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Abstract: Heat transfer enhancement using curved ribs of different cross sections, viz., square,
rectangular, triangular, and circular, is a crucial study for designing heat-exchanging devices for
various applications, and their thermohydraulic performance prediction using machine learning
technique is a vital part of the modern world. An experimental study on using curved ribs suitable
for heat transfer enhancement for the circular tube is presented for turbulent airflow with Reynolds
numbers varying from 10,000 to 50,000. The machine learning methodology is used to predict
the thermohydraulic performance assessment of curved ribs. The square cross-sectioned curved
ribs produce the highest performance factor R3 of 1.5 to 2.65 to the equivalent Reynolds number
Rec value of 20,000. It is observed that most of the curved rib configurations show a performance
ratio R3 maximum and are suitable at a low Reynolds number value. At moderate and high Reynolds
number values, the performance factor values decrease due to a rise in the pressure drop values
for a few curved rib configurations. An artificial neural network (ANN) model predicts with an
accuracy of 95% with the present study experimental values for the heat transfer performance
indicators like average heat transfer enhancement Nua/Nus, average heat transfer enhancement fa/fs,
and performance ratio R3, i.e., Nua/Nuc.

Keywords: heat transfer augmentation; turbulent flow; rib; machine learning; prediction

1. Introduction

Heat transfer enhancement plays a vital role in the initial design of heat-exchanging
devices for electrical, electronics, industrial plants, refrigeration, solar heaters, turbines,
air conditioning, and therapeutic purposes. Most of the methods for enhancing heat
transfer in existing heat exchanger systems are inclined towards better fluid mixing, thereby
improving heat transfer efficiency in different types of applications like conversion of liquid
to vapour [1,2] and low droplet impact cooling [3–5]. The various passive heat transfer
enhancement methods are ribs and impingement [6,7], vortex generators [8], the usage of
numerous microchannels [9,10], small pin fins [11] and conventional twisted tapes [12].
These techniques cause rapid fluid mixing between cold and hot regions in the flow sections,
further causing higher heat transfer. Miniature pin-fin heat dissipation is used in high-level
heat-flux electronic applications, as it helps in enhancing heat transfer. They are also used
for flow blending, necessitating comparatively small pumping power than traditional
microchannel heat sinks. Interestingly, the rib components can also perform the role of tiny
fins [12], which further enhances the heat by conduction mode. An enhancement in the
slot width-to-rib height proportion tends to separate the jet from the rib to reattach again
for the next stage and circulate within the cavity. These flow alterations reconnect, and the
flow’s recirculation considerably enhances heat transfer.
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Another factor that considerably augments the heat transfer is the roughness of the
heat-exchanging surface owing to increased turbulence intensity of flow near the surface,
which further adds intense fluid mixing. Ribs are passive augmentation devices that
also contribute to heat transfer augmentation as they act as surface turbulators [13]. The
heat transmission can be increased by broken V-ribbed twisted tapes (B-VRTs) [14] for
better blending, instigated by the longitudinal waterspouts from the ribs and swirling
stream from the distorted tape. The B-VRT with different rib angles was verified using
air. The comparative analysis of the tube with B-VRTs in the arrangement of forward and
backward with a flat tube and a tube with distorted tapes were carried out for 6000 and
20,000 Reynolds numbers. The developed correlations for the Nusselt number and friction
factor for estimating heat transfer rate and drop in pressure showed acceptable prediction
accuracies [14]. However, the accurate correlations did not predict the multidimensional,
nonlinear function correlation among variables in heat transfer applications [15]. The
impacts of rib heights, pitch and flow paths, fluid structure, and behaviour are studied
within a laminar flow regime. Numerical analysis was used to foresee the fluid structure and
thermal behaviour within the ribbed duct [16]. It was observed that rib height significantly
affects the flow and heat transfer behaviour.

Machine learning (ML) has played a vital role in different applications since 1950,
when Arthur Samuel [17] conceptualised it for the first time. Rosenblatt invented the
perceptron [18], and Werbos invented a multistratified perceptron [19] in 1974. Initially,
ML was used for straightforward interpretations, such as understanding the conventions
in a game of supervisors [20] and identifying arrangements [21]. Subsequently, with the
advancement of information technology and several ML processes, encompassing support
vector machines, boosting processes, and collaborative learning, ML has been used in
numerous applications like genetics and genomics, computer engineering, environmental
science, industrial, healthcare, and banking and economics. ML has the numerous merits
of being proficient at artificially learning the complicated association between dependent
and independent variables with high precision. Thus, its application is enthusiastically
found in research related to thermal and fluid engineering. A few papers that consider
ML-based techniques for heat transfer augmentation are reviewed. The hybrid approach
for heat transfer enhancement using computational fluid dynamics and artificial neural
networks was implemented. An artificial neural network (ANN) was implemented to find
optimum rib roughness due to low computational cost and prediction error of less than
1.5% [22]. The random forest algorithm was used to predict the convection heat transfer
coefficients for a cooling channel unified with adjustable rib coarseness [23]. Kim et al. [10]
established universal machine learning standards for forecasting the thermal presentation
of miniature pin-fin heat dissipation of different structures and under different working
circumstances beyond the constraints of functional relationships by employing power law
regression. Heat transfer was investigated for a double-layered microchannel heat sink
with wavy and porous ribs. The authors indicate the ‘holdout method’ for the generalised
accuracy of the model. The prediction accuracy for different test models ranged from
87.45% to 93.51%. The CNN intelligent agent cloud architecture was employed to verify
errors in reading medical image data. In the present study, an artificial neural network
(ANN) model was used for predicting experimental results of heat transfer and pressure
drop. An attempt was made to predict these data using different methodologies like ANN
or CNN. ANN was used to optimise the performance and impact of wavy and porous ribs
on the Nusselt number, pressure drop, and temperature difference [24,25]. ML algorithms
were implemented to model heat transfer correlations, such as the Nusselt number and
friction factor for a heat exchanger with distorted tape inserts. The data-driven substitute
modelling employed polynomial regression, random forest, and artificial neural networks.
It is noted that the ANN estimation of heat transfer coefficients surpasses the estimations of
P.R. and R.F. across different test datasets [26]. ML tools considerably diminish the attempt
to build multivariable heat transfer relationships. Therefore, it is necessary to implement
the machine learning algorithm for the complex heat transfer system.
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It is important to note here that abundant passive techniques are available for heat
transfer enhancement for single-phase heat transfer using ribs. These passive techniques
for enhancing heat transfer were reported to be used for flow through square/rectangular
cross sections; however, their use in enhancing heat transfer for the flow through circular
geometries is not yet reported. Hence, in the present study, an attempt was made to
capture the potential of ribs. The customisation in the shape of the straight ribs into curved-
shaped ribs was introduced so as to make them a suitable tool for enhancing heat transfer
in circular tubes. The thermohydraulic performance prediction needs to be carried out
using a machine learning tool. Results of this study will assist researchers in this domain
of single-phase heat transfer augmentation to predict the thermodynamic performance
based on the sophisticated ML-based methodology. An experimental study on using
curved ribs suitable for heat transfer enhancement for the circular tube is presented for
turbulent airflow with Reynolds numbers varying from 10,000 to 50,000. The machine
learning methodology is used to predict the thermohydraulic performance assessment
of curved ribs. The square cross-sectioned curved ribs produce the highest performance
factor R3 of 1.5 to 2.65 to the equivalent Reynolds number Rec value of 20,000. It is observed
that most of the curved rib configurations show a performance ratio R3 maximum and are
suitable at a low Reynolds number value. At moderate and high Reynolds number values,
the performance factor values decrease due to a rise in the pressure drop values for a few
curved rib configurations. In the present study, an artificial neural network (ANN) model
predicts with an accuracy of 95% the experimental values for the heat transfer performance
indicators, such as average heat transfer enhancement, Nua/Nus, average heat transfer
enhancement, fa/fs, and performance ratio R3, i.e., Nua/Nuc.

2. Experimentation and Data Collection

This section describes the experimental setup for measuring the average Nusselt
number and friction factor. The experimental setup, validation, and data reduction details
are presented. The experimental procedure is discussed to obtain the average heat transfer
and pressure drop data. Heat transfer and pressure drop results for turbulent flow through
an empty tube are matched with the standard relations specified by Dittus and Boelter [27].

2.1. Experimental Setup

An experimental setup was built to determine average heat transfer using curved
ribs and a smooth tube. Figure 1 indicates the assembly of the test system used. Figure 2
shows the sketch of the test section used to measure average heat transfer. The test tube
is 1000 mm long and made of stainless steel with inner and outer diameters of 24.50 and
25 mm, respectively. Two copper flanges are soldered at the end of the test section. Three
50 mm long copper sleeves are soldered on the steel tube at a regular interval of 270 mm.
Copper sleeves are used to minimise the circumferential variation in temperature that
occurs due to the inserts. Three calibrated Chromel–Alumel K-type thermocouples are
soldered at 120 degrees tangentially and 2.5 mm axially apart on each copper sleeve to
measure its surface temperature. To provide uniform heat flux, nichrome wire is covered
over the perimeter of the test tube from the inlet flange to the exit flange. The tube, copper
flanges, and exit sections are insulated using ceramic wool to minimise heat loss. Air
as the test fluid is pushed into the test tube using an air compressor. The airflow in the
test tube is controlled using a regulator and a bypass valve. The differential pressure
head across calibrated venturimeter is given by U tube water, and a mercury manometer
is used for measurement of the mass flow rate of air. The exit of the test section is a
500 mm long thermally insulated mild steel pipe. Three calibrated Chromel–Alumel
K-type thermocouples measure the bulk temperature of the airflow in the test section.
Three thermocouples at different radial directions, each at the exit and entry of the test
section, are used to measure the bulk mean air temperature. An Agilent data acquisition
system (34970A) is used to measure and store the voltage across the two junctions of the
thermocouples. Four pressure taps at an angle of 90◦ to each other are attached to the
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pipe at the entry section, 50 mm upstream from the inlet flange. One end of the U-tube
manometer is attached to this pressure tap. A similar pressure tap is attached to the pipe
150 mm downstream from the outlet flange. The other end of the U-tube manometer is
attached to this pressure tape to find the pressure drop across the tube. A U-tube water
manometer shows the pressure difference across the test tube and the venturimeter. A
water manometer is used at low flow rates (Re range 10,000 to 25,000), whereas mercury is
utilised as a manometric fluid at higher flow rates (Re range 35,000 to 55,000).
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2.2. Experimental Procedure and Data Reduction

Test fluid air is allowed to flow through the test section. The globe valve adjusts the
mass flow rate of air to provide the desired Reynolds number at the inlet of the test tube.
The variable transformer provides the test tube’s entire periphery with constant heat flux.
The wall, inlet, and outlet temperature readings are recorded at a steady state. The average
Nusselt number is the mean of the Nusselt number obtained from individual sleeves. The
friction factor is calculated in terms of pressure drop measured by the U-tube manometer.

The friction factor is determined as follows:

f =
π2 × ∆p× d5 × ρ

32× L× .
m2 (1)

This friction factor is compared with the following expression given by Blasius [27]
for fully developed turbulent flow in a smooth tube (104 < Re < 106):

fs = 0.079× Re−0.25 (2)
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The power distributed to the test tube is determined by measuring the electrical
current I and voltage V.

Qin = I ×V (3)

The heat taken by the air during its flow through the test tube is

Qout =
..

m× Cp × (Tbo − Tbi) (4)

The outlet and inlet air temperatures Tbo and Tbi are calculated using the temperature
readings from three thermocouples at the inlet and outlet of the test tube. The energy
imbalance Qimbalance is calculated as:

Qimbalance = Qin −Qout (5)

The energy input given to the system is the electrical power, specified in Equation (3),
and the heat energy taken away by the flowing fluid while its travel from inlet to outlet is
specified by Equation (4). The mismatch between Qin and Qout is observed to be always
less than 10% of total electrical energy input to the system. This value is observed to be
consistently less than 10% for all the experimental test runs. This variance is due to the
uncertainties in the measurement of voltage, electrical current, temperature of the wall,
temperature of the fluid at inlet and outlet conditions, and the flow rates of fluid at the inlet.

The bulk temperature is expected to vary in a linear manner throughout the test tube,
beginning from the inlet to the outlet. The intermediary values are taken by interpolation
between the temperatures recorded for the inlet to outlet bulk temperatures. The average
value of the Nusselt number for a completely established flow is defined as follows:

Nuavg =
Qout × d

A
(

Twavg − Tbavg

)
k

(6)

The Nusselt number for the smooth tube is achieved by utilising the
Dittus–Boelter equation:

Nus = 0.023× Re0.8 × Pr0.4 (7)

The power required to pump the augmented tube is more due to the considerable
frictional opposition to the fluid flow than the smooth tube. Running the smooth tube at
a high Reynolds number is necessary to compare the augmented tube with the smooth
tube at a similar pumping power. This high Reynolds number is stated here as equivalent
Reynolds number Rec, and it can be determined by comparison of the pumping power
between the augmented tube and the smooth tube.

(Rea)
3. fa = (Rec)

3. fc (8)

Rea and Rec are the augmented-case Reynolds number and equivalent Reynolds
number for smooth tubes at the same pumping power. The terms fc and fa are the equivalent
smooth-tube friction factor and enhanced-case friction factor at the same pressure drop, i.e.,
equal pumping power. Using the Blasius equation [27], the friction factor for smooth-tube
turbulent flow conditions,

fc =
0.079

Rec0.25 (9)

and Equation (8) gives

Rec =

[
fa ×

Rea
3

0.079

]0.3636

(10)

The value of Nuc for the empty tube is evaluated at this equivalent Reynolds number,
Rec, using Equation (7); the assessment criterion R3 is defined as:

R3 =
Nua

NuC
(11)
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The uncertainty in the measurement of experimental values of pressure and temper-
ature were discovered to be ±0.1 kPa and ±0.33 ◦C, respectively. The root-mean-square
(RMS) uncertainty of the average heat transfer coefficient and friction factor was deter-
mined using the uncertainties in the measured data given by Moffat [28] and found to be
14.48% and 9.46%, respectively.

2.3. Experimental Data Validation Using a Tube Retrofitted with a Helical Wire Coil (HWC)

The experimental test facility is validated using a tube installed with an HWC. The heat
transfer and pressure drop data for the tube fitted with HWC inserts have been extensively
studied are reported in the literature. An experimental study is performed for the HWC to
validate the experimental setup. The results are compared with the correlation specified
by Garcia et al. [29] (2005) and Zhang et al. [30] (1991). The parameters of the HWC that
influence the heat transfer performances are height-to-diameter ratio (e/d), pitch-to-height
ratio (p/e), helical angle α, and Reynolds number, as stated in Table 1. Therefore, the Nusselt
number and friction factor can be expressed as Nu = ϕ (p/e, e/d, Re) and f = ϕ (p/e, e/d, Re).

The experiments are carried out on Reynolds numbers based on the hydraulic
diameter of the test section and vary in the range 10,000–55,000. The results for
average heat transfer enhancement and friction loss in the tube with helical wire
coil insert (p/d = 1.18, p/e = 12.0, and e/d = 0.1) at various Reynolds numbers are
shown in Figures 3 and 4, respectively. Figure 4 indicates that the present study has a
difference of 6 to 11% and 1 to 5% in the values of the Nusselt number with estimates
specified by Garcia et al. [29] and Zhang et al. [30], respectively. The variation in the
measurement of pressure drop is 2 to 5% and 0.3 to 16% with values specified by
Garcia et al. [29] and Zhang et al. [30] respectively as shown in Figure 4. Figures 3–5
show that the values specified by the investigators Garcia et al. [29] and Zhang et al. [30]
agree well with the present experimentally obtained values for pressure drop and
Nusselt numbers.

Table 1. Geometry parameters of helical wire coil.

Parameter Range

Axial pitch 30 mm
Height of roughness, e 2.5 mm
Helical angle, α 450

Reynolds number, Re 10,000–55,000
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2.4. Data Representation

The geometry of the curved rib, shown in Figure 6, is a cross-section of different shapes,
viz., square, rectangle, equilateral triangle, circle of thickness b, and height e, including
angle α. The outer portion of the curved rib element is first attached to the inner wall of
the tube. The height e specifies the roughness height of the tube, as this dimension of the
curved rib extends in the path perpendicular to the flow. The included angle α specifies
that the rib length in the radial direction is a rough part of the tube in the circumferential
direction. The geometrical dimensions of the curved ribs, as shown in Table 2, were aligned
in a streamwise direction, as shown in Figure 7.
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Table 2. Dimensions of rib elements.

Rib Cross-Section Contact Angle of the
Rib, α (◦)

Rib Thickness
t (mm)

Rib Height,
e (mm)

Pitch to Rib
Thickness Ratio,

p/t (-)

Rib Height to Inner
Tube Diameter

Ratio, e/d (-)

Circle

45◦ 6 6 4.17 0.24

45◦ 6 6 8.33 0.24

45◦ 6 6 16.67 0.24

45◦, 60◦ 9 9 2.78 0.35

45◦, 60◦ 9 9 5.56 0.35

45◦, 60◦, 90◦ 9 9 11.11 0.35

Rectangular

45◦,60◦, 90◦ 3 6 33.33 0.24

45◦,60◦, 90◦ 3 9 33.33 0.35

45◦ 6 9 4.17 0.35

45◦,60◦ 6 9 8.33 0.35

45◦,60◦, 90◦ 6 9 16.67 0.35

45◦ 9 6 2.78 0.24

45◦,60◦ 9 6 5.56 0.24

45◦, 60◦, 90◦ 9 6 11.11 0.24

Square

45◦, 60◦, 90◦ 3 3 33.33 0.12

45◦, 60◦, 90◦ 6 6 16.67 0.24

45◦, 60◦, 90◦ 9 9 11.11 0.35

90◦ 6 6 4.17, 8.33 0.24

Equilateral triangle

45◦, 60◦ 6 5.2 4.17 0.2

45◦, 60◦ 6 5.2 8.33 0.2

45◦,60◦,90◦ 6 5.2 16.67 0.2

45◦ 9 7.8 5.56 0.31

45◦ 9 7.8 11.11 0.31

In the present study, experiments were performed on various configurations to reveal
their thermohydraulic performance under different flow conditions at the inlet of the
pipe, corresponding to Reynolds numbers ranging from 5000 to 50,000. The rib geometry
of different configurations is shown in Table 2. The geometry details are presented in
dimensionless forms, i.e., the ratio of the pitch to rib thickness p/t and the ratio of rib height
to tube inner diameter e/d.
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3. Experimental Results and Discussion

The thermal performance assessment parameters are discussed in this section; these
include average heat transfer enhancement ratios Nua/Nus, average friction-factor ratios
fa/fs, and average performance factor R3, i.e., Nua/Nuc for different configurations of rib
elements comprising different p/t ratios, including angles α, and e/d ratios.

Heat Transfer and Pressure Drop Results for Different Configurations

Figure 8 shows the thermal performance indicators like average heat transfer enhance-
ment ratios Nua/Nus, average friction-factor ratios fa/fs, and average performance factor R3,
that is, Nua/Nuc for different configurations of square rib elements comprising different
p/t ratios, including angles α and e/d ratios, for square rib configuration. The average
enhancement ratio Nua/Nus, is observed to be at a maximum for the square rib with a
p/t ratio of 16.67, contact angle α equal to 90◦, and e/d ratio equal to 0.24, as indicated in
Figure 8a. It is important to note that the configuration of the rib element, which involves a
higher contact angle α = 90◦, shows a higher enhancement factor. This enhancement is due
to the higher contact of the rib element with the heated inner wall of the tube compared
to the other rib configurations in which α equals 45◦ and 60◦. All configurations show
an enhancement factor between 1.5 and 4.0 for Reynolds numbers up to 20,000; however,
after this Re value, the enhancement gradually decreases to 1.0 for a few configurations.
The variation in the friction-factor augmentation fa/fs with Reynolds number for different
square rib configurations is shown in Figure 8b. It is observed that this ratio remains almost
uniform with the variation in the Reynolds number. The average performance factor R3,
i.e., Nua/Nuc for different configurations of square ribs comprising different p/t ratios,
contact angles α, and e/d ratios, is shown in Figure 8c. The average performance factor R3
is observed to be the maximum for the square rib having a p/t ratio of 16.67, contact angle
α equal to 90◦, and e/d ratio equal to 0.24.
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The variation in the average heat transfer enhancement ratio Nua/Nus with the
Reynolds number for triangular and rectangular curved ribs is shown in Figures 9a and 10a,
respectively. It is observed that the enhancement ratios are relatively higher until a Reynolds
number equal to 20,000 is attained, after which the enhancement ratio decreases and
remains almost constant with the Reynolds number. This observation is valid for all
curved triangular and rectangular rib configurations. The variation in the friction-factor
augmentation fa/fs with the Reynolds number for different square rib configurations are
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shown in Figures 9b and 10b. It is concluded that the lower values of the p/t ratio equal
to 4.17, in the case of triangular ribs, produce a significant pressure drop. In contrast,
rectangular ribs produce more pressure drop at a higher contact angle α, more than 45◦.
Figure 11c shows the average performance factor R3 for triangular ribs, and it is observed
to be in the range 1.5 to 2.0 until the equivalent Reynolds number is equal to 20,000.
However, in the case of the rectangular ribs, this value of the average performance factor
R3 is relatively low compared to the triangular ribs, as shown in Figure 10c. Figure 11a
shows the variation in the average heat transfer enhancement ratio Nua/Nus with the
Reynolds number for the curved circular ribs. The configuration with the lowest p/t ratio
of 2.78, e/d ratio = 0.35, and α equal to 60◦ showed the maximum value of heat transfer
enhancement. It should be noted that for a particular configuration of circular ribs, a
constant value of heat transfer augmentation was observed at all values of the Reynolds
number. This can be attributed to the maximum number of circular rib elements in the
tube, which causes swirl intensification within the mainstream flow. Figure 11b shows the
friction-factor enhancement ratio fa/fs variation with the Reynolds number for the circular
ribs. It is observed that this ratio is observed to be the maximum for lower p/t ratio and
higher contact angle α configurations.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 29 
 

 

(a) 

 
(b) 

Figure 9. Cont.



Aerospace 2023, 10, 658 12 of 27

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 29 
 

 

(c) 

Figure 9. Experimental results for rectangular ribs variation in (a) average enhancement ratio 
Nua/Nus with Reynolds number Re; (b) average performance factor R3, i.e., NuaNuc with equivalent 
Reynolds number Rec; (c) average friction-factor ratio fa/fs with Reynolds number Re. 

 
(a) 

Figure 9. Experimental results for rectangular ribs variation in (a) average enhancement ratio Nua/Nus

with Reynolds number Re; (b) average performance factor R3, i.e., NuaNuc with equivalent Reynolds
number Rec; (c) average friction-factor ratio fa/fs with Reynolds number Re.Aerospace 2023, 10, x FOR PEER REVIEW 14 of 30 

 

 

 
(a) 

 
(b) 

Figure 10. Cont.



Aerospace 2023, 10, 658 13 of 27
Aerospace 2023, 10, x FOR PEER REVIEW 15 of 30 
 

 

 
(c) 

Figure 10. Experimental results for triangular ribs variation in (a) average enhancement ratio 

Nua/Nus with Reynolds number Re; (b) average performance factor R3, i.e., NuaNuc with equivalent 

Reynolds number Rec; (c) average friction-factor ratio fa/fs with Reynolds number Re. 

 
(a) 

Figure 10. Experimental results for triangular ribs variation in (a) average enhancement ratio Nua/Nus

with Reynolds number Re; (b) average performance factor R3, i.e., NuaNuc with equivalent Reynolds
number Rec; (c) average friction-factor ratio fa/fs with Reynolds number Re.Aerospace 2023, 10, x FOR PEER REVIEW 15 of 29 

 

 

 
(a) 

 
(b) 

Figure 11. Cont.



Aerospace 2023, 10, 658 14 of 27

Aerospace 2023, 10, x FOR PEER REVIEW 16 of 29 
 

 

 
(c) 

Figure 11. Experimental results for circular ribs variation in (a) average enhancement ratio Nua/Nus 
with Reynolds number Re; (b) average performance factor R3, i.e., NuaNuc with equivalent Reyn-
olds number Rec; (c) average friction-factor ratio fa/fs with Reynolds number Re. 

It is also observed that friction-factor enhancement remains constant with the varia-
tion in Reynolds number for a particular rib configuration. Figure 11c shows the change 
in the average performance factor R3, i.e., Nua/Nuc for different configurations of circular 
ribs for different p/t ratios, contact angle α, and e/d ratios. It is observed that the perfor-
mance of circular ribs is observed to be high at lower values of equivalent Reynolds 
number until reaching 40,000; beyond this value, this factor is reduced and remains con-
stant with equivalent Reynolds number. The general observation for all rib configurations 
is that the rib elements with a higher contact angle α and at a low pitch-to-rib thickness 
p/t ratio offer more frictional resistance to fluid flow. This high frictional resistance is due 
to the relatively greater fluid contact with the solid surface of the curved ribs. The square 
and triangular curved rib elements caused less friction-factor enhancement than the rec-
tangular and circular curved rib elements because the lower surface area was exposed to 
the flowing fluid. Also, there is a linear decrease in the performance factor R3 value with 
respect to the equivalent Reynolds number Rec. Interestingly, the performance factor R3 is 
between 1.5 and 2.65 to a Rec value of 20,000. Therefore, it is essential to conclude that the 
rib configurations are suitable at lower flow rates. After that, the performance factor R3 
linear value drops and reaches 1.0, or even less, for a few configurations. 

4. Design of ANN Architecture 
The dataset taken for the prediction is of curved ribs used in the mechanical engi-

neering domain. The training dataset consisted of parameters such as the Reynolds 
number, p/b, e/d, and beta as the dependent variables and Nua/Nus, Nua/Nuc, and fa/fs as 
the independent variables. The dataset was trained on the dependent variables and one 
independent variable at a time, validated, and inferenced, recording the metrics at the 
same time. The regression analysis uses ANN to predict the Nusselt number ratio 
Nua/Nus, friction-factor ratio fa/fs, and performance ratio R3, i.e., Nusselt number ratio 
Nua/Nuc at the same pumping power. 

Figure 11. Experimental results for circular ribs variation in (a) average enhancement ratio Nua/Nus

with Reynolds number Re; (b) average performance factor R3, i.e., NuaNuc with equivalent Reynolds
number Rec; (c) average friction-factor ratio fa/fs with Reynolds number Re.

It is also observed that friction-factor enhancement remains constant with the variation
in Reynolds number for a particular rib configuration. Figure 11c shows the change in the
average performance factor R3, i.e., Nua/Nuc for different configurations of circular ribs
for different p/t ratios, contact angle α, and e/d ratios. It is observed that the performance
of circular ribs is observed to be high at lower values of equivalent Reynolds number
until reaching 40,000; beyond this value, this factor is reduced and remains constant with
equivalent Reynolds number. The general observation for all rib configurations is that
the rib elements with a higher contact angle α and at a low pitch-to-rib thickness p/t ratio
offer more frictional resistance to fluid flow. This high frictional resistance is due to the
relatively greater fluid contact with the solid surface of the curved ribs. The square and
triangular curved rib elements caused less friction-factor enhancement than the rectangular
and circular curved rib elements because the lower surface area was exposed to the flowing
fluid. Also, there is a linear decrease in the performance factor R3 value with respect to
the equivalent Reynolds number Rec. Interestingly, the performance factor R3 is between
1.5 and 2.65 to a Rec value of 20,000. Therefore, it is essential to conclude that the rib
configurations are suitable at lower flow rates. After that, the performance factor R3 linear
value drops and reaches 1.0, or even less, for a few configurations.

4. Design of ANN Architecture

The dataset taken for the prediction is of curved ribs used in the mechanical engineer-
ing domain. The training dataset consisted of parameters such as the Reynolds number, p/b,
e/d, and beta as the dependent variables and Nua/Nus, Nua/Nuc, and fa/fs as the indepen-
dent variables. The dataset was trained on the dependent variables and one independent
variable at a time, validated, and inferenced, recording the metrics at the same time. The
regression analysis uses ANN to predict the Nusselt number ratio Nua/Nus, friction-factor
ratio fa/fs, and performance ratio R3, i.e., Nusselt number ratio Nua/Nuc at the same
pumping power.

4.1. ANN Intuition

The ANNs, usually called neural networks or neural nets [31], are computing systems
inspired by the biological neural networks that constitute the natural brain [32]. Similar
to a neural network inside the brain, there are interconnected neurons. These collections
of the connected nodes inside the network are called neurons. Each artificial neuron has
inputs and produces a single output that can be sent to multiple other neurons [33]. Along
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with multiple inputs, each neuron has an activation function. Activation functions shape
the outputs of artificial neurons and are integral parts of neural networks in general and
deep learning in particular. Some activation functions, such as logistics and ReLU, have
been used for decades [34]. These activation functions are equations of the weighted sum
of the outputs given by the previous neurons. Further, a bias is added to the sum to form a
complete equation.

4.2. Hyperparameters

Hyperparameters dictate the output neuron’s result and control the learning pro-
cess to determine the model parameters that a learning algorithm learns [35]. Standard
hyperparameters are explained below.

4.3. Train–Test Split Ratio

The train–test split ratio splits the existing dataset into train and test sets. A propor-
tionate split balance ensures optimal results (generally at 80%:20%). The model is fitted
over the training dataset and evaluated over the test dataset. This property checks if the
model gives generalised results.

4.4. Learning Rate in Optimisation Algorithms

The learning rate is a hyperparameter that controls how much we adjust our network
weights with respect to the loss gradient [36]. As shown in Figure 12, choosing a small
value will slow conversion to the minimum, while taking a considerable value can result in
missing the minimum [37]. The error intuition is shown in Figure 13.
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4.5. Choice of the Optimisation Algorithm

An optimisation algorithm discovers the parameter values attributed to minimising
the error for mapping inputs to outputs. These optimisation algorithms widely affect the
deep learning model’s accuracy [38].

4.6. Choosing of Correct Activation Function

Activation functions control the learning process of learning. An activation function
controls the way how a network learns the training dataset. The right choice will help
better learn the dataset and generate a generalised model.

4.7. Model-Based Choice of Cost-or-Loss Function

The cost function helps us to find an optimal solution. It is used to evaluate the
performance of our model. There are mainly three types of cost functions:

• Regression cost function is mainly used to evaluate regression results where the
distance-based error is calculated.

• Classification cost function is mainly used for evaluating results of classification prob-
lems such as binary and multiclass classification, where prediction is made between
the number of classes in the dataset.

• The correct choice of the cost function for the problem helps to evaluate the
model accurately.

4.8. Hidden Layers

The hidden layers in a neural network are located between the input and output layers.
Here, the function multiplies the weight of the inputs, generating the output through an
activation function. The right choice of the number of neurons results in the model avoiding
overfitting or underfitting, and helps the output layer to give an accurate prediction.

4.9. Number of Epochs in Training a Neural Network

In training a neural network, the dataset is passed through the neural network two
times, namely the forward pass and the backward pass. One epoch is one forward and
one backward pass. The learning process occurs, and the error rate is minimised through
the number of epochs. The correct number of epochs helps the network to learn and
minimise errors.
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4.10. Batch Size

The batch size [39] is designated as the number of examples of training datasets for
estimating error gradients. This batch size is an essential hyperparameter as it affects the
changing aspects in the learning algorithm. Batch size also limits the accuracy of the error
gradient in the training process.

5. Machine Learning Results and Discussion

In designing an artificial neural network, parameters affecting the results should be
trained and tested on the data. These parameters are tuned over various experimental runs
and eventually decided.

5.1. Design and Development of ANN

Initially, the dataset is divided into training and testing datasets (with the split 80:20).
Here, the scaling of the data is performed. Standard scaling is carried out on the input
variables, as some may have different units and can be distributed inconsistently. Standard
scaling helps the model obtain standardised real-valued input and gives a standardised
output. The standardised data are input to the neural network’s input layer. Then, an
optimisation algorithm is used for optimal weight updation. A learning rate is chosen
according to the complexity of the model and dataset, which helps minimise the loss
function. An activation function is applied to each neuron in the hidden layer to remove the
dataset’s linearity. The output layer performs neuron activation according to the desired
output. To evaluate the model, a loss metric is chosen according to the problem statement.

5.2. Design of Neural Network for a Generalised Prediction

The artificial neural network was built using the TensorFlow-Keras deep learning
framework. Two hidden layers have been used with 20 and 10 neurons. Each neuron had
normal kernel initialisation and the ‘relu’ activation function. For the output layer, the
‘linear’ activation function was used.

5.3. ReLU

This activation function is commonly used as it solves the vanishing gradient problem
and converts the loss function with less time complexity. The mathematical equation of
ReLU is ReLU(x) = max(0, x). If the output value is negative, then ‘0′ is considered an
output. The graphical representation of the ReLU function is shown in Figure 14. The linear
mathematical representation of the linear activation function is Linear(x) = a.x, where a is a
constant. The graphical representation of the linear function is shown in Figure 15. The
‘Adam’ optimiser was used for updating weights, as explained in the next subsection.
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5.4. Adam

A stochastic gradient descent method, known as Adam optimisation, is established on
the adaptive approximation of first-order and second-order instances [40]. The metric used
to evaluate the model was mean-squared error.

5.5. Mean-Squared Error

Mean-squared error measures the average of squares of errors. In other words, it
is a measure of the average squared difference between the estimated values and the
actual values.

Mean-square error, MSE =
1
n

Σ
(
y− y′

)2

where y, y′, and n are the actual value, the predicted value, and the total number of samples,
respectively. The neural network was trained over 50 epochs with batch size 64.

5.6. Computational Environment

The system that was used for all the experimentation was Tensorflow-2.8.0 and
Keras-2.8.0. GPU support was not taken for experimentation as the CPU operation was
possible and computationally light. This environment was used to conduct the experiments
and execute the possible choices for the hyperparameters and models.

5.7. Predictions Using Designed ANN and Hyperparameter Tuning

The dataset taken for the prediction is of curved ribs used in the mechanical engineer-
ing domain. The training dataset consisted of parameters such as the Reynolds number, p/b,
e/d, and beta as the dependent variables and Nua/Nus, Nua/Nuc, and fa/fs as the indepen-
dent variables. The dataset was trained on the dependent variables and one independent
variable at a time, validated, and inferenced, recording the metrics at the same time. The
hyperparameter tuning is explained here.

• Depth: As the data size after the upsampling was 50 rows, the depth of the neural
network was chosen to be 2 instead of 3. The neural network with depth of 3 was
overfitting on the dataset and was not providing acceptable results. Thus, a neural
network of the depth size of 2 hidden layers was selected.

• Nodes: Our experimentation consisted of increasing the node size by a factor of 5.
The first hidden layer is responsible for generating accurate results to feed into the
next layer for learning purposes; hence, the number of 20 was chosen after trying
increments of 5 nodes starting for 5, as it gave a better performance compared to 5, 10,
and 15 nodes. For similar reasons, the next hidden layer had 10 nodes. The network
ended with a single node for prediction.

• Learning rate: The learning rate signifies the learning steps of the pass in the neural
network. A learning rate that is too high will make the learning jump over minima,
but a learning rate that is too low will either take too long to converge or become stuck
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in an undesirable local minimum. For this particular application, the learning rate of
0.01 was chosen, which gave good results and good convergence.

• Activation function: Regression problems solved with artificial neural network use
tanh or ReLU as an activation function. For this application, the neural network had a
shallow depth; hence, the most appropriate choice of ReLU activation function was
applied and good results were obtained.

• Batch size: Batch size signifies the batch of data that passes through a neural network
for one cycle of forward and backward pass. For this application, the data size was
relatively small so a batch size of 64 was chosen. A lesser batch size would have taken
more time to learn; a lower learning rate or higher number of epochs results in more
time necessary for convergence.

• Epochs: For the experimentation a value of 50 epochs was most appropriate for the
hyperparameter values chosen above. More epochs would have resulted in overfitting
and fewer epochs would have resulted in fewer accurate predictions.

All of the hyperparameters values obtained through experimentation were chosen by
taking into consideration the minimum convergence of the loss function, which directly
signifies better and optimised learning from the algorithm’s side, providing better results
with each experimentation iteration.

Figure 16 compares the Nua/Nuc, Nua/Nus, and fa/fs values between the predicted and
actual experimental values for square ribs. It is clear from the figure that a slight variation is
observed in the prediction of the ANN model with the experimental values. It is important
to note that the performance of the model was observed to be 80% accurate on the tested
dataset. A similar variation trend in the predicted and experimental values is observed
for rectangular ribs, as shown in Figure 17. However, Figures 18 and 19 show that the
comparison of Nua/Nuc, Nua/Nus, and fa/fs values with the ANN prediction is observed
to be very close to the experimental values for triangular and circular ribs. It is important
to note that the performance of the model was observed to be 95% accurate on the tested
dataset for these ribs. Accuracy is a metric typically used in classification tasks to measure
the percentage of correctly classified instances. R2, on the other hand, is a statistical measure
designed explicitly for regression analysis. It assesses the goodness of fit in a regression
model and indicates the proportion of the variance in the dependent variable that can
be explained by the independent variables. R2 ranges from 0 to 1, where 1 represents a
perfect fit and 0 represents no linear relationship. While accuracy is a straightforward
measure for classification tasks, it is not directly applicable to regression problems because
it focuses on categorical outcomes rather than continuous values. In regression, the goal
is to predict and explain the continuous variation in the dependent variable. Therefore,
accuracy, which counts correct classifications, does not provide an appropriate evaluation
for the performance of regression models. R2 is commonly used in regression analysis to
measure how well the model captures and explains the variance in the data. It indicates
the proportion of the dependent variable’s variability that can be accounted for by the
independent variables. The result submitted where the prediction accuracy is mentioned
as 95% is actually the R2 score obtained on the independent variables in the dataset. The
obtained R2 score was 95% for all dependent variables. This indicates that the ANN model
can explain 95% of the total variance observed in the dependent variables based on the
information provided by the independent variables. To achieve such high performance, the
ANN model has learned the optimal weights and biases through an optimisation algorithm
(Adam), which minimises the difference between the predicted values and the actual values
of the dependent variables. The model’s ability to capture and generalise from the training
data enables it to make accurate predictions on unseen data.
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Figure 19. Results for circular ribs prediction of (a) Nua/Nuc, (b) Nua/Nus, and
(c) fa/fs vs. experimental values and corresponding mean-square error as a function of epochs.

The main aim for employing machine learning techniques in this investigation was
to predict and assess the thermohydraulic performance of curved ribs through regression
analysis. By leveraging the competence of ML, the pitfalls of conventional experimental
and analytical methods, i.e., often resource-intensive and time-consuming and relying on
simplifications and assumptions, are overcome and explained herein.

• Enhanced prediction accuracy: ML models revealed tedious patterns and relation-
ships within a dataset of multiple variables, enabling prediction of thermohydraulic
performance indicators more accurately. The experimental data were trained and it
learned from the involved relations among various factors—the Reynolds number,
p/b, e/d, and beta as the dependent variables and Nua/Nus, Nua/Nuc and fa/fs as the
independent variables—and provided reliable predictions with high accuracy of 95%
for the tested dataset.
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• Cost and time efficiency: The conventional experimental approaches often need exten-
sive data collection and testing; however, ML allows for reducing the effort required
to collect extensive data through experimentation while still achieving accurate pre-
dictions. By training existing data collected through experimentation, prediction
of performance indicators without undertaking further time-consuming trials was
achieved. This feature expressively reduced the cost and time while assessing numer-
ous configurations of the curved rib.

• Comprehensive performance evaluation: The ML algorithm predicted multiple perfor-
mance indicators simultaneously, exhibiting an inclusive assessment of various heat
transfer enhancement parameters. In this study, the artificial neural network predicted
heat transfer indicators providing perceptions into different aspects of curved rib
performance using a single modelling approach.

• Identification of optimal rib configurations: Through ML, the configurations of curved
rib which showed the highest performance factor R3 at different Reynolds numbers
were identified. This inference appears valuable in the design of heat-exchanging
devices with curved ribs tailored to particular applications, ensuring optimal heat
transfer performance.

6. Conclusions

The experimental results are presented to investigate the thermohydraulic perfor-
mance of ribs used for flow through a circular pipe for turbulent flow conditions. The
present study has the following conclusions:

• The average Nusselt number ratio of the tube with ribs to the Nusselt number of the
tube without ribs, Nua/Nus, increases with the Reynolds number, Re. This trend is
observed for all rib types.

• The general observation for all rib configurations is that the rib elements with a higher
contact angle value α and at a low pitch-to-rib thickness p/t ratio offer more frictional
resistance to fluid flow.

• The square and triangular curved rib elements caused less friction-factor enhancement
than the rectangular and circular curved rib elements because the lower surface area
was exposed to the flowing fluid.

• A linear decrease in the performance factor R3 value was observed for all types of ribs
with respect to the equivalent Reynolds number Rec.

• The best configuration of square ribs produces the value of performance factor R3 in the
range of 1.5 to 2.65 until the equivalent Reynolds number Rec attained a value of 20,000.

• It can be concluded that the rib configurations are suitable at lower flow rates. After
that, the performance factor R3 linear value drops and reaches 1.0, or even less, for a
few configurations.

• It is important to note that using ribs with different cross sections offers effective
alternatives/additional methods for heat transfer enhancement over the other passive
methods reported in the literature.

• An ANN model predicts the performance indicators like average heat transfer en-
hancement Nua/Nus, average heat transfer enhancement fa/fs, and performance ratio
R3, i.e., Nua/Nuc.

• The models were evaluated to have an accuracy of 95.00% on unknown test data, and
the proposed model reasonably forecasted Nua/Nus, fa/fs, and Nua/Nuc.
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Nomenclature

A inside surface area of the circular tube (πdL), m2

t rib thickness, m
Cp specific heat at constant pressure, J/kg.K
d inner diameter of the tube, m
e height of the rib element, m
e/d ratio of rib height to inner tube diameter, dimensionless
f friction factor, dimensionless
fa friction factor for the tube fitted with curved ribs, i.e., enhanced tube, dimensionless
fs friction factor for the smooth tube, i.e., tube without any ribs, dimensionless
L length of the test section, m
.

m mass flow rate of the fluid, kg/s
Nu Nusselt number, dimensionless
Nua Nusselt number for the tube fitted with curved ribs, i.e., enhanced tube,

(
=

ρ.v.d
µ

)
Nus Nusselt number for the smooth tube, i.e., tube without ribs,

(
=

ρ.v.d
µ

)
Nuc Nusselt number for the equivalent smooth tube, i.e., the tube without curved ribs runs at the same

pumping power as that of the enhanced tube,
p pitch of rib configuration, m
p/t ratio of the pitch to rib thickness
Pr Prandtl number

(
=

µ.Cp
Γ

)
Qout heat transfer rate to the flowing fluid between the inlet and outlet, W
..
q constant heat flux, W/m2

Re Reynolds number,
(
=

ρ.v.d
µ

)
Rea Reynolds number for the tube fitted with curved ribs, i.e., enhanced tube,

(
=

ρ.v.d
µ

)
Res Reynolds number for the smooth tube, i.e., tube without curved ribs,

(
=

ρ.v.d
µ

)
Rec Reynolds number for the smooth tube at the same pumping power as that of the tube fitted with

curved ribs, i.e., enhanced tube,
(
=

ρ.v.d
µ

)
T temperature, K
Tbi bulk temperature of the fluid at the inlet of the tube, K
Tbo bulk temperature of the fluid at the outlet of the tube, K
TW temperature of the inner wall of the tube, K
v average fluid velocity, m/s
Greek Symbols
k thermal conductivity of the fluid, W/m.K
α included angle of the rib element, ◦

µ dynamic viscosity, Pa·s
ρ fluid density, kg/m3

∆P pressure drop between inlet and outlet of the test section, N/m2

Subscripts
b bulk fluid
a augmented tube
s smooth tube flow at the equal Reynolds number
c smooth tube flow at the equal pumping power
w tube wall
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