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Abstract: The penetration of unmanned aerial vehicles (UAVs) is an important aspect of UAV games.
In recent years, UAV penetration has generally been solved using artificial intelligence methods
such as reinforcement learning. However, the high sample demand of the reinforcement learning
method poses a significant challenge specifically in the context of UAV games. To improve the
sample utilization in UAV penetration, this paper innovatively proposes an improved sampling
mechanism called task completion division (TCD) and combines this method with the soft actor
critic (SAC) algorithm to form the TCD-SAC algorithm. To compare the performance of the TCD-
SAC algorithm with other related baseline algorithms, this study builds a dynamic environment, a
UAV game, and conducts training and testing experiments in this environment. The results show
that among all the algorithms, the TCD-SAC algorithm has the highest sample utilization rate and
the best actual penetration results, and the algorithm has a good adaptability and robustness in

dynamic environments.

Keywords: UAV penetration; reinforcement learning; sample utilization; task completion division

1. Introduction

UAV penetration refers to the process in which UAVs change their original flight
trajectory to avoid detection and interception by an enemy, thereby successfully infiltrating
the enemy’s defense. The ability to penetrate enemy defenses is crucial for UAV operations.
However, the current research on autonomous UAV penetration is still limited, and there is
aneed to enhance the effectiveness of UAV penetration. This paper is dedicated to studying
the issue of autonomous UAV penetration.

Previous studies on UAV penetration have primarily focused on constraints such as
the position, speed, and overload of the re-entry point [1-3]. They have also examined
performance measures like the heading error of the UAV [4] and analyzed the miss distance
of interceptors to discuss UAV penetration strategies [5]. However, these traditional
methods are primarily intended for planned trajectories before a launch and cannot be
applied to real-time autonomous penetration after a launch.

In recent years, artificial intelligence methods represented by reinforcement learning
(RL) have gradually been applied to UAV penetration. RL offers the advantage of enabling
online autonomous penetration, which is not feasible with conventional approaches. The
RL method iteratively updates and improves a pre-designed reward function, using a large
number of samples to obtain the optimal policy for UAV penetration [6]. However, the
significant sample requirements of RL pose time and cost challenges in the context of UAV
penetration [7,8].

In order to improve the sample utilization in UAV penetration, this paper proposes a
reinforcement learning method based on an improved sampling mechanism. The structure
of this paper is as follows. Firstly, UAV penetration is modeled as a reinforcement learning
problem, and the corresponding action space, state space, and reward function are designed.
Then, according to the decomposability of the task in UAV penetration, a task completion
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division (TCD) method is proposed to improve the sample utilization. Next, the TCD
method is combined with the soft actor critic (SAC) algorithm, so as to obtain the TCD-SAC
algorithm. Finally, the actual performance of the TCD-SAC algorithm in UAV penetration
is analyzed through training and test experiments.

2. Related Works

The field studied in this paper belongs to UAV penetration, and algorithms in this
field can be roughly divided into two categories. (1) Based on the swarm intelligence
optimization algorithm. For example, Jing Luo [9] proposed a three-dimensional path
planning algorithm based on improved holonic particle swarm optimization (IHPSO) to
meet the requirements of safety, concealment, and timeliness of trajectory planning during
the process of UAV penetration; Jinyu Fu [10] proposed a trajectory homotopy optimization
framework for multiple UAVs, which solved the problem of dynamic penetration mission
planning in complex environments; Zhe Zhang [11] proposed a penetration strategy based
on an improved A-Star algorithm to solve the replanning problem of stealth UAVs in a
three-dimensional complex dynamic environment. (2) Based on the reinforcement learning
network. For example, Yuxie Luo [12] established an intelligent UAV model using the
reinforcement learning network and built a reward function using the cooperative param-
eters of multiple UAVs to guide UAVs to conduct collaborative penetration; Yue Li [13]
used reinforcement learning algorithms for training in four scenarios, frontal attack, escape,
pursuit, and energy storage, thereby improving the intelligent decision-making level of
air confrontation; Kaifang Wan [14] proposed a motion control method based on deep
reinforcement learning (DRL), which provides additional flexibility for UAV penetration
within the DRL framework; Liang Li [15] mainly focused on the winning region of three
players in the reconnaissance penetration game, proposed an explicit policy method for
analyzing and constructing barriers, and provided a complete solution by integrating the
games of kind and degree.

In general, the swarm intelligence optimization method needs a long time period
to update and iterate the final strategy, so it is not suitable for online real-time decision
making. On the contrary, the reinforcement learning network has a strong data processing
capability and the ability to make rapid decisions, which can meet the real-time online
decision making of UAVs. Therefore, the reinforcement learning network is more suitable
for the online autonomous penetration of UAVs.

Compared with the above references, the innovation of this paper lies in solving the
problem of the high sample demand when RL is applied to UAV penetration. In addition,
the related works often use the simplified three degrees of freedom particle model, while
this study uses the six degrees of freedom aircraft model, so the results of the algorithm are
closer to the application effect in the actual environment.

Specifically, this paper innovatively proposes an improved sampling mechanism
called task completion division (TCD) and combines the TCD method with the soft actor
critic (SAC) algorithm to form the TCD-SAC algorithm, designed to improve the sample
utilization in UAV penetration. In addition, the feasibility of the algorithm is verified
through a series of training and testing experiments.

3. Problem Description
3.1. UAV Penetration

UAV penetration refers to the penetration of drones into the opponent’s defense during
the game process. The application scenario of this paper is shown in Figure 1. First, the
UAV is launched and continues to fly according to the predetermined trajectory to hit the
target. However, the other party finds and tracks the UAV during the flight, launching
an interceptor to intercept the UAV. When the UAV finds the interceptor, it maneuvers to
penetrate the defense, thereby flying according to the new trajectory and finally hitting the
target. The interceptor is a high-speed antimissile missile with guidance capability.
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Figure 1. The application scenario for UAV penetration.

In the above process, the method in this paper will play a role in the process of UAV
penetration, and its task is to guide the UAV to penetrate the defense of the interceptor
and successfully hit the target. This method of UAV penetration will output maneuvering
commands, so as to control the UAV to complete the task of autonomous penetration and a
target hit.

3.2. Reinforcement Learning Description of UAV Penetration

The next state of the UAV penetration environment is related to the current state and
the current action, so the process of UAV penetration can be modeled as a Markov decision
process (MDP) [16]. Therefore, the problem of UAV penetration can be solved using the
reinforcement learning algorithm.

Before research on the reinforcement learning algorithm is carried out, a six degrees
of freedom model of UAV should be built, so as to conduct subsequent training and test
experiments. The UAV model built in this study is a hypersonic glider based on real
parameters [17]. To facilitate calling, this study converts the model into a dynamic link
library, which can also reduce the CPU usage and improve the computational efficiency to
a certain extent.

For the control system of UAV, the design methods of the control system mainly
include an attitude control method and overload control method [18]. The hypersonic
glider built in this study is a complex aircraft with a large lift/drag ratio, which means
that the attitude control method will have a better stability margin and reliability [19].
Therefore, this study adopts the attitude control method and selects the angles of attack
and bank as the attitude control command to control the UAV.

The relationship between UAV penetration and reinforcement learning is shown in
Figure 2. The reinforcement learning algorithm sends the attitude control command to
the UAV, and the UAV receives and executes the command to penetrate the interceptor,
which intercepts the UAV at the same time. The adversarial environment composed of the
UAV and interceptor outputs the current state and reward. The reinforcement learning
algorithm receives the current state and reward and updates the internal parameters of the
algorithm accordingly to better output the next action command.
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Figure 2. The relationship between UAV penetration and reinforcement learning.

During the MDP process of UAV penetration, the action vector 4;, state vector s;, and
reward function 7; of the penetration environment need to be determined. The specific
design method is as follows.

3.2.1. State and Action Specification

The input of the control system is the attitude control command, so the angles of attack
« and bank -y are selected as the action vector of the reinforcement learning network.
Therefore, the action vector a; can be expressed as Formula (1).

ar = (&, 7v) 1)

In addition, to ensure flight stability, the ranges of attack angle « and bank angle yy
are [—20°, 20°] and [—60°, 60°], respectively.

The variables related to the observation state are shown in Figure 3. The red icon
represents our UAV, the blue icon represents the opponent’s interceptor, the yellow icon
represents the target to be hit, and the red dashed line represents the trajectory of our
UAV. This paper defines the relative distance between the UAV and interceptor as R1, the
line-of-sight angle of the UAV relative to the interceptor as g1, and the relative distance
between the UAV and target as R;.

Velocity of UAV

r
f
R

UAV T

~—

Target

Figure 3. The variables related to the observation state.
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In order to complete the task of autonomous penetration and hitting the target, the
algorithm needs to obtain the relative distance and relative angle of the UAV relative to
the interceptor and target. That is to say, the state information to be obtained includes the
relative distance between the UAV and interceptor (R1), the line-of-sight angle of the UAV
relative to the interceptor (g1), and the relative distance between the UAV and target (R>),
so a three-dimensional state space is built, and its corresponding state vector s; is shown as
Formula (2).

st = (Rq, 91, R2) ()

In actual application, the state vector s; will be used as the input of the reinforcement
learning network, and the network will output the corresponding action vector a; based on
the state vector s;.

3.2.2. Reward Shaping

The reward function plays a vital role in reinforcement learning, and it will be used
as the optimal target function for subsequent training. The environment for UAV penetra-
tion has high-dimensional and continuous characteristics, so the exploration space of the
reinforcement learning algorithm is huge [20]. If there is only a main reward, it is difficult
to obtain positive samples [21,22] (successful samples of autonomous penetration and a
target hit). Therefore, it is considered to add a process reward in reward shaping to solve
the problem of convergence difficulty.

The primary objective of this algorithm is to guide the UAV to penetrate the defense
system and successfully strike the target. Consequently, the design of the reward function
focuses on two key aspects:

(@). Guiding the UAV through interception defenses

Guiding the UAV through interception defenses

When the UAV encounters interception measures, a greater relative distance R be-
tween the two aircrafts increases the likelihood of evading the interceptor and achieving
a higher success rate of penetration. Therefore, the reward function should assign a cor-
respondingly higher value. The corresponding reward function is shown in Formula (3).

re = agel R 3)

where a1 > 0, b; > 0, and r; is the increasing function of R;.
Additionally, a larger line-of-sight angle q; between the UAV and the interceptor
also enhances the success rate of penetration. Thus, the reward function should give a
more significant weight to such scenarios. The corresponding reward function is shown in
Formula (4).
ry = aparctan(by X q1) 4)

where a; > 0, by > 0, and r; is the increasing function of 4.
(b). Guiding the UAV to hit the target after penetration

Once the successful penetration through the defense system is confirmed, the algo-
rithm must direct the UAV towards the designated target to accomplish the mission of
striking the target. During this phase, a shorter relative distance R, between the UAV and
the target corresponds to a higher success rate of hitting the target. Therefore, the reward
function should assign a greater value to scenarios where the UAV is in closer proximity to
the target. The corresponding reward function is shown in Formula (5).

re = aze’s ke (5)

where a3 > 0, b3 < 0, and r¢ is the decreasing function of Rj.
According to the above analysis, the pseudo code of the reward function is outlined in
Function 1.
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Function 1: Reward Function of UAV Penetration.

7’127’2:1’3:1’4:1’5:1’6:1’7:0
rp=7r1+ratr3trs 5+ 16+ 17
If the UAV is intercepted:
r1 = a;eP K1 where a; > 0, by > 0, rq is the increasing function of Ry

rp = aparctan(b, x qp), where a; > 0, by > 0, rp is the increasing function of q;
If the UAV penetrates successfully:

r3 = c1, where ¢; > 0, r3 is the instant reward for successful penetration
If the UAV fails to penetrate:

r4 = cp, where ¢y < 0, r4 is the immediate penalty for failed penetration
If the UAV successfully penetrates and before landing:

15 = a3e?*R2 where a3 > 0, b3 < 0, r5 is the decreasing function of R,
If the UAV lands and hits the target:

6 = c3, where c3 > 0, r4 is the instant reward for hitting the targetlf the UAV lands and
misses the target:

r7 = c4, where ¢sy < 0, r7 is the immediate penalty for missing the target
ry=711+r2+r3try+r5+re+r7

To facilitate the convergence of the algorithm, this paper sets the value of the reward
within the range of [—1, 1]. The specific values for the theoretical parameters mentioned above
are assigned based on the actual performance parameters of the UAV model constructed.

This paper divides the UAV’s flight phase into several distinct phases. The phase
in which the UAV is not intercepted by the interceptor is referred to as Phase 1. Phase
2 represents the phase in which the UAV is being intercepted. Phase 3 corresponds to
the phase in which the UAV successfully penetrates the interceptor. Phase 4 denotes the
phase in which the UAV fails to penetrate. Phase 5 represents the phase after successful
penetration and before landing. Phase 6 represents the phase of landing and successfully
hitting the target, while Phase 7 refers to the phase of landing but missing the target.

Based on these phases, the specific form of the reward function is defined as shown in
Formula (6).

0 , phase 1
0.23 x 00023R1 4 0.17 x arctan(q,) , phase 2
-1 , phase 3
= 1 , phase 4 (6)
0.35 x ¢0-0012R; , phase 5
1 , phase 6
-1 , phase 7

Assuming that the warhead of the interceptor is an antipersonnel warhead, then the
judgment condition for failed penetration is as follows: the relative distance between
the UAV and interceptor R; is less than 300 m; otherwise, it is considered a successful
penetration. The judgment condition for hitting the target is as follows: the relative distance
between the UAV and target R, during the landing time is less than 10 m; otherwise, it is
considered to have missed the target.

4. TCD-SAC Algorithm
4.1. SAC Algorithm

Both the action space and state space of the UAV are continuous, so the problem of UAV
penetration should be solved with a continuous control algorithm. As shown in Figure 4,
the continuous control algorithms in reinforcement learning are mainly divided into three
categories: the proximal policy optimization (PPO) algorithm [23], the deterministic policy
gradient (DDPG) algorithm [24], and the soft actor critic (SAC) algorithm [25]. The PPO
algorithm is an on-policy algorithm, which faces the serious problem of sample efficiency,
requiring a large number of samples to learn; the DDPG algorithm is an off-policy algorithm
with a deterministic policy, which means that only the best action is considered in each
state, so its exploration ability is poor; the SAC algorithm is an off-policy algorithm with a
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stochastic policy, which has a higher sampling efficiency than the PPO algorithm and has a
stronger exploration ability than the DDPG algorithm.

on-policy | _
| algorithm » PPO algorithm
continuous il
control algorithm —
deterntmlsﬁc | DDPG algorithm
policy _
L, ll'ff-p-()qu;:),r
algorithm

4

stochastic policy SAC algorithm

Figure 4. Continuous control algorithm in reinforcement learning.

There are many action combinations that can realize UAV penetration. Therefore,
the algorithm for UAV penetration should use a stochastic policy to explore as many
combinations as possible. At the same time, the cost of training for UAV penetration
is high, so it is better to realize convergence with less sampling. Based on the above
considerations, the SAC algorithm was initially selected for UAV penetration, with lower
sample requirements and a stronger exploration ability.

The framework of the SAC algorithm is shown in Figure 5. The SAC algorithm consists
of a Policy network, a Value network, and two Q networks. (1) The Policy network generates
the optimal action by observing the current state of the environment. Therefore, the input of
the Policy network is the state, and the output is the probability distribution of action, from
which an action can be sampled. (2) The Value network is a value estimation network of state,
which takes the current state as the input and outputs an evaluation value for the current
state. (3) The Q network is a value estimation network of a state—action pair, which takes the
state—action pair as the input and outputs an evaluation value for the current pair. The specific
theoretical derivation of the SAC algorithm is provided in Appendix A.

¥

Policy Network

v

evaluation value for
the current state

Sample
h 4

state-action pair

v

Q Networks

v

evaluation value for
the State-action pair

Figure 5. Framework of the SAC algorithm.
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4.2. Task Completion Division

Facing a huge exploration space of UAV penetration, the number of samples required
for network convergence is high. Although the sample demand of the SAC algorithm is
relatively small, the actual number of samples required is still huge [25]. To improve the
sample utilization of UAV penetration, this paper proposes an improved sampling method,
which will improve the sampling efficiency by dividing task completion. This paper defines
the improved method as task completion division (TCD).

Specifically, the task of the UAV in this paper is autonomous penetration and a target
hit, so its task can be preliminarily divided into two subtasks: a (1) penetration subtask and
(2) hit subtask. For example, there is a sample that successfully penetrates but fails to hit
the target; that is to say, the penetration subtask has been completed, but the hit subtask
has not been completed. In the above example, the sample only completed part of the
total task, so it will be regarded as worthless [26-28]. Although this sample did not hit the
target, its successful action combination of penetration is of learning value. Therefore, if
the successful part of this sample can be used for learning, it will be useful to reduce the
sample demand.

During the training process of UAV penetration, the UAV will continuously interact
with the environment to collect samples. In these samples, each episode corresponds to a
trajectory S, which is based on the total task m. The trajectory S consists of all states from
the start to the end of the corresponding episode, which is shown as Formula (7).

S:(Sl,...,ST) (7)

where s; is the state at the start time, st is the state at the end time, and T is the total time
spent in the episode.
Define the subtask set completed by S as M, and all subtasks included by M are shown
in Formula (8).
M:(ml,...,mT) (8)

where m is the subtask completed in state s; and m is the subtask completed in state s. If
the total task 7 can be completed after all subtasks in M are combined, then the corresponding
trajectory S is considered a positive sample; otherwise, S is a negative sample.

For a negative sample, the corresponding trajectory S does not provide any useful
information. However, although S did not complete the total task m, it completed some
subtasks. If these subtasks are used to replace the original total task m, and the value of
reward in the trajectory S is recalculated, some useful information can be obtained. In the
method of TCD, this trajectory S can select another task m; from M, and play back again,
so as to learn from the successful part of the negative sample.

Based on the original task m, the original transition T,,; is expressed as Formula (9).

Tori = (stl|m, ar, rt,5¢41||m) )

where s;||m represents a concatenation operation of the current state s; and original task m,

St+1||m represents a concatenation operation of the next state sy, 1 and original task m, a; is

the action at the current time, and r; is the reward of the original task m at the current time.
Based on the new task m;, the new transition Ty is expressed as Formula (10).

Toew = (s¢||me, az, ri, sp41||mi) (10)

where m;eM, st| |mt represents a concatenation operation of the current state s; and new
task my, syy1||m represents a concatenation operation of the next state s;1 and new task
my, and r} is the reward of the new task m1; at the current time.
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As for the division of my, it is judged according to the states of S. When UAV pene-
tration is successful, it is considered to have completed penetration subtask 71, so the
corresponding subtask 1 is shown as Formula (11).

M = Mpen (11)

where the condition for completing penetration subtask ., is that the relative distance
between the UAV and interceptor is always greater than 300 m and the UAV has passed
the interceptor.

When the UAV hits the target successfully, it is considered to have completed hit
subtask 1y, so the corresponding subtask m; is shown as Formula (12).

My = My (12)

where the condition for completing hit subtask my,; is that the relative distance between
the UAV and target is less than 10 m.

When both ., and my,;; are successfully completed, it indicates that the total task m
has been completed, so the corresponding subtask m1; is shown as Formula (13).

In this case, many successful subtasks will be used as positive samples, and the number
of positive samples will increase many times, thus increasing the sample utilization. A
more formal description of TCD is shown in Algorithm 1.

Algorithm 1: task completion division (TCD) algorithm

Given:
a reinforcement learning algorithm A > e.g., SAC, DDPG, PPO
areward functionr7: S x A x M — R.
Initialize A
Initialize replay buffer D
for episode =1, K do
Set a task m and sample an initial state 5.
Fort=0,T—1do
Sample an action a; using the behavioral policy from A:
at < 1ry(s¢||m)
Execute the action a; and observe the next state sy, 1
end for
fort =0,T—1do
re = r(sg, ap,m)
Store the transition (s¢||m, as, r¢,5¢41||m) in D > standard experience replay
for mieM do
r’t == r(St, at, my)
Store the transition (st‘ ’mi,ﬂt,r;,5t+1 ’ ‘ml) inD > TCD
end for
end for
fort=1,L do
Sample a minibatch B from the replay buffer D
Perform one step of optimization using A and minibatch B
end for
end for
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4.3. TCD-SAC Algorithm

This paper combines the above TCD algorithm with the SAC algorithm and finally
obtains the TCD-SAC algorithm, whose framework is shown in Figure 6. The TCD-SAC
algorithm samples from the replay buffer and outputs a corresponding action based on
the current state. This action controls the UAV to engage in game confrontation with the
interceptor, and the transition generated during the confrontation process is placed in the
replay buffer. The above process is continuously cycled until the algorithm converges.

[ _ 1

Reward

4‘ Replay buffe;
Input Embedder eplay buffer
" i Sample
I Middleware I Network
' _ __Actiun
V e Dense .
Value . ; _
N‘mk U OUEPUS: Rm_actions J

Dense
Num outputs:num_actions

Guassian Distribution
Num outputs:num_actions

m | ' 10 — | Environment

UAV

game confrontation
Middleware

Interceptor

Transition

-

:

Middleware r
Dense Dense
Num outputs:1 Num outputs: 1

H=

Figure 6. Framework of TCD-SAC algorithm.

The pseudo code of the TCD-SAC algorithm is shown in Algorithm 2. First, input
initial parameter vectors 61, 85, and ¢. Then, initialize target network weights 1 and 6, and
initialize an empty replay pool D. Next, in each time step f, sample action a; from the policy
g, sample the transition (s¢||m, ay, rt,5¢41|m) from the environment, and store it in the
replay pool D. For the subtask m;eM, store the additional transition (s¢||my, at, 1}, S¢41]|my)
in the replay pool D, so as to increase the number of valuable transitions [29-31]. Then, in
each gradient step, update the Q-function parameters 6, and 6,, update policy weights ¢,
adjust temperature «, and update target network weights 1 and 65, so as to output the
optimized parameters 61, 8,, and ¢.

Because of the addition of the TCD algorithm, the TCD-SAC algorithm can learn
from failure. For example, when the UAV fails to penetrate the defense in a certain
episode because it is too close to the interceptor, a UAV with conventional algorithms
cannot learn any useful information from this failed sample [32,33]. Instead, based on the
experience of the previous failure, a UAV with the TCD-SAC algorithm will distance itself
from the interceptor in the next episode, thereby increasing the probability of successful
penetration [34-36].
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Algorithm 2: task completion division—soft actor critic (TCD-SAC) algorithm

Input: 01, 05, ¢
@1 — 91 , 62 — 92
Do
for each iteration do
for each environment step do
ar ~ 7ty (at|st)
St41 ~ P(St+1lst, ar)
re = r(st, ap,m)
D = D U{((st]|m, ar, rt,5041]m)) }
for mieM do
"= r(st, ar, my)
D« DU{((stl[ms,ae, 11,5041 1Ime)) }
end for
end for
for each gradient step do
9,‘ — 9,‘ — )‘QA@GJQ(Gi) fOTi S {1,2}
¢ —AnVeln(P)
a—a— A@a](“)
0; + 10; + (1 —1)0; foriec {1,2}
end for
end for
Output: 01, 05, ¢

Theoretically, the TCD-SAC algorithm is able to improve the efficiency of sampling
and speed up the convergence of the network. However, the above is only a theoretical
derivation. In order to verify the real performance of the algorithm, experiments should be
carried out.

(1) To verify the performance of the TCD-SAC algorithm, it should be compared with
the original SAC algorithm.

(2) To verify the superiority of the SAC algorithm in UAV penetration, it should be
compared with the DDPG algorithm and PPO algorithm (the other two excellent algorithms
mentioned above). Of course, the TCD-DDPG algorithm and TCD-PPO algorithm should be
compared with the TCD-SAC algorithm, where the TCD-DDPG algorithm is a combination
of the DDPG and TCD algorithms, and the TCD-PPO algorithm is a combination of the
PPO and TCD algorithms.

Therefore, the TCD-SAC algorithm, TCD-DDPG algorithm, TCD-PPO algorithm, SAC
algorithm, DDPG algorithm, and PPO algorithm need to be compared through subsequent
experiments, and the experimental results will be presented and discussed in detail in
Section 5.

5. Environmental Results and Discussion
5.1. Training and Testing Environment

For the convenience of observation, this study builds a complete visual simulation
environment based on the 6-DOF UAV model. The parameters of the UAV model are
based on real data, the visual part is written in the QT language, and the algorithm is
written in the Python language; the algorithm calls the 6-DOF UAV model through the
User Datagram Protocol.

As for the 6-DOF UAV model built in this study, its range is approximately 4000 to
6000 km, its maximum boost height is approximately 120~180 km in the boost section, its
glide height is approximately 30~40 km in the gliding section, and its gliding speed is
approximately 4~6 Ma. The specific physical parameters of the UAV are shown in Table 1.
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Table 1. Physical parameters of the UAV.

Performance Value

range 4000~6000 km
maximum boost height 120~180 km
glide height 30~40 km
gliding speed 4~6 Ma

As for the reinforcement learning algorithm for UAV penetration, it is in the software
environment of Python 3.6 and the Pytorch framework. The actual training and test process
is shown in Figure 7. The specific parameters of each algorithm are shown in Table 2.

U UR——
| Training :
: Action(Qr) :
| UAYV < Environment | |
: ' State(St),Reward(I't) :
- ] J
Obtain a convergent policy
through massive training
dadeded ohaindadededobiniadegadei  siadadedabaioisdndododaiadadatade |
: Test |
| |
l [
: State (St) » Policy (7t*) » Action (at) |
' |
|

Figure 7. The actual training and test process of the algorithm.

Table 2. Parameters of each algorithm.

Algorithm Elel::lvlg:i‘( Dimension Eﬁ:ﬁ: Layer Replay Buffer = Batch Size Update Times FD;::;unt
SAC 128 4 217 128 1024 0.998
DDPG 256 4 217 256 512 0.997
PPO 128 8 217 128 1024 0.994
TCD-SAC 128 4 217 128 1024 0.995
TCD-DDPG 256 4 217 256 512 0.991
TCD-PPO 128 8 217 128 1024 0.997

The process of training: When the UAV detects the interceptor in the environment, the
perception unit of the UAV will obtain the state vector s; = (Ry, 41, R2) and transmit it to
the algorithm. Inside the algorithm, the corresponding action vector a; = (&, yy) will be
given according to s, and the reward function r; will be iteratively updated, whose value
is obtained from Formula (3). With the progress of massive training, the reward function
gradually converges to the optimal value, thus obtaining a policy 77*, which can stably
output a real-time action command (&, yy).

The process of testing: The weight parameters of the algorithm will be fixed after
convergence. At this time, when the state vector s; is observed again by the perception
unit, the stable policy 77* will output a continuous action command (e, vy ) to control the
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flight. Under the guidance of policy 7%, the UAV can achieve autonomous evasion and
penetration and finally hit the target.

5.2. Performance in Training Experiment

The performances of all algorithms (SAC, DDPG, PPO, TCD-SAC, TCD-DDPG, and
TCD-PPO) are trained in a dynamic environment. The operating system is Ubuntu 18.04,
and the GPU is a GeForce RTX 3090. The maximum number of episodes is 10,000, and
the maximum time step for each episode is 2000. Under these conditions, it takes 6~8 h to
perform a training session with 10,000 episodes. The launch point and target point of the
UAV are randomly initialized in each episode, and the performance of each algorithm is as
shown in Figure 8. The abscissa in Figure 8 is the episodes, which means the number of
training rounds, while the ordinate is the average reward, which means the average value
of all groups of rewards. As for each algorithm, this study sets the value of the seed to vary
from 0 to 9, corresponding to 10 rounds of training, so the average reward of an ordinate is
the average value of 10 groups of rewards.
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TCD-PPO 3 ]
TCD-DDPG 1ot IR ISR
50 SAC R b S S
DDPG ¥ e TV g S
FPO e
S
"] o
/.‘A‘l"/ 7 :
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g 3 A e e A P N
& /w s A R e S S
5 _ - o~
£ y it
o 20 d ~/
- /
z / A
/] r
| J
19 w'l ;‘/
If J
I/ . — = -
0 4/ —
0.2 0.4 0.6 0.8 1.0

Episodes $i¢ 104‘

Figure 8. The average reward for each algorithm.

From Figure 8, the performance of each algorithm is analyzed as follows.

(1) From the convergence speed and convergence result: When the SAC algorithm
is applied alone, the network cannot converge after 10,000 episodes, and the value of the
average reward is low, indicating that the original SAC algorithm has poor performance
in UAV penetration. However, when the TCD-SAC algorithm is applied, the algorithm
converges at about 8000 episodes, and its average reward value corresponding to conver-
gence is the highest of all algorithms, indicating that the TCD-SAC algorithm has the fastest
convergence speed and the best convergence result.

(2) From the perspective of sample utilization: When the SAC, PPO, or DDPG algo-
rithm is used alone, the network does not converge after 10,000 episodes, which is because
their sample utilization is too low. However, when the above three algorithms are combined
with the TCD method to obtain the TCD-SAC, TCD-PPO, and TCD-DDPG algorithms,
they can all converge, which shows that the TCD method effectively improves the sample
utilization. Moreover, the TCD-SAC algorithm with the fastest convergence speed shows
that it has the highest sample utilization.

(3) From the superiority of the SAC algorithm in UAV penetration: When the TCD-
DDPG algorithm is used, its network converges at about 4000 episodes, and its convergence
result is lower than that of the other two algorithms (TCD-SAC, TCD-PPO). This is because
the algorithm with a deterministic policy selects only one deterministic action output in
each state, so its degree of exploration is low and its convergence result is not ideal. On
the contrary, the TCD-SAC algorithm with a stochastic policy is indeed superior in UAV
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penetration. When the TCD-PPO algorithm is used, its convergence speed is similar to that
of the TCD-SAC algorithm, but its convergence result is not as good as that of the TCD-SAC
algorithm. This is because on-policy algorithms such as the TCD-PPO algorithm cannot be
used while exploring, so it is easy to fall into local optimization. On the contrary, off-policy
algorithms such as the TCD-SAC algorithm are superior in UAV penetration. Among the
above three algorithms combined with the TCD method, the TCD-SAC algorithm performs
the best, which proves the superiority of the SAC algorithm in UAV penetration.

In addition, the success rate of penetrations for each algorithm is shown in Figure 9,
and the success rate of hits for each algorithm is shown in Figure 10. Their change with
episodes is consistent with the average reward in Figure 8, which shows the rationality and
correctness of reward shaping.

100
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Figure 9. The success rate of penetrations for each algorithm.
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Figure 10. The success rate of hits for each algorithm.

The above is the result of training experiments. To test the actual performance of
each algorithm further, a test experiment should later be conducted, which is shown in
Section 5.3.

5.3. Performance in Test Experiment

The maximum number of test experiments is 3000, and the launch point and target
point are randomly initialized in each test to verify the general performance of all algo-
rithms in a complex dynamic environment. Since it is impossible to show all test results
here, the 600th, 1200th, 1800th, 2400th, and 3000th test results are selected, respectively,
corresponding to Figure a—e in Figure 11. In Figure 11, the red line is the trajectory of the
UAV, and the blue line is the trajectory of the interceptor. The performance of the UAV
with different algorithms in the test environment is shown in Figure 11, which is from a
two-dimensional perspective.
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Figure 11. The performance of different algorithms in the test environment. Among them, subfigure
(a) represents the results of the 600th test, subfigure (b) represents the results of the 1200th test,
subfigure (c) represents the results of the 1800th test, subfigure (d) represents the results of the 2400th
test, and subfigure (e) represents the results of the 3000th test.

Figure 11a shows the result of the 600th test experiment. When the PPO algorithm,
DDPG algorithm, or SAC algorithm is used, the test result is “penetration failed”; when
the TCD-DDPG algorithm is used, the test result is “penetration succeeded but hit failed”;
when the TCD-PPO algorithm or TCD-SAC algorithm is used, the test result is “successful
penetration and hit”.

Figure 11b shows the result of the 1200th test experiment. When the PPO algorithm,
DDPG algorithm, SAC algorithm, or TCD-PPO algorithm is used, the test result is “pen-
etration failed”; when the TCD-DDPG algorithm is used, the test result is “penetration
succeeded but hit failed”; when the TCD-SAC algorithm is used, the test result is “successful
penetration and hit”.

Figure 11c shows the result of the 1800th test experiment. When the PPO algorithm,
DDPG algorithm, or TCD-PPO algorithm is used, the test result is “penetration failed”;
when the SAC algorithm is used, the test result is “penetration succeeded but hit failed”;
when the TCD-DDPG algorithm or TCD-SAC algorithm is used, the test result is “successful
penetration and hit”.

Figure 11d shows the result of the 2400th test experiment. When the PPO algorithm,
DDPG algorithm, or TCD-DDPG algorithm is used, the test result is “penetration failed”;
when the SAC algorithm, TCD-PPO algorithm, or TCD-SAC algorithm is used, the test
result is “successful penetration and hit”.

Figure 11e shows the result of the 3000th test experiment. When the PPO algorithm,
SAC algorithm, TCD-PPO algorithm, or TCD-DDPG algorithm is used, the test result is
“UAV penetration failed”; when the DDPG algorithm or TCD-SAC algorithm is used, the
test result is “penetration succeeded but hit failed”; when the TCD-DDPG algorithm or
TCD-SAC algorithm is used, the test result is “successful penetration and hit”.

In the five test results above, the TCD-SAC algorithm has four perfect results of
“successful penetration and hit” and only one bad result of “penetration succeeded but hit
failed”, which is because the landing point of the UAV slightly deviated from the target
point. On the contrary, other algorithms mostly have bad results of “penetration failed” or
“penetration succeeded but hit failed”. Therefore, the TCD-SAC algorithm proposed in this
paper has the best performance in the above test results.

The five results in Figure 11 are only a sample of 3000 test results. To objectively
evaluate the performance of each algorithm, the 3000 test results should be comprehensively
evaluated. Therefore, this paper draws the minimum distance between the UAV and
interceptor in each of the 3000 tests, which is the index to evaluate whether the UAV has
successfully penetrated. As mentioned earlier, once the minimum distance between the
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Mini-distance between UAV and interceptor

400

350

300

UAV and interceptor is less than 300 m, it is considered a failed penetration; otherwise, it is
considered a successful penetration.

Figure 12 illustrates that when the PPO, SAC, or DDPG algorithm is tested, the
minimum distance between the UAV and interceptor (hereinafter referred to as mini-
distance) is less than 100 m in each test, which means failed penetration. When the TCD-
DDPG algorithm is tested, the mini-distance increases to about 250 m, but its mini-distance
is still less than 300 m, so most results are still failed penetration; when the TCD-PPO
algorithm is tested, its mini-distance increases to about 280 m, which is still less than 300
m and most results are failed penetration; when the TCD-SAC algorithm is tested, the
mini-distance increases to about 330 m. In this case, the mini-distance of most tests is
greater than 300 m, so most results are successful penetration. Therefore, the TCD-SAC
algorithm proposed in this paper has the best performance of penetration in 3000 tests.

PPO ——SAC DDPG ——TCD-DDPG ——TCD-PPO ——TCD-SAC

i Awﬁw MM‘.* A NNG.

A AN WAAAMNMAAN SNAAANMU ANV IV A YW

)

1000 ; 2000 3000
Number of tests

Figure 12. The minimum distance between the UAV and interceptor in 3000 tests.

For the convenience of description, this paper defines the number of tests as NT,
the number of successful penetrations as NP, the number of successful hits as NH, the
success rate of penetrations as RP, and the success rate of hits as RH. RP is equal to NP
divided by NT, and RH is equal to NH divided by NT. Based on the results in Figure 12,
the success rate of penetrations (RP) in 3000 tests is shown in Figure 13, and the success
rate of hits (RH) in 3000 tests is shown in Figure 14. From Figures 13 and 14, the success
rates of penetrations (RP) of DDPG, PPO, and SAC algorithms are 0.63%, 3.27%, and 3.50%,
respectively, which are all less than 4%, and their success rates of hits (RH) are 0.47%,
2.80%, and 2.87%, respectively, which are all less than 3%. The above results show that
these algorithms have a poor performance in UAV penetration. In contrast, the RP and
RH of the TCD-DDPG algorithm are 17.83% and 11.13%, respectively, and those of the
TCD-PPO algorithm are 42.90% and 31.97%, respectively. Compared to the first three
algorithms, both the TCD-DDPG and TCD-PPO algorithms exhibit significant performance
improvements. Furthermore, the RP and RH of the TCD-SAC algorithm are 68.20% and
67.90%, respectively, whose performance is far ahead of the other algorithms. That is to say,
when the TCD-SAC algorithm is tested, all subtasks are completed perfectly in most of the
3000 tests, indicating the reliability and universality of the algorithm.
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The above test results show that the TCD-SAC algorithm obtained from training
has a good feasibility and robustness in a complex dynamic environment. When the
UAV encounters the interceptor, the penetration policy output by the TCD-SAC algorithm
can play a significant role in time, quickly guiding the UAV to maneuver and avoid the
interceptor to complete the task of autonomous penetration and hitting the target.

6. Conclusions and Future Work

Committed to improving the sample utilization of UAV penetration, this paper pro-
poses the improved sampling method TCD and combines this TCD method with the SAC
algorithm to obtain the TCD-SAC algorithm. To verify the real performance of the TCD-
SAC algorithm, this study designs corresponding action space, state space, and a reward
function, and conducts training experiments and test experiments for UAV penetration.
All experiments are carried out in a complex dynamic environment. Compared with the
original SAC algorithm and two other excellent algorithms (DDPG and PPO), the training
experiments show that the improved TCD-SAC algorithm has the fastest convergence
speed and the best convergence result in all algorithms. The test experiments show that
the improved TCD-SAC algorithm has the highest success rate of penetrations and hits,
illustrating the feasibility and robustness of the TCD-SAC algorithm. This paper presents a
relatively complete study from model building to algorithm improvement to experimental
validation, which provides potentially useful ideas for the future autonomous penetration
of UAVs.

Of course, because the cost of training and testing a real physical UAV is too high,
this paper only conducted experiments in a simulation environment. If the algorithm is to
be applied to a real physical UAV, it will be necessary to eliminate the difference between
the real model and simulation model as much as possible. Therefore, our next task is to
try to bridge the reality gap between a real model and simulation model. For example,
when an algorithm performs well in a simulation environment, methods such as transfer
learning can be used to transfer the trained algorithm to a real environment quickly and
cost effectively.
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Appendix A

The SAC algorithm defines the policy in the Actor Network as 774 (a;|s;) and defines
the output of the Q Critic Network as Qg (s¢, a¢). The update method of the Q Critic Network
is shown in Formula (A1).

(A)

where ]Q(G) is the cost function of the Q Critic Network, s; is the current state, a; is the
current action, D is the replay pool, s;;; is the next state, (s, a¢) is the corresponding
reward, 7 is the discount factor, 8 and ¢ are parameter vectors of the Q Critic Network, and
0 is obtained from 6 through an exponentially moving average.
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The update method of the Actor Network is to minimize the Kullback-Leibler Diver-
gence, which is shown in Formula (A2).

J(9) = Dce(rg((lst)[exp (1 Qu(st, ) — logZ(s1)) )

_ 7ty (at|st)
- ]EStND,atNTL}p [log( exp(%Qg(st,at)flogZ(st)) )] (AZ)

= Eq~pai~my [log7ty(ar|st) — %QG(Sf/at) + logZ(st)]

where J;(¢) is the cost function of the Actor Network, and the generation method of a; is
shown in Formula (A3).

az =f¢(€t,'5t) = fg(st) + &t ®f$(5t) (A3)

where the f function calculates the mean and variance of the sample, the sample follows a
standard normal distribution, and ¢ is the noise of the standard normal distribution. Based
on the reparameterization trick in Formula (A3), the whole process of Formula (A2) is
completely differentiable. Therefore, Formula (A2) can be simplified into Formula (A4).

Ja (@) = Esnp e [#logmy (fo(er;st)[se) — Qa(st fo(ersst))] (A4)
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