
Citation: Yang, J.; Yang, H.; Wu, Z.;

Wu, X. Cognitive Load Assessment of

Air Traffic Controller Based on

SCNN-TransE Network Using

Speech Data. Aerospace 2023, 10, 584.

https://doi.org/10.3390/

aerospace10070584

Academic Editor: Alvaro

Rodriguez-Sanz

Received: 4 April 2023

Revised: 15 June 2023

Accepted: 19 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Cognitive Load Assessment of Air Traffic Controller Based on
SCNN-TransE Network Using Speech Data
Jing Yang 1, Hongyu Yang 1,2, Zhengyuan Wu 1,2 and Xiping Wu 1,2,*

1 College of Computer Science, Sichuan University, Chengdu 610065, China
2 National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University,

Chengdu 610064, China
* Correspondence: wuxiping@scu.edu.cn

Abstract: Due to increased air traffic flow, air traffic controllers (ATCs) operate in a state of high load
or even overload for long periods of time, which can seriously affect the reliability and efficiency of
controllers’ commands. Thus, the early identification of ATCs who are overworked is crucial to the
maintenance of flight safety while increasing overall flight efficiency. This study uses a comprehensive
comparison of existing cognitive load assessment methods combined with the characteristics of the
ATC as a basis from which a method for the utilization of speech parameters to assess cognitive load
is proposed. This method is ultimately selected due to the minimal interference of the collection
equipment and the abundance of speech signals. The speech signal is pre-processed to generate a
Mel spectrogram, which contains temporal information in addition to energy, tone, and other spatial
information. Therefore, a speech cognitive load evaluation model based on a stacked convolutional
neural network (CNN) and the Transformer encoder (SCNN-TransE) is proposed. The use of a CNN
and the Transformer encoder allows us to extract spatial features and temporal features, respectively,
from contextual information from speech data and facilitates the fusion of spatial features and
temporal features into spatio-temporal features, which improves our method’s ability to capture
the depth features of speech. We conduct experiments on air traffic control communication data,
which show that the detection accuracy and F1 score of SCNN-TransE are better than the results
from the support-vector machine (SVM), k-nearest neighbors (KNN), random forest (RF), adaptive
boosting (AdaBoost), and stacked CNN parallel long short-term memory with attention (SCNN-
LSTM-Attention) models, reaching values of 97.48% and 97.07%, respectively. Thus, our proposed
model can realize the effective evaluation of cognitive load levels.

Keywords: air traffic controller; cognitive load assessment; Mel spectrogram; transformer

1. Introduction

Air traffic control is a high-risk intellectual job requiring continuous information ac-
quisition, timely analysis, dynamic evaluation, and accurate decision making. Human
factor studies have shown that aviation accidents are usually caused by three main factors:
human errors, mechanical failures, and weather conditions, with human error accounting
for a high percentage of up to 80% of all accidents [1]. This corroborates that human factors
have become a major threat to aviation safety. The air traffic controller (ATC) is critical
to the safety of air traffic management (ATM). Maintaining an appropriate workload for
controllers is essential to ensure that they can perform their duties accurately and efficiently,
thereby reducing the risk of errors that could jeopardize aircraft safety. Therefore, it is im-
perative to prioritize the controller’s well-being and ensure that they are not overburdened
with tasks and can remain focused and alert throughout their shift.

Air traffic flow is increasing, and airspace management has become increasingly com-
plicated in recent years due to the fast expansion of civil aviation [2]. Long working hours,
especially during night shifts, tend to have a significant impact on ATCs’ cognitive and
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attentional resources, resulting in inattentiveness, memory loss, slow responses, physical
discomfort, drowsiness, and other phenomena, all of which seriously affect the reliability
and efficiency of the whole human–machine system and thus affect flight safety [3,4]. Good
attention, memory ability, spatial awareness, reaction speed, and alertness are all necessary
qualities for ATCs. Moreover, the strength of these abilities is closely related to the state of
the ATC. Therefore, a comprehensive, systematic analysis and understanding of controllers’
cognitive load are of significant practical importance for maintaining aviation safety and
enhancing air transport efficiency.

The workload of ATCs can be divided into two categories. One is the objective load,
which refers to the work performed by controllers in the process of routine control and
conflict resolution that can be observed, recorded, and timed; the other is the subjective
load or cognitive load, which refers to the level of psychological energy required by
controllers to receive, maintain, and process aircraft information in a short period of
time [5]. The cognitive load is reflected in the psychological activities undertaken by ATCs
when monitoring flight dynamics, such as maintaining situational awareness, analyzing
traffic dynamics, making conflict judgments, formulating operational plans, and monitoring
the implementation of plans.

From this description of cognitive load, it can be seen that there is a very important
relationship between cognitive load and cognitive resources [5–8]. If an individual wants to
complete a task, the total load cannot exceed the available working memory resources. In a
general sense, cognitive load can be described as the ratio of the mental resources required for
the task to the remaining available resources of the operator; that is, it is the occupancy rate
of mental resources [6,7]. In studies investigating cognitive load, the level of cognitive load
can be altered by manipulating either the remaining mental resources or the mental resources
required to complete the work. The main purpose of evaluating or predicting cognitive load
is to be able to distribute tasks to avoid cognitive overload, the essence of which is rooted in
the rational management and effective use of cognitive resources.

At present, methods used to assess the cognitive load of ATCs can be grouped into
three categories: task evaluations, subjective evaluations, and physiological evaluations [6].
Firstly, task evaluation methods or task performance measurements evaluate the cognitive
load imposed by the task on controllers through their job performance. The International
Civil Aviation Organization (ICAO) has divided the workload faced by controllers into
the visible load (measurable control time consumption) and the invisible load (controller
thinking time). These categories were put forward by the task method named by the
Directorate of Operation Research and Analysis (DORATASK) and the method named by
Messerchmitt-Bökow-Blohm (MBB), and have both been widely used in the measurement
of controllers’ loads [9–12]. Secondly, subjective evaluation methods utilize hierarchical
systems to allow controllers to subjectively evaluate their psychological load, taking into
account factors such as tension, pressure, and operational difficulty. The main current
subjective evaluation methods include the Subjective Workload Assessment Technique
(SWAT), the NASA Task Load Index (NASA-TLX), the Air Traffic Workload Input Technique
(ATWIT), and the Pass method [13–16]. These approaches are carried out through the use
of questionnaires filled in by the subjects. Lastly, physiological evaluation methods conduct
an evaluation of a controller’s cognitive load by measuring the changes in physiological
indicators produced by the controller during their work. The most commonly used indices
are the cardiac activity index, eye movement analysis index, electroencephalogram (EEG)
analysis index, and speech analysis index [17–25]. These methods use a variety of tools
and equipment to measure the physiological indicators of ATCs to ensure the objective
and real-time nature of the data collected. These data can then be analyzed to assess the
cognitive load, taking into account changes in the controllers’ rhythm.

Both the subjective and task assessment methods have poor accuracy and cannot
accurately reflect the cognitive load faced by controllers in real time. In contrast, physiolog-
ical measures provide a continuous and objective reflection of cognitive load in real time,
allowing detailed trends to be recorded. Therefore, in recent years, the use of physiolog-
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ical indicators to measure cognitive load has become a popular area of research [26–31].
However, there are two key issues that need to be addressed in this field.

The first issue involves determining which physiological parameters are best suited
to the assessment of cognitive load with minimal interference and maximum practicality.
This requires the careful consideration of various factors, such as the reliability, validity,
intrusiveness, and sensitivity of each physiological measure. Bernhardt et al. [18] collected
EEG and pupil diameter data from controllers in different regulatory scenarios and used
statistical methods to verify the sensitivity of the EEG load index and pupil diameter to
changes in cognitive load. Radüntz et al. [20] pioneered the dual-frequency head maps
(DFHM) approach to assess workload using an instantaneous self-assessment question-
naire; these authors also constructed the DFHM-workload index based on their EEG data
and validated the reliability and stability of the index. Subsequently, a study investigating
cardiovascular indices showed that all cardiovascular biomarkers responded to changes
in workload, though on different timelines [21]. Nevertheless, it should be noted that the
aforementioned techniques have certain restrictions. It should be acknowledged that the
collection of EEG and cardiovascular information necessitates the use of advanced mea-
surement equipment, coupled with the need for proximal contact between the equipment
and the operator. This inevitably has additional environmental implications that need to
be considered.

The ATC requires access to several screens, including panoramic surveillance, radar,
and meteorological screens, in order to gather video information during the ATM process.
In addition to this, they need to use remote voice communication devices to collect audio
information to form an overall awareness of the command scene [32]. This research opted
to utilize speech parameters as an approach to assess the cognitive load of ATCs, while
considering their current working environment. The selection of speech parameters was
based on their cost-effectiveness and non-intrusiveness. A major advantage of this approach
is that the communication channel required for air traffic control already exists, which
eliminates the need for supplementary equipment to capture voice signals. Moreover,
the process of recording speech parameters does not interfere with the controller’s work,
ensuring that no additional cognitive load is imposed.

The second issue pertains to the selection and optimization of features for effective
measurement of cognitive load. This involves identifying the most informative and relevant
features and optimizing them to enhance their accuracy and sensitivity. Over the past
decade, speech-based cognitive load assessment has gradually become a research topic
due to the limited interference of speech signals and their information-rich nature. In
this regard, researchers have explored the applicability of various speech parameters,
including average energy, zero-crossing rate (ZCR), pitch frequency, speech speed, Mel
spectrogram, Mel frequency cepstrum coefficient (MFCC), and Perceptual Linear Prediction
(PLP) [33–38]. Among them, the MFCC and Mel spectrogram are the most popular in the
field of speech recognition. A convolutional neural network (CNN) was used to derive the
MFCC features and classify the different levels of cognitive load, and the results showed
that the recognition accuracy was superior to the conventional support-vector machine
(SVM) and k-nearest neighbors (KNN) methods [37]. In addition, a CNN architecture
was also employed to estimate the workload of ATCs based on spectrograms, which were
then used to evaluate team performance in real time [4]. The main difference between the
feature extraction process of the MFCC and Mel-frequency spectrogram is the addition
of a discrete cosine transform (DCT) step in MFCC, which serves to decorrelate the filter
bank coefficients. As the DCT is a linear operation, it makes the MFCC less correlated,
which benefits linear models such as the Gaussian mixed model [39]. However, in neural
networks, the first layer usually also performs a linear mapping of the input features onto
a set of intermediate features; thus, the DCT is somewhat redundant and will increase
the computational complexity. Accordingly, the Mel spectrogram is more suitable as an
evaluation feature in deep learning models.
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Speech is a complex signal that varies with time and has long-term correlations across
frames [40], but these traditional speech feature extraction models do not pay enough
attention to temporal information. The potential space for sequential encoding has been
profoundly temporalized in the last three decades with the introduction of recursive neural
networks (RNN), long short-term memory (LSTM), bidirectional LSTM, and LSTM with
attention mechanisms [41–47]. Gallardo et al. [42] used the Mel spectrogram as an input
feature, using LSTM networks with different weighted pool strategies and external attention
models to distinguish tasks with different levels of cognitive load in the “Cognitive Load
with Speech and EGG” dataset [48]. The Transformer’s multi-head self-attention layer
enables the system to analyze multiple previous time steps when predicting the next time
step, giving the network an almost true global temporal representation of sequential data.
This is in contrast to the LSTM network, which can just understand and forecast frequency
changes depending on nearby time step data [49]. As a result, the experiment involved
the use of the Transformer to extract time-based characteristics from the audio data. This
method was chosen because of its ability to capture the temporal characteristics inherent in
speech [50]. This decision was made considering the importance of accurately representing
the time domain properties of speech in the results of the experiment.

The available literature on the cognitive load experienced by air traffic controllers
suggests an urgent need to assess, identify, and quantify the cognitive load borne by
air traffic controllers, especially in demanding scenarios characterized by complexity,
dynamics, and increased intensity. And, there has been a lack of quantitative research
on the level of cognitive load. However, correlation studies furnish a solid scientific
rationale for the selection of evaluation metrics. In addition, it is essential to consider their
practicality of the selected physiological metrics in the operational environments. Hence,
the selection of physiological parameters must be grounded in objective and practical
criteria. Also, extracting representative features from the complex physiological data is
crucial to improving the accuracy of the assessment. This study proposes the use of a deep
learning algorithm to analyze speech parameters for assessing cognitive load in controllers,
which holds considerable theoretical importance and practical utility. In summary, the
main contributions of this article are as follows:

Firstly, a dataset for the assessment of cognitive load in controllers, referred to as
CCLD, was collected and developed by utilizing speech data to produce Mel spectrograms
for the purpose of conducting this study. Secondly, we implemented stacked CNN and
Transformer encoders (SCNN-TransE). By utilizing this model, we were able to extract both
spatial and temporal features from the Mel spectrograms generated from the speech dataset.
The combination of these features facilitates a comprehensive and exhaustive analysis of
the gathered speech data. This improved analytical methodology enables us to acquire a
more profound comprehension of the influence of workload on controller performance.

The structure of this paper is as follows. The second part describes the process
framework of cognitive load assessment. The third part introduces the speech feature
Mel-spectrogram generation method. The fourth part introduces the SCNN-TransE for the
extraction of depth optimization features. The fifth part provides a brief description of the
experimental data and parameters, sets up verification experiments, conducts a detailed
analysis of the experimental results, and compares the performance of the algorithm with
other methods. And, eventually, the full text is summarized, and the future direction of
controller cognitive load assessment is discussed.

2. Architecture of Cognitive Load Assessment

As depicted in Figure 1, the entire evaluation procedure is primarily divided into four
main stages: pre-processing of the speech recordings, generation of the Mel spectrogram,
concatenation of the spatio-temporal features, and the classification stage.
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Figure 1. The structure of cognitive load assessment.

(1) Pre-processing of speech recordings: Endpoint recognition and segmentation are
utilized to pre-process audio recordings.

(2) Generation of Mel spectrogram: The dataset is obtained by further processing the
audio signal, creating Mel spectrograms, and applying additive white Gaussian noise
(AWGN) [51] enhanced data.

(3) The CNN-TransE model is trained using the spatial features extracted by the CNN
and the temporal features collected by the Transformers, which are concatenated into
deep temporal features.

(4) Classification: The stacked features are sent to the Softmax layer for identification.

3. Speech Data Processing

The first step of delving into speech-based cognitive load evaluation involves the
creation of a database that focuses on cognitive load in speech. It has been observed that
when ATCs operate under high workloads, their cognitive faculties, including attention,
memory, and decision-making abilities, are all impaired [4,5]. A meticulous analysis of
the gathered information reveals that ATC overload is often exhibited through symptoms
such as stuttering (indicating faulty command memory), hesitation (suggesting an unclear
comprehension of the air situation), and even the reversal of previously given instructions
(leading to incorrect guidance).

3.1. Endpoint Detection and Segmentation

Identifying the original speech data endpoints and separating the speech fragments
containing instructions are required before creating the Mel spectrogram. Endpoint de-
tection refers to the technology of identifying the start and end of a speech segment from
signals, which can differentiate between speech and non-speech segments.

This paper uses a double-threshold method based on short-time energy and short-time
zero-crossing rate to identify the endpoint of speech data. It has been observed to produce
positive results in a high signal-to-noise ratio environment. The energy of the speech signal
changes with time, and the short-time energy analysis of the signal reflects the amplitude
change in the signal. On the other hand, the short-term zero-crossing rate refers to the
number of times the signal passes through the zero value in each frame, and the short-term
zero-crossing rate can reflect its spectral properties to some extent [52]. This threshold-based
method is straightforward in principle and easy to implement [53]. The practical steps of
this method mainly include comparing the eigenvalues with a predefined threshold. First of
all, a high threshold (TH) and a low threshold (TL) for short-term energy and zero-crossing
rate, respectively, need to be determined. If the value of the features exceeds the TL, it
indicates that the speech signal is likely to enter the speech segment. However, it can be
confirmed that the voice signal only enters the voice segment when the value exceeds TH.
This means that the speech segment ends when the value is lower than TL.

The findings from the statistical analysis indicate that the majority of speech fragments
obtained have a duration of 3 s or less. As shown in the segmentation process in Figure 2,
a minority of speech segments longer than 3 s are subject to manual segmentation. Ulti-
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mately, the final speech segments are obtained by the zero-filling operation for the speech
segments less than 3 s.

Figure 2. The process of segmentation.

3.2. Generate Mel Spectrogram

The initial step in speech analysis, synthesis, and conversion involves the extraction of
speech feature parameters. Extracting the Mel spectrogram from the audio signal requires
pre-emphasis, framing, windowing, and Fast Fourier transform (FFT). Finally, the Mel
spectrogram is obtained by the Mel filter bank.

1. Pre-emphasis: Generally, the intensity of the high-frequency components in an audio
signal is lower than that of the low-frequency components [54]. The purpose of signal
pre-emphasis is to pass the signal through a high-pass filter, which can prevent a large
difference in the intensity between the high-frequency and low-frequency components
of the signal. The pre-emphasis filter plays a role in balancing the spectrum and
improving the signal-to-noise ratio (SNR). In the time domain, perform the following
with the signal x(t):

y(t) = x(t)− αx(t− 1) (1)

where α represents the pre-weighted factor, usually in the range of 0.9∼1. x(t) and
x(t− 1) indicate the speech signal at time t and t− 1, respectively.

2. Framing: After applying pre-emphasis, the signal needs to be segmented into short-
term frames for the subsequent Fourier transform. The application of the Fourier
transform necessitates input signal stability; however, the frequency of the speech
signal varies with time. Consequently, the computation of the Fourier transform
for the entire speech signal is meaningless. The speech signal is characterized as a
short-time stationary signal where the frequency remains relatively stable over short
time intervals. Therefore, it is essential to divide the speech signal into short-term
frames and perform a Fourier transform on each frame individually to obtain a reliable
estimation of the signal’s frequency distribution. The framing process is shown in
Figure 3. An overlapping region should be established to reduce unnecessary changes
in both the consecutive frames.
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Figure 3. The framing process.

3. Add windows: After dividing the signal into frames, to strengthen the continuity of
neighboring frames and to minimize spectrum leakage, each frame is multiplied by a
window function. The Hamming window is used in this paper, as follows:

W(n) = (1− a)− a× cos
(

2πn
N − 1

)
(2)

where n = 0, 1, · · · , N − 1, N is the window length. The constant parameter a offers
distinct hamming windows with variations observed across different a values typically
set at 0.46.

4. FFT: Because it is often hard to figure out the properties of a signal in the time domain,
the FFT of the signal can be used to convert it to the energy distribution in the
frequency domain. Various energy distributions reflect various traits of speech [55].
Perform an N-point FFT to compute the frequency spectrum over each frame after
windowing:

Si(k) =
N

∑
n=1

si(n)e−j2πkn/N (3)

where si(n) is the input speech signal; i symbolizes the number of time-domain frames;
k = 0, 1, · · · , N − 1, N represents the number of points of the Fourier transform, and
the value of N is usually 256 or 512. The power spectrum can be obtained by taking
the magnitude squared and divided by the corresponding number of FFT points.

5. Extract the Mel spectrogram by the Mel filter bank: Trigonometric filters can be
employed to extract bands from the power spectrum using a predefined set of Mel
scales. The combination of these frequency bands forms the Mel spectrogram. The
Mel scale offers better discrimination at lower frequencies and is designed to imitate
the non-linear sense of sound by the human ear [56]. Given the center frequency f (m)
of each filter, the corresponding frequency response of each filter can be explicitly
expressed as follows:

Hm(k) =


0 k ≤ f (m− 1)

k− f (m−1)
f (m)− f (m−1) f (m− 1) < k ≤ f (m)

f (m+1)−k
f (m+1)− f (m)

f (m) < k < f (m + 1)
0 k ≥ f (m + 1)

(4)

Figure 4 shows the Mel spectrograms with the same orders issued by ATCs under
two load levels.
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(a) Low cognitive load (b) High cognitive load

Figure 4. (a) The Mel spectrograms of ATC with low cognitive load level; (b) the Mel spectrograms
of ATC with high cognitive load level.

3.3. Additive White Gaussian Noise

Considering that our dataset is small and prone to overfitting, especially for the
highly parameterized depth neural network model, adding white noise to the audio signal
is expected to enhance the data. It has the ability to not only decrease the influence of
random noise in the training process but also to generate fictitious new training samples
and minimize the influence of inbuilt noise in the dataset.

The current study employs AWGN, a type of noise that is superimposed onto the
signal. This noise is constantly present, regardless of whether a signal is present or not,
and the power spectral density of white noise remains consistent across all frequencies.
Gaussian white noise is a form of white noise that conforms to the Gaussian distribution in
its probability distribution. The signal-to-noise ratio (SNR) is a critical metric for AWGN,
as it measures the extent to which the amplitude of noise in the audio signal increases.
Specifically, SNR is defined as the logarithm of the ratio of signal power to noise power:

SNR = 10log10
Psignal

Pnoise
= 10log10

∑ x2

∑ n2 (5)

Psignal =
1
N

N

∑
k=1

xk
2 (6)

where x represents the original signal, n represents the noise signal, and N represents the
original signal length.

If the signal-to-noise ratio of the sample is denoted by SNR after adding noise, then
the signal power is obtained, and the noise signal formula is derived as follows:

Pnoise =
Psignal

10
SNR

10
=

∑ x2

N • 10
SNR

10
(7)

Finally, the noise signal is amplified according to the Gaussian distribution, and the
final noise signal can be obtained as follows:

noise = random(N) •
√

Pnoise (8)

where random(N) is used to generate noise sequences as long as the signal length that obey
standard Gaussian distribution.

In this paper, two generated AWGN-enhanced waveforms are added to the original
dataset as new samples, resulting in a training set with three times the original number
of samples.
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4. SCNN-TransE Network

The SCNN-TransE network presented in this study takes the form of a stacked CNN
and Transformer encoder, which is apparent in Figure 5. Firstly, the Mel spectrogram is
used as the initial input. Secondly, the CNN extracts the spatial characteristics. At the same
time, the Transformer is used to extract the temporal features. Lastly, the Softmax layer is
then used to classify the detection results.

Figure 5. The structure of the SCNN-TransE network.

4.1. Stacked Convolutional Neural Network

The CNN module’s structure and dimension transformation are displayed in Figure 6.

Figure 6. The architecture schematic of the stacked CNN.

The 4-layer deep 2D convolution block is extremely comparable to the traditional
LeNet [57] architecture: Conv, Pool, Conv, Pool, FC. AlexNet [58] laid the foundation
for increasing the complexity of feature graphs by stacking CNN layer extensions. The
inspiration for the parallel CNN layer is Inception and GoogLeNet [59], hoping to diversify
the functions of network learning. VGGNet [60] greatly improved AlexNet by replacing the
larger kernel with the smaller kernel of 3x3 stride1, which also applies to this task. In the
four stacked CNNs with 3x3 cores, there are fewer parameters than in a large filter, and the
nonlinearity between each small layer also conveys a more complex feature representation.

Max-pooling can be thought of as a dimensionality reduction or down-sampling
technique for feature spaces. In this way, the max-pool layer lowers the dimension of the
feature map on which convolution operates. Ultimately, the use of max-pooling significantly
reduces the number of parameters required for a network to learn, resulting in a much
lower number of connections between successive layers than would be present without
max-pooling. Therefore, max-pooling is precisely what makes CNNs practical.

4.2. Transformer Encoder

As CNNs rely on convolution kernels to scan images, their ability to perceive informa-
tion is limited by the size of the kernel. This means that they can only process elements
that are within a certain range of the current element. In contrast, Transformers are able
to perform long-range modeling, allowing them to establish global connections between
elements and expand their visual field beyond the limitations of CNNs [61].
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The self-attention module, which is an indispensable role of the Transformer, serves to
find the similarity between different elements. Query–Key–Value (Q, K, V) are employed to
calculate the attention mechanism, with the Q vector representing the sample feature, the K
vector representing the information feature, and the V vector representing the information
content. The following formula is available to calculate the attention value:

Attention(Q, K, V) = so f tmax
(

QKT
√

Dk

)
V = so f tmax(A)V (9)

A =
(

QKT
√

Dk

)
is called the attention weight matrix. The attention weight matrix is

converted into a standard distribution by the Softmax function, and then distributed to the
specified Key elements, thus generating the final output vector. The gradient is smoothed
by calculating the dot product of Q and K and dividing it by

√
Dk to prevent the gradient

from disappearing.
The single-head self-attention mechanism restricts the model from focusing only on

several elements so that other important elements are ignored. However, the multi-head
self-attention mechanism allows the model to be expressed more powerfully due to its
potential to portray from several perspectives. The unit of the multi-head self-attention
mechanism is the core of the Transformer. The multi-head mechanism can be thought of as
performing multiple independent attention calculations, as shown in Equations (10)–(11).

Multi-Head(Q, K, V) = [head1; . . . ; headh]WO (10)

headi=Attention
(

QWQ
i , KWK

i , VWV
i

)
(11)

where WQ
i , WK

i , WV
i , and WO are linear projection matrices. h shows the number of

attention heads, but more heads do not mean a better model [62]. The proposed model
includes four attention heads for the Transformer encoder.

The Transformer is a typical encoder–decoder architecture, and only encoders are
used in this model. As depicted in Figure 7, before defining the Transformer encoder layer,
the input feature map is max-pooled with a rectangular kernel. The Transformer encoder
block is composed of four instead of the originally used six identical stacked encoder layers.
Each of the encoders consists of a self-attention module and a location-based forward input
network, and the outputs of the two modules are processed by residual connection and
layer normalization.

Figure 7. The architecture schematic of the Transformer block.

5. Experiments and Results
5.1. Experiments Data

In this work, it is expected that by controlling the duration of the continuous work,
the remaining mental resources of the subjects will be altered, thus affecting their cognitive
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load. The heart rate, systolic pressure, and diastolic pressure of the subjects were measured
before performing the tasks to ensure their physical health. The physiological data of the
controllers were collected during the control simulation tasks under the radar control of the
airport tower in a laboratory environment, while the subjective scale scores of each subject
before and after the task were recorded to create the CCLD dataset. And, the speech data
were divided into three cognitive load levels: low, medium, and high. In the experiment,
the voice data of eight subjects with air traffic control experience were collected during the
control task using the same headset as the actual operation environment for about 5.5 hours,
and the recorded voice was played through the equipment to check the recorded voice
data. Furthermore, according to the “Air Traffic Control Post Training Outline”, the number
of aircraft set by the simulator training institute was 8∼16 and the control instructors or
control trainees were responsible for operating the aircraft after receiving instructions.
Excluding the abnormal voice caused by external factors, such as the microphone being too
far away from the subject, mistakenly recording blank voice files and other problems, a
total of 1181 valid voice recordings lasting 3 seconds each were acquired after endpoint
detection and segmentation.

This dataset stands out in that it was specifically constructed for the purpose of
evaluating controller workload. Through the collection and construction of this dataset,
we aim to provide a more comprehensive and accurate understanding of the impact of
workload on controller performance. The dataset is not limited to speech data alone; it
also encompasses some eye-tracking data collected using a contactless eye-tracker device
and heart rate data collected using a fitness bracelet. The additional information provides
researchers with extensive insights into the subjects’ physiological responses during the
data collection process. With these supplementary measurements, the dataset is a more
comprehensive and robust source of information for future research.

5.2. Parameter Setting

In order to effectively reserve more details of the speech signal and take into account
the size of the input of the model, a Hamming window with a length of 512 is used to
window the audio signal. Further, the length of the FFT and the number of Mel frequency
bands are set to 1024 and 128, respectively, which enables the generation of the Mel
spectrogram with a time step of 517. In the training process of the SCNN-TransE model,
the training set ratio, epoch, batch size, learning rate, and dropout rate were set to 0.8, 200,
32, 0.01, and 0.3∼0.4, respectively. These parameter settings yielded positive results, as
evidenced by the findings of the experiment.

5.3. Evaluation Indexes

Accuracy, Macro-F1 score, and area under curve (AUC) are used as model evaluation
metrics in this paper. The accuracy is calculated as shown in Equations (12) and (13),
where Acci is the classification accuracy for category i (i = 1; . . . ; N). TPi is the amount of
samples that predict category i as category i; FPi is the number of samples that predict other
categories as category i; TNi is the amount of sampling that predicts other categories for
other classes; FNi is the amount of sampler that prediction category i for other categories.

Acci =
TPi + TNi

TPi + TNi + FPi + FNi
(12)

Accuracy =
1
N

N

∑
i=1

Acci (13)

The F1-score is a statistical index that measures the accuracy of a binary classification
model by taking into account both its precision and recall rate. F1-score can be seen as a
weighted average of precision and recall, with a maximum value of 1 and a minimum value
of 0. In a multi-label classification task, F1-score can be calculated for each class, and it is
obvious that the F1-score of all classes need to be combined. The macro-average method
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is used to obtain the Macro_F1 score in this paper, that is, after calculating the precision
and recall of each category, finding the F1-score of each category, and finally calculating the
Macro_F1:

F1i =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli
(14)

Macro_F1 =
1
N

N

∑
i=1

F1i (15)

where F1i is the F1-score for category i. Precisioni and Recalli are the precision and recall
for category i, which are calculated using Equation (16) and Equation (17), respectively.

Precisioni =
TPi

TPi + FPi
(16)

Recalli =
TPi

TPi + FNi
(17)

The AUC metric represents the area under the receiver operating characteristic (ROC)
curve. The True Positive Rate (TPR) and False Positive Rate (FPR) are shown on an ROC
curve to visualize their trade-off and make considerations for further tuning. Typically,
ROC curves are used for binary classification, but in this paper, ROC curves are plotted for
each category, the AUC value of each category is calculated, and finally, the average value
is taken. This allows for a more detailed evaluation of the classification performance across
multiple categories.

5.4. Result and Analysis
5.4.1. Algorithm Verification

In fact, it is not difficult to find that changes in an individual’s emotional and cognitive
state have an impact on their phonetic expression. Specifically, when an individual experi-
ences negative emotions, there is a marked change in their pronunciation rhythm, resulting
in a tendency to repeatedly correct and reiterate their statements, and frequently show
abnormal phenomena such as hesitation and pauses. In other words, it is reasonable to
assume that if the proposed method performs well in the task of speech emotion recognition
(SER), it should also be competent in the task of speech cognitive load assessment. Here, in
order to verify the effectiveness of SCNN-TransE, three general speech emotion datasets,
Ravdess [63], URDU [64], and TESS [65], are chosen for the verification experiment.

Table 1 shows the accuracy of SCNN-TransE in identifying different types of emotion
across three datasets. The effect of the SCNN-TransE on the Ravdess dataset is not as good
as that on the URDU dataset and the TESS dataset, because the Ravdess dataset contains
two kinds of emotion data of normal and strong, but the recognition rate of emotion with
less influence by emotional intensity such as disgust and calm, is still relatively high, at
89.47% and 84.21%, respectively. On the URDU dataset, the model more easily identifies
the negative emotions of sadness and anger. Anger is often accompanied by an intense
tone, while sadness is often accompanied by a low voice, which is obviously different from
happy and neutral emotions. Finally, SCNN-TransE displays excellent performance on the
TESS dataset. The recognition of the four emotions of happy, neutral, sad, fearful is at 100%,
and the recognition of anger, disgust, and surprise is at over 95%.

Table 1. Recognition accuracy of various emotions (%).

Emotion Anger Happy Neutral Sad Disgust Surprise Fearful Calm Average

Ravdess 73.68 84.21 80.00 68.42 89.47 78.95 63.16 84.21 77.62

URDU 90.00 80.00 80.00 100.00 - - - - 87.50

TESS 100.00 100.00 100.00 100.00 97.50 97.50 100.00 - 99.29
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Table 2 shows the comparison of the SCNN-TransE proposed with those of recent
years on the TESS dataset. It presents the efficient performance of the SCNN-TransE with
only one speech feature. As depicted in Table 2, the most efficient approach [66] involved
using the MFCC, Mel spectrogram, ZCR, and chromagram as input features, while the
model was also not simple. Comparatively, our proposed method achieves an accuracy
that is only 0.23% lower, despite using only the Mel spectrogram as input, significantly
reducing the amount of computation required. Thus, this analysis emphasizes the potential
of the SCNN-TransE technique in producing noteworthy outcomes with minimal features.
In addition, the duration of the TESS dataset is approximately 2 hours, with a total of
2800 pieces of data. According to the definition of the size of the dataset by [36], the TESS
dataset belongs to a small sample dataset. Consequently, SCNN-TransE does not require a
large amount of data training and is suitable for the case of small samples.

Table 2. Comparison of different methods on TESS dataset.

Literature Years Features Classifier Accuracy

Krishnan et al.
[67] 2021 entropy feature SVM 81.67%

Krishnan et al.
[67] 2021 entropy feature LDA 93.30%

Chatterjee et al.
[68] 2021 MFCC CNN 95.79%

Patel et al. [69] 2022 MFCC Autoencoder+CNN 96.00%

Ahmed et al.
[66] 2023

MFCC, Mel
spectrogram,

ZCR and
chromagram

CNN+LSTM+
Gated recurrent

unit
99.46%

Our Method - Mel spectrogram
CNN +

Transformer
encoder

99.29%

Figure 8 shows the ROC curve of the SCNN-TransE for the classification of each type
of emotion on three datasets, and the solid black line is the average ROC curve of emotion
classification. In Figure 8, the AUC values of the three average ROC curves are all up to
0.95, indicating that the capability of SCNN-TransE is better than that of random guesses,
and its prediction effect is very accurate, which also means that the model can accurately
identify positive and negative cases, and there is a good trade-off between the true case
rate and the false case rate.

5.4.2. Assessment of Cognitive Load

From the results of the preceding experiments, it can be verified that the SCNN-
TransE proposed achieves superior accuracy when handling the issue of multi-classification
of small samples. In this section, SCNN-TransE is used to assess the cognitive load of
controllers and is compared with KNN, RF, AdaBoost, SVM, and SCNN-LSTM-Attention,
which uses LSTM-Attention to replace the Transformer block in the proposed network.

The original dataset includes 1181 speech samples, and the data are divided into
the training set, validation set, and test set according to the proportion of 8:1:1, among
which the proportion of low-load samples, medium-load samples, and high-load samples
is about 17:4:3. Figure 9 displays the loss curve and accuracy curve during the training
model, with epoch as the abscissa and loss and accuracy as the ordinate. In the process of
training, the loss of the training set and verification set continues to decline, the correct rate
continues to rise as the epoch progresses, and finally tends to be stable, reflecting the better
generalization ability and classification ability of the model.
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(a) ROC curve of Ravdess

(b) ROC curve of URDU

(c) ROC curve of TESS

Figure 8. (a) ROC curve of SCNN-TransE for Ravdess dataset; (b) ROC curve of SCNN-TransE for
URDU dataset; and (c) ROC curve of SCNN-TransE for TESS dataset.
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(a) Loss curve (b) Accuracy curve

Figure 9. (a) Loss curve of the model; (b) accuracy curve of the model.

Table 3 provides an overview of the performance of various machine learning al-
gorithms on the cognitive load assessment task. It is apparent from the table that the
SCNN-TransE performs the best in both accuracy and Macro-F1, reaching 97.48% and
97.07% respectively. The high accuracy of SCNN-LSTM-Attention and SCNN-TransE high-
lights the significance of incorporating temporal information in Mel spectrograms. This
also confirms the viewpoint mentioned in the first section that the Transformer method
can better capture temporal relationships in speech data. The Macro-F1 value refers to the
average F1 value of each class as the final evaluation index, which takes into account the
contribution of each class and is suitable for unbalanced class situations. Therefore, this
result indicates that the classification performance of SCNN-TransE is excellent in different
classes, able to distinguish between positive and negative samples, and also keeps good
generalization ability, making it adaptable to new datasets or classification tasks.

Table 3. Comparison of different methods on TESS dataset.

Method KNN AdaBoost RF SVM
SCNN-
LSTM-

Attention

SCNN-
TransE

Accuracy
(%) 73.11 75.63 84.03 91.60 94.96 97.48

Macro-F1
(%) 55.82 67.62 75.00 88.32 93.810 97.07

Figure 10 shows the average ROC curves of KNN, RF, AdaBoost, SVM, SCNN-LSTM-
Attention, and the method proposed in this article. As is apparent from the figure, the
developed method has better efficiency. In general, the closer the ROC curve is to the
upper left corner, the better the model performs. On the whole, the ROC curve of the
SCNN-TransE is generally more slanted to the upper left corner, and the AUC value is the
highest, up to 0.99.
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Figure 10. Average ROC curves of different methods.

Figure 11 depicts the classification accuracy of different classifiers for the three load
levels in the form of a bar chart. It can be intuitively seen that the SCNN-TransE has
a commendable recognition rate under different cognitive load levels, indicating that
the method has an excellent generalization performance. However, traditional machine
learning methods such as KNN, RF, AdaBoost, and SVM exhibit limited performance at
medium and high load levels, indicating that these methods are difficult for complex data
models and feature extraction. The comparative analysis suggests that the CNN-LSTM
and the SCNN-TransE are more suitable for dealing with complex time series data and
can better capture the key features of the data, so they perform better at medium and high
load levels.

Figure 11. Detection accuracy under three cognitive load levels.

To sum up, the results obtained from the experiment provide evidence to substanti-
ate the effectiveness and superiority of the SCNN-TransE and highlight the potential of
applying machine learning techniques to the identification of cognitive load levels.
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6. Conclusions

A novel approach is introduced in this article for assessing cognitive load through
analyzing controller voice call records, utilizing a combination of CNN and Transformer
architecture. In the proposed method, the speech signals are processed into spectrograms,
and the model for processing images is successfully transferred to the task of assessing the
cognitive load of speech. By using CNN and Transformer to extract the spatial information
of the speech spectrograms and the temporal features, including context information, and
fusing the spatial and temporal features into spatio-temporal features, the accuracy of
cognitive load classification for speech analysis can be effectively improved. The experi-
mental results show that the proposed model achieves better results than other existing
machine learning models, and its accuracy reaches 97.48%. The field of civil aviation relies
heavily on land-to-air communication, which covers the entire process of flight take-off and
landing. As such, this method provides convenience in the practical application of ATC
cognitive load assessment and aids in the detection of controller overload and early warn-
ing to prevent the incidence of vulnerability events. Furthermore, the study can provide
data-driven decision support for intelligent scheduling system optimization, dynamically
adjust the working time of ATCs, and provide scientific decision support for controller
training work and selection systems, thereby improving control efficiency and ensuring
safe operation.

7. Future Works

As part of our ongoing research in the field of ATM, we are committed to improving
our study by progressively gathering more speech data for validation. On the one hand,
we will recruit more controllers with different levels of control experience to participate
in our experiment to enrich the data samples. On the other hand, we expect to set experi-
mental tasks with different levels of difficulty based on sector complexity to conduct more
comprehensive comparative experiments.

We understand that changes in cognitive load can affect numerous physiological
indicators, and to account for this, we will continue to collect eye-tracking and heart rate
data to ensure that our analysis is multimodal. With a view to the future, the next plan is to
determine the most suitable physiological parameters, such as eye-tracking parameters, that
are scientifically sound. Another issue to be considered is the miniaturization and comfort
of the necessary physiological measurements. This can be achieved by using miniature
sensors or non-contact sensors, which can collect information with minimal contact with the
subject’s skin. For this purpose, we selected the Tobii Pro Fusion, a screen-based eye tracker
that collects eye movement data with high precision and no contact. Similarly, we chose the
wrist electrocardiogram and blood pressure recorder provided by the Huawei Watch D for
collecting heart rate data. This device is ideal for the purpose due to its small size and the
ease of use it provides, making the process of data collection both efficient and comfortable
for the participant. Our feature extraction network will also be refined to accurately assess
and weigh different physiological parameters, leading to a better evaluation of cognitive
load in air traffic control.

This paper aims to quantify the cognitive load level through offline analysis. Finally,
we expect to design and implement a real-time system to collect physiological data, includ-
ing speech and eye movement, and use the trained model to assess the cognitive load of
controllers, which can actually be applied to the accurate online identification of controllers’
states and early warning of high loads. Additionally, the proposed system will incorporate
an airspace complexity assessment module, which is an ongoing research topic in our
laboratory. This integration will enable a human–machine cooperative safety monitoring
mechanism for air traffic control commands. The expected outcome of the proposed work
is an accurate and efficient approach to air traffic monitoring, which will have positive
implications for aviation safety.
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