 2S and 4S/5S presented very strong differences in the wall
temperature and thus in the predicted hc and thermal nozzle behavior (including erosion
for tests 4S/5S), even though the engine operating conditions were not too different, is
probably dependent on several factors. However, the most important one is, without a
doubt, the OF ratio, which approached averaged values of 3.5 for test 2S and close to 5 for
tests 4S/5S. Even if this OF difference does not have a significant effect on the adiabatic
flame temperature, the difference in the amount of unburnt fuel has a significant effect.

The present study suggests that the estimation of the nozzle heat transfer in paraffin-
based hybrid engines by means of classical empirical correlations, e.g., the Bartz correlation,
is reliable, with slight overestimations returned by the Ciniaref and Dobrovoliski equation,
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only in oxidizer-rich conditions; otherwise, significant hc overestimation should be expected
if the gas properties are not properly corrected.

5. Conclusions

The experimental results from a 200 N thrust-class hybrid engine firing test campaign
were obtained. Different experimental acquisitions (e.g., data acquisition of several pa-
rameters such as the oxidizer mass flow rate, chamber pressure and nozzle temperature)
and measurements (e.g., propellant grain weight and dimensions, and graphite nozzle
throat diameter) allowed us to characterize each test in terms of the fuel regression rate
and engine performance, and to validate numerical models. The nozzle wall convective
heat transfer coefficient (h_c) was estimated for different tests in the 70 mm grain length
configuration—the most critical engine configuration, from a thermo-chemical point of
view. Among the different tests, important differences in the nozzle wall convective heat
transfer coefficient were found. The results showed that the engine operating conditions, in
terms of the pressure and temperature, had a limited impact on the theoretical h_c. Instead,
an important role was attributed to the oxidizer-to-fuel mixture ratio, and specifically to the
amount of unburnt fuel available during the firing test. In fuel-rich conditions, part of the
thermal energy transferred from the hot gases to the wall was absorbed by the endothermic
process of gasification, leading to changes in the gas properties of the boundary layer, affect-
ing the effective thermal conductivity. In this case, empirical correlations failed to correctly
estimate the value of h_c, because this flow effect was not considered. In oxidizer-rich
conditions, the nozzle wall temperature increased above the gasification temperature of the
paraffin-based fuel blend. The thermal energy was widely transferred from the hot gases to
the wall, leading to a strong increase in the convective heat transfer coefficient. In this case,
the use of empirical correlations proved to be valid, leading to slight overestimations of the
h_c value.
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Nomenclature

a regression rate pre-exponential factor, m3/kg
Ae nozzle exit area, m2

At nozzle throat area, m2

cp specific heat, J/kg·K
c∗ characteristic velocity, m/s
cF thrust coefficient
D fuel grain port diameter, m
D1 initial fuel grain port diameter, m
D̂2 final space-averaged fuel grain port diameter, m
Dh hydraulic diameter, m
D∗ critical diameter, m
F thrust, N
G mass flux, kg/m2·s
g0 gravitational acceleration, m/s2

Isp specific impulse, s
L fuel grain length, m
.

m mass flow rate, kg/s
∆Mf measured solid mass fuel loss, g
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n regression rate law exponent
OF mixture ratio
p pressure, Pa
Pr Prandtl number
rc curvature radius, m
.
r fuel regression rate, mm/s
R ideal gas constant, J/mol·K
Re Reynolds number
T temperature, K
tb burning time, s
tr residence time, s
PT pressure transducer
TC thermocouple

Greek Symbols
ε numerical error
k thermal conductivity, W/m2·K
µ dynamic viscosity, kg/m·s
ρ density, kg/m3

η characteristic velocity efficiency
Superscripts

− time average
∼ density-weighted average

Subscripts
c combustion chamber
e nozzle exit
f fuel
g grain, gas
inj injection
ox oxidizer
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