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Abstract: This article proposes a visual inertial navigation algorithm intended to diminish the
horizontal position drift experienced by autonomous fixed-wing UAVs (unmanned air vehicles) in
the absence of GNSS (Global Navigation Satellite System) signals. In addition to accelerometers,
gyroscopes, and magnetometers, the proposed navigation filter relies on the accurate incremental
displacement outputs generated by a VO (visual odometry) system, denoted here as a virtual vision
sensor, or VVS, which relies on images of the Earth surface taken by an onboard camera and is
itself assisted by filter inertial estimations. Although not a full replacement for a GNSS receiver
since its position observations are relative instead of absolute, the proposed system enables major
reductions in the GNSS-denied attitude and position estimation errors. The filter is implemented
in the manifold of rigid body rotations or SO(3) in order to minimize the accumulation of errors
in the absence of absolute observations. Stochastic high-fidelity simulations of two representative
scenarios involving the loss of GNSS signals are employed to evaluate the results. The authors release
the C++ implementation of both the visual inertial navigation filter and the high-fidelity simulation
as open-source software.

Keywords: GNSS-denied; visual inertial navigation; autonomous navigation; EKF; autonomy; VIO

1. Introduction and Outline

The main objective of this article is to develop a navigation system capable of di-
minishing the position drift inherent to the flight in GNSS (Global Navigation Satellite
System)-denied conditions of an autonomous fixed-wing aircraft, so in case GNSS signals
become unavailable during flight, the vehicle has a higher probability of reaching the
vicinity of a distant recovery point, from where it can be landed by remote control. The
proposed approach combines two different navigation systems (inertial, which is based on
the outputs of all onboard sensors except the camera, and visual, which relies exclusively
on the images of the Earth surface taken from the aircraft) in such a way that both simul-
taneously assist and control each other, resulting in a positive feedback loop with major
improvements in horizontal position estimation accuracy compared with either system
by itself.

The fusion between the inertial and visual systems is a two-step process. The first one,
described in [1], feeds the visual system with the inertial attitude and altitude estimations
to assist with its nonlinear pose optimizations, resulting in major horizontal position
accuracy gains with respect to both a purely visual system (without inertial assistance) and
a standalone inertial one such as that described in [2]. The second step, which is the focus of
this article, feeds back the visual horizontal position estimations into the inertial navigation
filter as if they were the outputs of a virtual vision sensor, or VVS, replacing those of the
GNSS receiver, and results in additional horizontal position accuracy improvements.
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Section 2 describes the mathematical notation employed throughout the article. An
introduction to GNSS-denied navigation and its challenges, together with a review of
the state of the art in visual inertial navigation, is included in Section 3. Sections 4 and 5
discuss the article novelty and main applications, respectively. The proposed architecture to
combine the inertial and visual navigation algorithms is discussed in Section 6, which relies
on the VVS described in Section 7. The VVS outputs are employed by the navigation filter,
which is described in detail in Section 8. Section 9 introduces the stochastic high-fidelity
simulation employed to evaluate the navigation results by means of Monte Carlo executions
of two scenarios representative of the challenges of GNSS-denied navigation. The results
obtained when applying the proposed algorithms to these scenarios are described in
Section 10, comparing them with those achieved by standalone inertial and visual systems.
Last, Section 11 summarizes the results, while Appendix A describes the obtainment of
various Jacobians employed in the proposed navigation filter.

2. Mathematical Notation

The meaning of all variables is specified on their first appearance. Any variable with
a hat accent < ·̂ > refers to its estimated value, with a tilde < ·̃ > to its measured value,
and with a dot < ·̇ > to its time derivative. In the case of vectors, which are displayed
in bold (e.g., x), other employed symbols include the skew-symmetric form < [·]× > and
the double vertical bars < ‖ · ‖ >, which refer to the norm. The superindex T denotes the
transpose of a vector or matrix. In the case of scalars, the vertical bars < | · | > refer to the
absolute value. The left arrow←− represents an update operation, in which the value on
the right of the arrow is assigned to the variable on the left.

Four different reference frames are employed in this article: the ECEF (Earth centered
Earth fixed) frame FE (centered at the Earth center of mass OE, with iE

3 pointing towards
the geodetic north along the Earth rotation axis, iE

1 contained in both the equator and zero
longitude planes, and iE

2 orthogonal to iE
1 and iE

3 forming a right-handed system), the NED
(north east down) frame FN (centered at the aircraft center of mass ON, with axes aligned
with the geodetic north, east, and down directions), the body frame FB (centered at the
aircraft center of mass OB = ON, with iB

1 contained in the plane of symmetry of the aircraft
pointing forward along a fixed direction, iB

3 contained in the plane of symmetry of the
aircraft, normal to iB

1 and pointing downward, and iB
2 orthogonal to both in such a way that

they form a right-hand system), and the inertial frame FI (centered at the Earth center of
mass with axes that do not rotate with respect to any stars other than the Sun). The first
three frames are graphically depicted in Figure 1.
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This article makes use of the space of rigid body rotations and, hence, relies on the Lie
algebra of the special orthogonal group of R3, known as SO(3); refs. [3–5] are recommended
as references. Generic rotations are represented by R and usually parameterized by the
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unit quaternion q, although the direct cosine matrix R is also employed as required; tangent
space representations include the rotation vector r and the angular velocity ω. Related
symbols include the quaternion conjugate < ·∗ >, the quaternion product⊗, and the SO(3)
plus ⊕ and minus 	 operators.

Superindexes are employed over vectors to specify the frame in which they are viewed
(e.g., vN refers to ground velocity viewed in FN, while vB is the same vector but viewed
in FB). Subindexes may be employed to clarify the meaning of a variable or vector, but
may also indicate a given vector component; e.g., vN

2 refers to the second component of vN.
In addition, where two reference frames appear as subindexes to a vector, it means that
the vector goes from the first frame to the second. For example, ωB

NB refers to the angular
velocity from FN to FB viewed in FB. Jacobians are represented by a J combined with a
subindex and a superindex; the former identifies the function domain, while the latter
applies to the function image or codomain.

3. GNSS-Denied Navigation and Visual Inertial Odometry

The number, variety, and applications of unmanned air vehicles (UAVs) have grown
exponentially in the last few years, and the trend is expected to continue in the future [6,7].
A comprehensive review of small UAV navigation systems and the problems they face
is included in [8]. The use of GNSS constitutes one of the main enablers for autonomous
inertial navigation [9–11], but it is also one of its main weaknesses, as in the absence
of GNSS signals, inertial systems are forced to rely on dead reckoning, which results in
position drift, with the aircraft slowly but steadily deviating from its intended route [2,12].
The availability of GNSS signals cannot be guaranteed; a thorough analysis of GNSS threats
and reasons for signal degradation is presented in [13].

At this time, there are no comprehensive solutions to the operation of autonomous
UAVs in GNSS-denied scenarios, for which the permanent loss of the GNSS signals is
equivalent to losing the airframe in an uncontrolled way. A summary of the challenges of
GNSS-denied navigation and the research efforts intended to improve its performance is
provided by [2,14,15]. Two promising techniques for completely eliminating the position
drift are the use of signals of opportunity [16–18] (existing signals originally intended for other
purposes, such as those of television and cellular networks, can be employed to triangulate
the aircraft position) and georegistration [19–27] (the position drift can be eliminated by
matching landmarks or terrain features as viewed from the aircraft to preloaded data), also
known as image registration.

Visual odometry (VO) consists in employing the ground images generated by one or
more onboard cameras without the use of prerecorded image databases or any other sensors,
incrementally estimating the vehicle pose (position plus attitude) based on the changes that
its motion induces on the images [28–32]. It requires sufficient illumination, dominance
of static scene, enough texture, and scene overlap between consecutive images or frames.
Modern standalone algorithms, such as semidirect visual odometry (SVO) [33,34], direct
sparse odometry (DSO) [35], large-scale direct simultaneous localization and mapping
(LSD-SLAM) [36], and large-scale feature-based SLAM (ORB-SLAM) [37–39] (ORB stands
for oriented FAST and rotated BRIEF, a type of blob feature), are robust and exhibit a limited
drift. The incremental concatenation of relative poses results in a slow but unbounded pose
drift that disqualifies VO for long-distance autonomous UAV GNSS-denied navigation.

A promising research path to GNSS-denied navigation appears to be the fusion of
inertial and visual odometry algorithms into an integrated navigation system. Two different
trends coexist in the literature, although an implementation of either group can sometimes
employ a technique from the other:

• The first possibility, known as filtering, consists in employing the visual estimations as
additional observations with which to feed the inertial filter. In the case of attitude
estimation exclusively (momentarily neglecting the platform position), the GNSS sig-
nals are helpful and enable the inertial navigation system to obtain more accurate and
less noisy estimations, but they are not indispensable, as driftless attitude estimations
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can be obtained based on the inertial measurement unit (IMU) without their use [2].
Proven techniques for attitude estimation in all kinds of platforms that do not rely on
GNSS signals include Gaussian filters [40], deterministic filters [41], complimentary
filters [42], and stochastic filters [43,44]. In the case of the complete pose estimation
(both attitude and position), it is indispensable to employ the velocity or incremental
position observations obtained with VO methods in the absence of the absolute refer-
ences provided by GNSS receivers. The literature includes cases based on Gaussian
filters [45] and, more recently, nonlinear deterministic filters [46], stochastic filters [47],
Riccati observers [48], and invariant extended Kalman filters, or EKFs [49].

• The alternative is to employ VO optimizations with the assistance of the inertial
navigation estimations, reducing the pose estimation drift inherent to VO. This is
known as visual inertial odometry (VIO) [50,51], which can also be combined with
image registration to fully eliminate the remaining pose drift. A previous article by
the authors, [1], describes how the nonlinear VO optimizations can be enhanced by
adding priors based on the inertial attitude and altitude estimations. VIO has matured
significantly in the last few years, with detailed reviews available in [50–54].

There exist several open-source VIO packages, such as the multistate constraint
Kalman filter (MSCKF) [55], the open keyframe visual inertial SLAM (OKVIS) [56,57],
the robust visual inertial odometry (ROVIO) [58], the monocular visual inertial navigation
system (VINS-Mono) [59], SVO combined with multisensor fusion (MSF) [33,34,60,61], and
SVO combined with incremental smoothing and mapping (iSAM) [33,34,62,63]. All these
open-source pipelines are compared in [50], and their results, when applied to the EuRoC
micro air vehicles (MAV) data sets, ref. [64] are discussed in [65]. There also exist various
other published VIO pipelines with implementations that are not publicly available [66–72],
and there are also others that remain fully proprietary.

The existing VIO schemes to fuse the visual and inertial measurements can be broadly
grouped into two paradigms: loosely coupled pipelines process the measurements separately,
resulting in independent visual and inertial pose estimations, which are then fused to
obtain the final estimate [73,74]; on the other hand, tightly coupled methods compute the
final pose estimation directly from the tracked image features and the IMU outputs [50,51].
Tightly coupled approaches usually result in higher accuracy, as they use all the information
available and take advantage of the IMU integration to predict the feature locations in the
next frame. Loosely coupled methods, although less complex and more computationally ef-
ficient, lose information by decoupling the visual and inertial constraints, and are incapable
of correcting the drift present in the visual estimator.

A different classification involves the number of images involved in each estima-
tion [50,51,75], which is directly related with the resulting accuracy and computing de-
mands. Batch algorithms, also known as smoothers, estimate multiple states simultaneously
by solving a large nonlinear optimization problem or bundle adjustment, resulting in the
highest possible accuracy. Valid techniques to limit the required computing resources in-
clude the reliance on a subset of the available frames (known as keyframes), the separation of
tracking and mapping into different threads, and the development of incremental smooth-
ing techniques based on factor graphs [63]. Although employing all available states (full
smoothing) is sometimes feasible for very short trajectories, most pipelines rely on sliding
window or fixed lag smoothing, in which the optimization relies exclusively on the measure-
ments associated with the last few keyframes, discarding both the old keyframes and other
frames that have not been cataloged as keyframes. On the other hand, filtering algorithms
restrict the estimation process to the latest state; they require less resources but suffer from
permanently dropping all previous information and a much harder identification and
removal of outliers, both of which lead to error accumulation or drift.

Additional VIO pipelines are also being developed to take advantage of event cam-
eras [76,77], which measure per-pixel luminosity changes asynchronously instead of cap-
turing images at a fixed rate. Event cameras hold very advantageous properties for visual
odometry, including low latency, very high frequency, and excellent dynamic range, which
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make them well suited to deal with high-speed motion and high dynamic range, which are
problematic for traditional VO and VIO pipelines. On the negative side, new algorithms
are required to cope with the sequence of asynchronous events they generate [50].

4. Novelty

The main novelty of this article (second phase of the fusion between the inertial and
visual navigation systems) lies in the following two topics:

• The use of a modified EKF scheme within the navigation filter (Section 8) based on
Lie algebra to ensure that the estimated aircraft body attitude is propagated along its
tangent space and never deviates from its SO(3) manifold, reducing the error growth
inherent to concatenating estimations over a long period of time.

• The transformation within the VVS (Section 7) of the position estimations obtained by
the visual system into incremental displacement measurements, which are unbiased
and hence more adequate to be used as observations within an EKF.

When comparing the integrated system (which includes both [1] and this article)
with the state of the art discussed in Section 3, the proposed approach combines the high
accuracy representative of tightly coupled smoothers with the lack of complexity and
reduced computing requirements of filters and loosely coupled systems. The existence of
two independent solutions (inertial and visual) hints to a loosely coupled approach, but in
fact, the proposed solution shares most traits with tightly coupled pipelines:

• No information is discarded because the two solutions are not independent, as each
simultaneously feeds and is fed by the other. The visual estimations depend on the
inertial outputs, while the inertial filter uses the visual incremental displacement
estimations as observations. Unlike loosely coupled solutions, the visual estimations
for attitude and altitude are not allowed to deviate from the inertial ones above a
certain threshold, so they do not drift.

• The two estimations are never fused together, as the inertial solution constitutes
the final output, while the sole role of the visual outputs is to act as the previously
mentioned incremental sensor.

With respect to the last criterion found in Section 3, the proposed approach contains
both a filter within the inertial system and a keyframe-based sliding window smoother
within the visual one, obtaining the best properties of both categories.

5. Application

The visual inertial solutions listed in Section 3 are quite generic with respect to the
platforms on which they are mounted, with most applications focused on the short distance
trajectories of ground vehicles, indoor robots, and multirotors, as well as with respect to the
employed sensors, which are usually restricted to the IMU and one or more cameras. The
proposed approach differs in its more restricted application, as it focuses on the specific
case of long-distance GNSS-denied turbulent flight of fixed-wing autonomous aircraft:

• Being restricted to aerial vehicles, it takes advantage of the extra sensors already
present on board these platforms, such as magnetometers and barometer.

• The fixed-wing limitation is caused by the visual system relying on the pitot tube to
continue navigating when overflying texture-poor terrain [1].

• As exemplified by the two scenarios employed to evaluate the algorithms, the pro-
posed approach can cope with heavy turbulence, which increases the platform acceler-
ations as well as the optical flow between consecutive images. Although not discussed
in the results, the turbulence level has a negligible effect on the navigation accuracy as
long as it remains below a sufficiently elevated threshold.

• With the exception of atmospheric pressure changes, which accumulate as vertical po-
sition estimation errors (Section 10.2), weather changes such as wind and atmospheric
temperature have no effect on the navigation accuracy.
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• It focuses more on GNSS-denied environments of a different nature than those experi-
enced by other platforms, as it can always be assumed that GNSS signals are present
at the beginning of the flight, and if they disappear, the reason is likely to be technical
error or intentional action, so the vehicle needs to be capable of flying for long periods
of time in GNSS-denied conditions.

• The reliance on visual navigation imposes certain restrictions, such as the need for
sufficient illumination, lack of cloud cover below the aircraft, and impossibility to
navigate over large bodies of water. The use of infrared cameras, although out of the
scope of this article, is a promising research area for the first two restrictions, but the
lack of static features makes visual systems inadequate for navigation over water.

6. Proposed Visual Inertial Navigation Architecture

The navigation system processes the measurements of the various onboard sensors
(x̃ = xSENSED) and generates the estimated state (x̂ = xEST) required by the guidance and
control systems, which contains an estimation of the true aircraft state x = xTRUTH. Note
that in this article, the images I are considered part of the sensed states x̃ = xSENSED as the
camera is treated as an additional sensor. Hardware and computing power limitations
often require the camera and visual algorithms to operate at a lower frequency than those
of inertial algorithms and the remaining sensors. Table 1 includes the operating frequencies
employed to generate the Section 10 results. Note that the index t identifies a discrete time
instant (tt) for the aircraft trajectory, s (ts) refers to the sensor outputs, n (tn) identifies an
inertial estimation, c (tc) is a control system execution, i (ti) applies to a camera image and
the corresponding visual estimation, and g (tg) refers to a GNSS receiver observation.

Table 1. Working frequencies of the different systems.

Discrete Time Frequency Variable System

tt = t ·∆tTRUTH 500 Hz x = xTRUTH Flight physics
ts = s ·∆tSENSED 100 Hz x̃ = xSENSED Sensors
tn = n ·∆tEST 100 Hz x̂ = xEST Inertial navigation
tc = c ·∆tCNTR 50 Hz δTARGET, δCNTR Guidance and control
ti = i ·∆tIMG 10 Hz xIMG Visual navigation and camera
tg = g ·∆tGNSS 1 Hz GNSS receiver

The proposed strategy to fuse the inertial and visual navigation systems is based on
their performances as standalone systems [1,2], as summarized in Table 2. Inertial systems
are clearly superior to visual ones in GNSS-denied attitude and altitude estimation since
their estimations are bounded and do not drift. In the case of horizontal position, both
systems drift and are hence inappropriate for long-term GNSS-denied navigation, but for
different reasons; while the inertial drift is the result of integrating the bounded ground
velocity estimations without absolute position observations, the visual one originates on
the slow but continuous accumulation of estimation errors between consecutive images.

Table 2. Summary of inertial and visual standalone navigation systems.

GNSS-Denied Inertial Visual

Attitude Bounded by sensor quality Drifts
Yaw worse than pitch and bank Yaw better than pitch and bank

Vertical Bounded by atmospheric physics Drifts
Horizontal Drifts Drifts

It is also worth noting that inertial estimations are significantly noisier than visual
ones, so the latter, although worse on an absolute basis, are often more accurate when
evaluating the estimations incrementally, this is, from one image to the next or even for the
time interval corresponding to a few images. When applied to the horizontal position, the
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high accuracy of the incremental image-to-image displacement observations (equivalent
to ground velocity observations) constitutes the basis for the second phase of the fusion
described in the following sections.

This article proposes an inertial navigation filter (Section 8) that, in the absence of
GNSS signals, takes advantage of the incremental displacement outputs generated by a
visual system as if they were the observations generated by an additional sensor (Section 7),
denoted as the virtual vision sensor, or VVS. The proposed EKF relies on the observations
provided by the onboard accelerometers, gyroscopes, and magnetometers, combined with
those of the GNSS receiver when signals are available, or those of the VVS when they are
not. The inertial navigation filter and the visual system continuously assist and control each
other, as depicted in Figure 2. As the integrated system needs to estimate the state x̂ = xEST

at every tn = ts = n ·∆tEST = s ·∆tSENSED, it has three different operation modes, depending
not only on whether GNSS signals are available or not, but also on whether there exist a
position and ground velocity observation at the execution time tn = ts:

• Given the operating frequencies of the different sensors listed in Table 1, most nav-
igation filter cycles (99 out of 100 for GNSS-based navigation, 9 out of 10 in case of
GNSS-denied conditions) can not rely on the position and ground velocity observa-
tions provided by either the GNSS receiver or the VVS. These cycles successively apply
the EKF time update, measurement update, and reset equations (Section 8), noting that
the filter observation system needs to be simplified by removing the ground velocity
and position observations, which are not available.

• GNSS-denied filter cycles for which the VVS position and ground velocity observations
are available at the required time (tn = n ·∆tEST = ti = i ·∆tIMG) rely on the Figure 3
scheme. Note that this case only occurs in 1 out of 10 executions for GNSS-denied
conditions. The first part of the process is exactly the same as in the previous case,
estimating first the a priori state and covariance (x̂−n , P−n ), followed by the a posteriori
ones (x̂+PRE,n, P+

PRE,n), and finally the estimated state (x̂PRE(tn) = xEST,PRE(tn)). Note that
as these estimations do not employ the VVS measurements (that is, do not employ
the Ii image corresponding to ti), they are preliminary and hence denoted with the
subindex PRE to avoid confusion.
The preliminary estimation x̂PRE,n = xEST,PRE,n together with the Ii image is then passed
to the visual system [1] to obtain a visual state xIMG(ti), which, as explained in Section 7,
is equivalent to the VVS position and ground velocity outputs. Only then it is possible
to apply the complete navigation filter measurement update and reset equations for a
second time to obtain the final state estimation x̂(tn) = xEST(tn).

• GNSS-based filter cycles for which the GNSS receiver position and ground velocity
observations are available at the required time (tn = n ·∆tEST = tg = g ·∆tGNSS). This
case, which only occurs in one out of a hundred executions when GNSS signals are
available, is in fact very similar to the first one above, with the only difference being
that the navigation filter observation system does not need any simplifications.
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velocity observations provided by either the GNSS receiver or the VVS. These cycles
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(section 8), noting that the filter observation system needs to be simplified by removing
the ground velocity and position observations, which are not available.
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7. Virtual Vision Sensor

The virtual vision sensor (VVS) constitutes an alternative denomination for the incre-
mental displacement outputs obtained by the inertial assisted visual system described
in [1]. Its horizontal position estimations drift with time due to the absence of absolute
observations, but when evaluated on an incremental basis, that is, from one image to the
next, the incremental displacement estimations are quite accurate. This section shows how
to convert these incremental estimations into measurements for the geodetic coordinates
(T̃

E,GDT
) and the FN ground velocity (ṽN), so the VVS can smoothly replace the GNSS receiver

within the navigation filter in the absence of GNSS signals (Section 8).
Their obtainment relies on the current visual state xIMG(ti) = xIMG,i generated by the

visual system, the one obtained with the previous frame xIMG(ti−1) = xIMG,i−1, as well as the
estimated state x̂(tn−δt) = xEST(tn−δt) = x̂n−δt corresponding to the previous image generated
by the inertial system. Note that as t = ti = i ·∆tIMG = tn = n ·∆tEST, the relationship between
i and n is as follows, where δt = 10 is the number of inertial executions for every image
being processed (Table 1):

n = i · ∆tIMG

∆tEST
= i · δt (1)

• To obtain the VVS velocity observations (ṽN), it is necessary to first compute the
geodetic coordinate (longitude λ, latitude ϕ, altitude h) time derivative based on the
difference between their values corresponding to the last two images (2), followed
by their transformation into ṽN per (3), in which M and N represent the WGS84 radii
of curvature of meridian and prime vertical, respectively. Note that ṽN is very noisy
given how it is obtained.

ṪE,GDT
IMG,i =

[
λ̇IMG,i ϕ̇IMG,i ḣIMG,i

]T
=

TE,GDT
IMG,i − TE,GDT

IMG,i−1

∆tIMG
(2)

ṽN
n =




[
M(ϕ̃n−δt) + h̃n−δt

]
ϕ̇IMG,i[

N(ϕ̃n−δt) + h̃n−δt

]
cos ϕ̃n−δt λ̇IMG,i

−ḣIMG,i


 (3)

• With respect to the VVS geodetic coordinates, the sensed longitude and latitude can be
obtained per (5) and (6) based on propagating the previous inertial estimations (those
corresponding to the time of the previous VVS reading) with their visually obtained
time derivatives. To avoid drift, the geometric altitude h̃ is estimated based on the
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barometer observations assuming that the atmospheric pressure offset remains frozen
from the time the GNSS signals are lost [2].

T̃
E,GDT
n =

[
λ̃n ϕ̃n h̃n

]T
(4)

λ̃n = λ̂n−δt + λ̇IMG,i ∆tIMG (5)

ϕ̃n = ϕ̂n−δt + ϕ̇IMG,i ∆tIMG (6)

With respect to the covariances, the authors have assigned the VVS an ad hoc position
standard deviation one order of magnitude lower than that employed for the GNSS receiver
so the navigation filter (Section 8) closely tracks the position observations provided by the
VVS. Given the noisy nature of the virtual velocity observations, the authors have preferred
to employ a dynamic evaluation for the velocity standard deviation, which coincides with
the absolute value (for each of the three dimensions) of the difference between each new
velocity observation and the running average of the last 20 readings (equivalent to the
last 2 s). In this way, when GNSS signals are available, the covariance of the position
observations is higher, so the navigation filter slowly corrects the position estimations
obtained from integrating the state equations instead of closely adhering to the noisy
GNSS position measurements; when GNSS signals are not present, the VVS low position
observation covariance combined with the high-velocity one implies that the navigation
EKF (Section 8) closely tracks the VVS position readings (4), continuously adjusting the
aircraft velocity estimations with little influence from the VVS velocity observations in
order to complement its position estimations.

8. Proposed Navigation Filter

As graphically depicted in Figure 2, the navigation filter estimates the aircraft pose
x̂ = xEST based on the observations provided by the onboard sensors with the exception of
the camera, x̃ \ I = xSENSED \ I, complemented if necessary (in the absence of GNSS signals)
by the visual observations xIMG provided by the VVS. Implemented as an EKF, the objective
of the navigation filter is the estimation of the aircraft attitude between the FN and FB frames
represented by its unit quaternion q̂NB [3] together with the aircraft position represented by
its geodetic coordinates T̂E,GDT. Additional state vector members include the aircraft angular
velocity ω̂B

NB; the ground velocity v̂N; the specific force f̂B
IB or nongravitational acceleration

from FI to FB; the full gyroscope, accelerometer, and magnetometer errors (ÊGYR, ÊACC, ÊMAG)
that include all sensor error sources except system noise; and the difference B̂N

DEV between
the Earth magnetic field provided by the onboard model BN

MOD and the real one BN
REAL.

x(t) =
[
qNB ωB

NB TE,GDT vN fB
IB EGYR EACC EMAG BN

DEV

]T (7)

Rigid body rotations are characterized by their orthogonality (they preserve the norm
of vectors and the angle between vectors) and their handedness (they preserve the ori-
entation or cross product between vectors); when encoded as quaternions, these two
constraints converge into a single one, the unitary norm, as only unit quaternions are
valid parameterizations of rigid body rotations [3–5]. As the body attitude qNB belongs to
the non-Euclidean special orthogonal group or SO(3), the classical EKF scheme [78], which
relies on linear algebra, shall be replaced by the alternative formulation proposed here
to ensure that the estimated attitude never deviates from its SO(3) manifold, that is, to
ensure that qNB remains unitary at all times [79]. Relying on linear algebra implies treating
the unit quaternion qNB as a 4-vector in both the time update and measurement update
equations of each EKF cycle, and then normalizing the resulting nonunit quaternion at
the end of each cycle; although this is an established practice that provides valid results
when operating at the high frequencies typical of inertial sensors, the slower frequencies
characteristic of visual pipelines (refer to ∆tSENSED and ∆tIMG in Table 1) when combined
with the lack of absolute position observations in the absence of GNSS signals result in
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slight but non-negligible inaccuracies in each cycle, which can accumulate into significant
errors when the aircraft needs to navigate without absolute position observations for long
periods of time.

The use of Lie theory, with its manifolds and tangent spaces, enables the construction
of rigorous calculus techniques to handle uncertainties, derivatives, and integrals of non-
Euclidean elements with precision and ease [4]. Lie theory can hence be employed to
generate an alternative EKF scheme suitable for state vectors containing non-Euclidean
components [5]. This alternative EKF scheme differs in four key points from the classical
Euclidean one; these four differences are discussed in the following paragraphs. Note that
the GNSS-denied navigation results discussed in Section 10 cannot be obtained without the
use of Lie algebra and the alternative EKF formulation.

The most rigorous and precise way to adapt the EKF scheme to the presence of
non-Euclidean elements, such as rigid body rotations, is to exclude the rotation ele-
ment qNB ∈ SO(3) from the state vector, replacing the unit quaternion qNB by a local
(FB) tangent space perturbation represented by the rotation vector ∆rB

NB ∈ R3 [4,5]. Note
that the state vector (9) includes the velocity of qNB as it moves along its manifold (its
angular velocity ωB

NB), also contained in the local (FB) tangent space. Each filter step
now consists in estimating the rotation element q̂NBn = q̂NB(tn) ∈ SO(3), the state vector
x̂n = x̂(tn) =

[
∆r̂B

NBn ω̂B
NBn ẑn

]T ∈ R27, and its covariance Pn = P(tn) ∈ R27×27, based on
their values at tn−1 = (n− 1)∆t and the observations at tn = n ∆t.

R(t) = qNB ∈ SO(3)(t) (8)

x(t) =
[
∆rB

NB ωB
NB z

]T
=
[
∆rB

NB p
]T

=
[
∆rB

NB ωB
NB TE,GDT vN fB

IB EGYR EACC EMAG BN
DEV

]T ∈ R27(t) (9)

The observations yn are provided by the gyroscopes, which measure the inertial angu-
lar velocity ω̃B

IB, the accelerometers that provide the specific force f̃
B

IB or nongravitational
acceleration, the magnetometers that measure the magnetic field B̃

B
, and either the GNSS

receiver or the VVS (Section 7) that provides the position T̃
E,GDT

(geodetic coordinates) and
ground velocity ṽN observations. Note that the measurements are provided at different
frequencies, as listed in Table 1; most are available every ∆tSENSED = 0.01 s, but the ground
velocity and position measurements are generated every ∆tGNSS = 1 s if provided by the
GNSS receiver or every ∆tIMG = 0.1 s when the GNSS signals are not available and the
readings are instead supplied by the VVS.

yn =
[
ω̃B

IB f̃
B

IB B̃
B

T̃
E,GDT

ṽN
]T
∈ R15

n (10)

8.1. Time Update Equations

The variation with time of the state variables (11) comprises a continuous time non-
linear state system composed of three exact equations (with no simplifications), (12),
(14), and (15), together with six other differential Equations (13) and (16) in which the
filter does not posses any knowledge about the time derivatives of the state variables,
which are hence set to zero. The three exact equations are the following:

• The rotational motion time derivative (12) [4,5];
• The geodetic coordinates kinematics (14);
• The aircraft velocity dynamics (15) [2].

ẋ(t) = [∆ṙB
NB ω̇B

NB ż]T = f
(
qNB(t)⊕∆rB

NB(t), ωB
NB(t), z(t), w(t), t

)
(11)

ẋ1−3 = ∆ṙB
NB = ωB

NB = x4−6 (12)

ẋ4−6 = ω̇B
NB = 03 (13)

ẋ7−9 = ṪE,GDT
=

[
vN

2
[N(ϕ) + h] cos ϕ

vN
1

M(ϕ) + h
− vN

3

]T

(14)
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ẋ10−12 = v̇N = (qNB ⊕∆rB
NB)⊗ fB

IB ⊗ (qNB ⊕∆rB
NB)
∗ − [ωN

EN]× vN + gN
c,MOD − aN

cor (15)

ẋ13−27 =
[
ḟ

B

IB ĖGYR ĖACC ĖMAG ḂN
DEV

]T
= 015 (16)

Note that in expression (15), ωN
EN represents the FN motion angular velocity experienced

by any object that moves without modifying its attitude with respect to the Earth surface,
gN

c,MOD constitutes the gravity acceleration modeled by the navigation system, and aN
cor

represents the Coriolis acceleration also viewed in FN. In expression (11), w is the process
noise that, although present, is not shown in Equations (12) through (16).

It is important to remark that this alternative EKF implementation, which removes
the rotation element qNB from the state vector and instead relies on the local tangent space
perturbation ∆rB

NB, avoids the use of (17), whose integration in the classical EKF scheme
considers the unit quaternion as a Euclidean 4-vector without respecting its SO(3) unitary
constraint, requiring a normalization after each filter step. Avoiding these normalizations
and their associated errors constitutes the first significant advantage of employing the
alternative EKF scheme presented in this article.

q̇NB =
1
2

qNB ⊗ωB
NB (17)

The linearization of the (11) system results in (18), which makes use of the system ma-
trix A(t) = ∂f/∂x(w = 0) ∈ R27×27, where the obtainment of the various Jacobians J is de-
scribed in Appendix A. Those components of A not individually listed in (19) through (23)
are zero. Note that the linearization neglects the influence of the geodetic coordinates
TE,GDT on four different terms (ṪE,GDT, ωN

EN, gN
c,MOD, and aN

cor) present in the (11) differential
equations, but includes the influence of the aircraft velocity vN on three of them (gravity
does not depend on velocity). The reason is that the vN variation amount that can be
experienced in a single state estimation step can have a significant influence on the values
of the variables considered, while that of the geodetic coordinates TE,GDT does not and hence
can be neglected.

ẋ(t) = A(t) x(t) + w̃(t) (18)

A1−3,4−6 =
d∆ṙB

NB

dωB
NB

= I3x3 (19)

A7−9,10−12 =
dṪE,GDT

dvN
= J ṪE,GDT

vN (20)

A10−12,1−3 =
dv̇N

d∆rB
NB

= J
qNB ⊗ fB

IB ⊗ q∗NB
RNB

(21)

A10−12,10−12 =
dv̇N

dvN
= −

[
ωN

EN

]
× +

[
vN
]
× J ωN

EN

vN − J aN
cor

vN (22)

A10−12,13−15 =
dv̇N

dfB
IB

= J
(
qNB ⊕∆rB

NB

)
⊗ fB

IB ⊗
(
qNB ⊕∆rB

NB

)∗
fB

IB
(23)

The use of Lie Jacobians within (21) and (23), as well as in (31), (33), and (37), (39) below,
constitutes the second difference between the proposed EKF scheme and the Euclidean
one (refer to Appendix A for details on how these Jacobians are obtained). Although
not intuitive, Lie Jacobians adhere to the concept of matrix derivative (Jacobian) as the
infinitesimal variations in their formulation are contained within the corresponding tangent
spaces and do not deviate from them [4,5]. In contrast, employing the classical EKF scheme
with qNB as part of the state vector implies establishing independent partial derivatives
with respect to each of the four quaternion coefficients, which lack any physical meaning in
the absence of the unitary constraint that links their values together.
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8.2. Measurement Update Equations

The discrete time nonlinear observation system (24) contains the observations provided
by the different sensors, without any simplifications. ωN

IE represents the Earth angular
velocity (viewed in FN) caused by its rotation around the iE

3 axis at a constant rate ωE,
and vn represents the measurement or observation noise. Note that although present,
measurement noise vn is not shown in Equations (25) through (29).

yn = h
(
qNBn ⊕∆rB

NBn, ωB
NBn, zn, vn, tn

)
(24)

ω̃B
IB = ωB

NB +
(
qNB ⊕∆rB

NB

)∗ ⊗
(
ωN

IE + ωN
EN

)
⊗
(
qNB ⊕∆rB

NB

)
+ EGYR (25)

f̃
B

IB = fB
IB + EACC (26)

B̃
B

=
(
qNB ⊕∆rB

NB

)∗ ⊗
(
BN

MOD − BN
DEV

)
⊗
(
qNB ⊕∆rB

NB

)
+ EMAG (27)

T̃
E,GDT

= TE,GDT (28)

ṽN = vN (29)

Its linearization results in the following output matrix Hn = ∂h/∂xn(vn = 0) ∈ R15x27,
in which Appendix A describes the obtainment of the various Jacobians J present in (31),
(33), (37), and (39). Those components of H not individually listed in (31) through (41) are
zero. As in the state system case above, the linearization also neglects the influence of the
geodetic coordinates TE,GDT on three different terms (ωN

IE, ωN
EN, and BN

MOD) present in the (24)
observation equations.

yn ≈ Hn xn + ṽn (30)

H1−3,1−3 =
dω̃B

IB

d∆rB
NB

= J
q∗NB ⊗ (ωN

IE + ωN
EN)⊗ qNB

RNB
(31)

H1−3,4−6 =
dω̃B

IB

dωB
NB

= I3x3 (32)

H1−3,10−12 =
dω̃B

IB

dvN
= J

(qNB ⊕∆rB
NB)
∗ ⊗ωN

EN ⊗ (qNB ⊕∆rB
NB)

ωN
EN

J ωN
EN

vN (33)

H1−3,16−18 =
dω̃B

IB

dEGYR
= I3x3 (34)

H4−6,13−15 =
df̃

B

IB

dfB
IB

= I3x3 (35)

H4−6,19−21 =
df̃

B

IB

dEACC
= I3x3 (36)

H7−9,1−3 =
dB̃

B

d∆rB
NB

= J
q∗NB ⊗ (BN

MOD − BN
DEV)⊗ qNB

RNB
(37)

H7−9,22−24 =
dB̃

B

dEMAG
= I3x3 (38)

H7−9,25−27 =
dB̃

B

dBN
DEV

= − J
(qNB ⊕∆rB

NB)
∗ ⊗ BN

DEV ⊗ (qNB ⊕∆rB
NB)

BN
DEV

(39)

H10−12,7−9 =
dT̃

E,GDT

dTE,GDT = I3x3 (40)

H13−15,10−12 =
dṽN

dvN
= I3x3 (41)

8.3. Covariances

Based on the above linearized continuous state system (18) and discrete observations (30),
the time and measurement update equations within each EKF cycle (there are no differences
here between the proposed and classical EKF schemes) [5,78] result in estimations for both
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the state vector x̂n =
[
∆r̂B

NBn ω̂B
NBn ẑn

]T as well as its covariance Pn. Note that the definition
of the covariance matrix in (42) combines that of its Euclidean components (46) with its
local Lie counterparts (43) [5], with additional combined members. The mean or expect
value is represented by µ.

Pn =

[
CRRR,n CRRp,n

CRpR,n Cpp,n

]
∈ R27×27 (42)

CRRR,n = E
[
∆rB

NBn ∆rB,T
NBn

]
= E

[(
RNBn 	 µR,NBn

) (
RNBn 	 µR,NBn

)T
]
∈ R3×3 (43)

CRRp,n = E
[

∆rB
NBn

(
pn − µp,n

)T
]
= E

[(
RNBn 	 µR,NBn

)(
pn − µp,n

)T
]
∈ R3×24 (44)

CRpR,n = E
[(

pn − µp,n

)
∆rB,T

NBn

]
= E

[(
pn − µp,n

) (
RNBn 	 µR,NBn

)T
]
∈ R24×3 (45)

Cpp,n = E
[(

pn − µp,n

) (
pn − µp,n

)T
]
∈ R24×24 (46)

Uncertainty around a given SO(3) attitude is properly expressed as a covariance on
the tangent space [4]. The definition of CRRR,n in (43) represents the third advantage of the
proposed EKF scheme, as it implements the concept of covariance but applied to SO(3)
attitudes instead of Euclidean vectors, as in (46). Its size is R3×3, as rotations contain three
degrees of freedom, and each coefficient contains the covariance when rotating about a
specific axis viewed in the local (FB) tangent space; in contrast, introducing the qNB unit
quaternion in the state vector demands an R4×4 covariance matrix in which the coefficients
do not have any physical meaning. Note that if required, it is possible to obtain the
covariance for each of the three Euler angles (yaw, pitch, roll) by rotating CRRR,n to view it
in frames other than FB [5].

8.4. Reset Equations

The fourth and final difference between the suggested EKF scheme and the Euclidean
one is that after each filter estimation cycle, it is necessary to reset the estimated tangent
space perturbation ∆r̂B

NBn to zero while updating the estimations for the rotation element
q̂NBn and the error covariance Pn accordingly; the estimations for angular velocity ω̂B

NBn and
the Euclidean components ẑn are not modified. Note that the accuracy of the linearizations
required to obtain the A and H system and output matrices is based on first-order Taylor
expansions, which are directly related to the size of the tangent space perturbations. Al-
though it is not strictly necessary to reset the perturbations in every EKF cycle, the accuracy
of the whole state estimation process is improved by maintaining the perturbations as small
as possible, so it is recommended to never bypass the reset step.

Taking into account that the rotation element is going to be updated per (49), the error
covariance is propagated to the new rotation element as follows [5], where the Lie Jacobian
is provided by (A7) within Appendix A:

Pn ←− D Pn DT (47)

D =

[
J

q̂NBn ⊕∆r̂B
NBn

RNB
03×24

024×3 I24×24

]
∈ R27×27 (48)

Last, the rotation element is propagated by means of the local rotation vector pertur-
bation, which is itself reset to zero:

q̂NBn ←− q̂NBn ⊕∆r̂B
NBn (49)

∆r̂B
NBn ←− 03 (50)
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Different position (geodetic coordinates) and ground velocity system noise values are
employed depending on whether the measurements are provided by the GNSS receiver or
the VVS:

• Coupled with the observation covariances discussed in Section 7, lower geodetic
coordinate system noise values are employed when GNSS signals are available, as the
objective is for the solution to avoid position jumps by smoothly following the state
equations and only slightly updating the position based on the GNSS observations to
avoid any position drift in the long term.

• When the position observations are instead supplied by the VVS, higher system noise
values are employed so the EKF relies more on the observations and less on the
integration. Note that the VVS velocity observations are very noisy because of (2), so
it is better if the EKF closely adheres to the position observations that originate at the
visual system, correcting in each step as necessary.

9. Testing: High-Fidelity Simulation and Scenarios

To evaluate the performance of the proposed navigation algorithms, this article relies
on Monte Carlo simulations consisting of one hundred runs each of two different scenarios
based on the high-fidelity stochastic flight simulator graphically depicted in Figure 4. The
simulator, whose open source C++ implementation is available in [80], models the flight of a
fixed-wing piston engine autonomous UAV.
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based on the high fidelity stochastic flight simulator graphically depicted in figure 4. The
simulator, whose open source C++ implementation is available in [80], models the flight of a
fixed wing piston engine autonomous UAV.
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The simulator consists on two distinct processes:

• The first, represented by the yellow blocks on the right of figure 4, models the physics
of flight and the interaction between the aircraft and its surroundings that results in
the real aircraft trajectory x = xTRUTH.

• The second, represented by the green blocks on the left, contains the aircraft systems
in charge of ensuring that the resulting trajectory adheres as much as possible to
the mission objectives. It includes the different sensors whose output comprise the
sensed trajectory x̃ = xSENSED, the navigation system in charge of filtering it to obtain
the estimated trajectory x̂ = xEST, the guidance system that converts the reference
objectives xREF into the control targets δTARGET, and the control system that adjusts
the position of the throttle and aerodynamic control surfaces δCNTR so the estimated
trajectory x̂ is as close as possible to the reference objectives xREF. Table 1 lists the
working frequencies of the various blocks represented in figure 4.

All components of the flight simulator have been modeled with as few simplifications as
possible to increase the realism of the results. With the exception of the aircraft performances
and its control system, which are deterministic, all other simulator components are treated
as stochastic and hence vary from one execution to the next, enhancing the significance of
the Monte Carlo simulation results.
Most VIO packages discussed in section 3 include in their release articles an evaluation
when applied to the EuRoC MAV data sets [64], and so do independent evaluations such
as [65]. These data sets contain perfectly synchronized stereo images, IMU measurements,
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The simulator consists of two distinct processes:

• The first, represented by the yellow blocks on the right of Figure 4, models the physics
of flight and the interaction between the aircraft and its surroundings, which results
in the real aircraft trajectory x = xTRUTH.

• The second, represented by the green blocks on the left, contains the aircraft systems
in charge of ensuring that the resulting trajectory adheres as much as possible to
the mission objectives. It includes the different sensors whose output comprises the
sensed trajectory x̃ = xSENSED, the navigation system in charge of filtering it to obtain
the estimated trajectory x̂ = xEST, the guidance system that converts the reference
objectives xREF into the control targets δTARGET, and the control system that adjusts
the position of the throttle and aerodynamic control surfaces δCNTR so the estimated
trajectory x̂ is as close as possible to the reference objectives xREF. Table 1 lists the
working frequencies of the various blocks represented in Figure 4.

All components of the flight simulator have been modeled with as few simplifications
as much as possible to increase the realism of the results. With the exception of the
aircraft performances and its control system, which are deterministic, all other simulator
components are treated as stochastic and hence vary from one execution to the next,
enhancing the significance of the Monte Carlo simulation results.

Most VIO packages discussed in Section 3 include in their release articles an evaluation
when applied to the EuRoC MAV data sets [64], and so do independent evaluations, such
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as [65]. These data sets contain perfectly synchronized stereo images, IMU measurements,
and ground truth readings obtained with laser, for eleven different indoor trajectories
flown with a MAV, each with a duration in the order of 2 min and a total distance in
the order of 100 m. This fact by itself indicates that the target application of exiting VIO
implementations differs significantly from the main focus of this article, as there may exist
accumulating errors that are completely nondiscernible after such short periods of time,
but that grow nonlinearly and have the capability of inducing significant pose errors when
the aircraft remains aloft for long periods of time. The algorithms presented in this article
are hence tested through simulation under two different scenarios designed to analyze
the consequences of losing the GNSS signals for long periods of time; these two scenarios
coincide with those employed in [1,2] to evaluate standalone visual and inertial algorithms.
Most parameters comprising the scenarios are defined stochastically, resulting in different
values for every execution. Note that all results shown in Section 10 are based on Monte
Carlo simulations comprising one hundred runs of each scenario, testing the sensitivity of
the proposed navigation algorithms to a wide variety of values in the parameters.

• Scenario #1 has been defined with the objective of adequately representing the chal-
lenges faced by an autonomous fixed-wing UAV that suddenly cannot rely on GNSS
and hence changes course to reach a predefined recovery location situated at approx-
imately 1 h of flight time. In the process, in addition to executing an altitude and
airspeed adjustment, the autonomous aircraft faces significant weather and wind field
changes that make its GNSS-denied navigation even more challenging.
With respect to the mission, the stochastic parameters include the initial airspeed, pres-
sure altitude, and bearing (vTAS,INI, HP,INI, ØINI); their final values (vTAS,END, HP,END, ØEND);
and the time at which each of the three maneuvers is initiated (turns are executed with
a bank angle of ξTURN = ±10◦. Altitude changes employ an aerodynamic path angle
of γTAS,CLIMB = ±2◦. Additionally, airspeed modifications are automatically executed
by the control system as set-point changes). The scenario lasts for tEND = 3800 s, while
the GNSS signals are lost at tGNSS = 100 s.
The wind field is also defined stochastically, as its two parameters (speed and bearing)
are constant both at the beginning (vWIND,INI, ØWIND,INI) and conclusion
(vWIND,END, ØWIND,END) of the scenario, with a linear transition in between. The spe-
cific times at which the wind change starts and concludes also vary stochastically
among the different simulation runs.
A similar linear transition occurs with the temperature and pressure offsets that define
the atmospheric properties, as they are constant both at the start (∆TINI, ∆pINI) and end
(∆TEND, ∆pEND) of the flight.
The turbulence remains strong throughout the whole scenario, but its specific values
also vary stochastically from one execution to the next.

• Scenario #2 represents the challenges involved in continuing with the original mission
upon the loss of the GNSS signals, executing a series of continuous turn maneuvers
over a relatively short period of time with no atmospheric or wind variations. As
in scenario #1, the GNSS signals are lost at tGNSS = 100 s, but the scenario duration
is shorter (tEND = 500 s). The initial airspeed and pressure altitude (vTAS,INI, HP,INI) are
defined stochastically and do not change throughout the whole scenario; the bearing,
however, changes a total of eight times between its initial and final values, with all
intermediate bearing values as well as the time for each turn varying stochastically
from one execution to the next. Although the same turbulence is employed as in
scenario #1, the wind and atmospheric parameters (vWIND,INI, ØWIND,INI, ∆TINI, ∆pINI)
remain constant throughout scenario #2.

10. Results: Navigation System Error in GNSS-Denied Conditions

This section presents the results obtained with the proposed fully integrated visual
inertial navigation system when executing Monte Carlo simulations of the two GNSS-
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denied scenarios introduced in Section 9, each consisting of one hundred executions. They
are compared with those obtained with two other navigation systems:

• A standalone inertial system specifically designed to lower the GNSS-denied hor-
izontal position drift, for which the results obtained with the same two scenarios
are described in [2]. The attitude estimation error does not drift and is bounded by
the quality of the onboard sensors, ensuring that the aircraft can remain aloft for as
long as there is fuel available. The vertical position and ground velocity estimation
errors are also bounded by atmospheric physics and do not drift; they depend on
the atmospheric pressure offset and wind field changes that occur since the GNSS
signals are lost. On the other hand, the horizontal position drifts as a consequence of
integrating the ground velocity without absolute observations. Note that a standalone
inertial system is hence capable of successfully estimating four of the six SE(3) degrees
of freedom (attitude plus altitude).

• A visual navigation system (which relies exclusively on the images generated by an
onboard camera) aided by the attitude and altitude estimated by the above inertial
system, for which the results are described in [1]. This system slowly drifts in all
six degrees of freedom. Although its attitude and altitude estimation capabilities are
qualitatively inferior to those of the inertial system, its horizontal position error is just
a fraction of what can be achieved without the use of images.

The tables below contain the navigation system error, or NSE (difference between the real
states x and their estimations x̂), incurred by the three navigation systems at the conclusion
of both scenarios, represented by the mean µ, standard deviation σ, and maximum value of
the estimation errors. In addition, the figures depict the variation with time of the NSE mean
(µ, solid lines) and standard deviation (σ, dashed lines) for the one hundred executions.

10.1. Body Attitude Estimation

Table 3 shows the NSE at the conclusion of the scenarios for the norm of the rotation
vector between the real body attitude qNB and its estimation q̂NB, which can be formally
written as ‖∆r̂B

NB‖ = ‖q̂NB 	 qNB‖. In addition, Figure 5 depicts the variation with time of
the body attitude NSE.

Table 3. Aggregated final body attitude NSE (100 runs).

Scenario ‖∆r̂B
NB‖(tEND)[

◦] Inertial Visual Proposed

#1
mean 0.158 0.218 0.100

std 0.114 0.103 0.059
max 0.611 0.606 0.328

#2
mean 0.128 0.221 0.107

std 0.078 0.137 0.068
max 0.369 0.788 0.377

The proposed visual inertial navigation system shows bounded body attitude esti-
mations, with significant improvements with respect to both the inertial and the inertially
assisted visual systems, which can be attributed to various factors. On the one hand, the
navigation filter successfully merges the incremental horizontal displacement observations
supplied by the VVS with the bearing provided by the magnetometers, resulting in better
yaw estimations. In addition, the absence of simplifications in the EKF equations ([2]
describes how, without both GNSS receiver and VVS observations, the filter equations need
to be simplified to protect the filter behavior from the negative effects of inaccurate velocity
and position estimations) ensures that the benefits also reach the already-accurate inertial
pitch and bank angle estimations. Additional body attitude estimation improvements are
achieved by closing the loop (Figure 2) and directly employing the increasingly accurate
inertial estimations to feed the visual system (Section 6).
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10.2. Vertical Position Estimation

Table 4 shows the vertical position NSE (∆ĥ = ĥ− h) at the conclusion of both sce-
narios. The estimation errors are unbiased in all cases as the mean is always significantly
lower than both the standard deviation and the maximum error value.

Table 4. Aggregated final vertical position NSE (100 runs).

Scenario ∆ĥ(tEND)[m] Inertial Visual Proposed

#1
mean −4.18 +22.86 −3.97

std 25.78 49.17 26.12
max −70.49 +175.76 −70.47

#2
mean +0.76 +3.59 +0.74

std 7.55 13.01 7.60
max −19.86 +71.64 −18.86

The evolution with time of the geometric altitude NSE is depicted in Figure 6. Note
that in contrast with Sections 10.1 and 10.3, the altitude error is a scalar that can be either
positive or negative, so the dashed lines (standard deviation) are more indicative of the
relative performance of the various navigation systems, while the solid lines (mean) stay
relatively close to zero when averaging the one hundred executions.

The vertical position estimation accuracy of the proposed system is virtually the same
as that of the standalone inertial one because the navigation filter relies on freezing the
pressure offset estimation when the GNSS signals are lost, exactly the same as the inertial
filter [2]. The resulting altitude estimations are unbiased and bounded, with an error that
depends on the change in pressure offset since the time the GNSS are lost.
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The proposed visual inertial navigation system shows bounded body attitude estimations,
with significant improvements with respect to both the inertial and the inertially assisted
visual systems, which can be attributed to various factors. On one hand, the navigation
filter successfully merges the incremental horizontal displacement observations supplied
by the VVS with the bearing provided by the magnetometers, resulting in better yaw
estimations. In addition, the absence of simplifications in the EKF equations ([2] describes
how without both GNSS receiver and VVS observations, the filter equations need to be
simplified to protect the filter behavior from the negative effects of inaccurate velocity
and position estimations) ensures that the benefits also reach the already accurate inertial
pitch and bank angle estimations. Additional body attitude estimation improvements are
achieved by closing the loop (figure 2) and directly employing the increasingly accurate
inertial estimations to feed the visual system (section 6).
Table 3. Aggregated final body attitude NSE (100 runs)

Scenario ‖∆r̂B
NB‖(tEND)[

◦] Inertial Visual Proposed

#1
mean 0.158 0.218 0.100
std 0.114 0.103 0.059
max 0.611 0.606 0.328

#2
mean 0.128 0.221 0.107
std 0.078 0.137 0.068
max 0.369 0.788 0.377

10.2. Vertical Position Estimation

Table 4 shows the vertical position NSE (∆ĥ = ĥ− h) at the conclusion of both scenarios.
The estimation errors are unbiased in all cases as the mean is always significantly lower
than both the standard deviation or the maximum error value.
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The evolution with time of the geometric altitude NSE is depicted in figure 6. Note that in
contrast with sections 10.1 and 10.3, the altitude error is a scalar than can be either positive

Figure 6. Aggregated vertical position NSE (100 runs).

10.3. Horizontal Position Estimation

Table 5 lists the mean, standard deviation, and maximum value of the horizontal
position NSE at the conclusion of the two scenarios, both in length units and as a percentage
of the total distance flown in GNSS-denied conditions. The three navigation systems
considered exhibit an unrestrained horizontal position drift or error growth with time, as
shown in Figure 7.

Table 5. Aggregated final horizontal position NSE (100 runs).

Scenario Inertial Visual Proposed
Distance ∆x̂HOR(tEND) ∆x̂HOR(tEND) ∆x̂HOR(tEND)

[m] [m] [%] [m] [%] [m] [%]

#1
mean 107,873 7276 7.10 488 0.46 207 0.19

std 19,756 4880 5.69 350 0.31 185 0.15
max 172,842 25,288 32.38 1957 1.48 1257 1.09

#2
mean 14,198 216 1.52 33 0.23 18 0.13

std 1176 119 0.86 26 0.18 9 0.07
max 18,253 586 4.38 130 0.98 43 0.33

The major reduction in horizontal position drift that occurs when comparing the
standalone inertial system with the proposed one is obtained in two distinct phases. The
first one, described in [1], is caused by employing a visual navigation system that can rely
on the inertial attitude and altitude estimations to improve its nonlinear pose optimizations.

The objective when supplying the proposed navigation filter with the VVS observa-
tions is to employ more accurate equations within the EKF as there is no longer a need
to protect the filter from the negative effects of inaccurate velocity and position values,
as in the case of the standalone inertial filter [2]. This improved design enables signifi-
cant improvements in body attitude accuracy (Section 10.1) because the filter is capable
of incorporating the horizontal position accuracy improvements into the EKF filter. In a
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positive feedback loop, the proposed system then capitalizes on its more accurate attitude
estimations to further improve its internal horizontal position estimations (Figure 2).
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The major reduction in horizontal position drift that occurs when comparing the standalone
inertial system with the proposed one is obtained in two distinct phases. The first one,
described in [1], is caused by employing a visual navigation system that can rely on the
inertial attitude and altitude estimations to improve its nonlinear pose optimizations.

Figure 7. Aggregated horizontal position NSE (100 runs).

11. Summary and Conclusions

This article proves that the inertial and visual navigation systems of an autonomous
UAV can be combined in such a way that the resulting long-term GNSS-denied horizontal
position drift is only a small fraction of what can be achieved by either system individually.
The proposed system, however, does not a constitute a full GNSS replacement as it relies
on incremental instead of absolute position observations and, hence, can only reduce the
position drift but not eliminate it.

The proposed visual inertial navigation filter, specifically designed for the challenges
faced by autonomous fixed-wing aircraft that encounter GNSS-denied conditions, merges
the observations provided by onboard accelerometers, gyroscopes, and magnetometers
with those of the virtual vision sensor, or VVS. The VVS is the denomination of the outputs
generated by a visual inertial odometry pipeline that relies on the images of the Earth
surface generated by an onboard camera as well as on the navigation filter outputs. The
filter is implemented in the manifold of rigid body rotations or SO(3) in order to minimize
the accumulation of errors in the absence of the absolute position observations provided
by the GNSS receiver. The results obtained when applying the proposed algorithms to
high-fidelity Monte Carlo simulations of two scenarios representative of the challenges of
GNSS-denied navigation indicate the following:

• The body attitude estimation is qualitatively similar to that obtained by a standalone
inertial filter without any visual aid [2]. The bounded estimations enable the aircraft
to remain aloft in GNSS-denied conditions for as long as it has fuel. Quantitatively, the
VVS observations and the associated more accurate filter equations result in significant
accuracy improvements when compared with the [2] baseline.

• The vertical position estimation is qualitatively and quantitatively similar to that
of the standalone inertial filter [2]. In addition to ionospheric effects (which also
apply when GNSS signals are available), the altitude error depends on the amount of
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pressure offset variation since entering GNSS-denied conditions, being unbiased (zero
mean) and bounded by atmospheric physics.

• The horizontal position estimation exhibits drastic quantitative improvements over
the baseline standalone inertial filter [2], although from a qualitative point of view, the
estimation error is not bounded as the drift cannot be fully eliminated.

Future work will focus on addressing some of the limitations of the proposed naviga-
tion system, such as the restriction to fixed-wing vehicles (which originates when using
the pitot tube airspeed readings to replace visual navigation when not enough features can
be extracted from a texture-poor terrain) and the inability to fly at night or above clouds
(infrared images could potentially be used for this purpose).
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The following abbreviations are used in this manuscript:

BRIEF binary robust independent elementary features
DSO direct sparse odometry
ECEF Earth centered Earth fixed
EKF extended Kalman filter
FAST features from accelerated segment test
GNSS Global Navigation Satellite System
IMU inertial measurement unit
iSAM incremental smoothing and mapping
LSD large-scale direct
MAV micro air vehicle
MSCKF multistate constraint Kalman filter
MSF multisensor fusion
NED north east down
NSE navigation system error
OKVIS open keyframe visual inertial SLAM
ORB oriented FAST and rotated BRIEF
ROVIO robust visual inertial odometry
SLAM simultaneous localization and mapping
SE(3) special Euclidean group of R3

SO(3) special orthogonal group of R3

SVO semidirect visual odometry
UAV unmanned aerial vehicle
VINS visual inertial navigation system
VIO visual inertial odometry
VO visual odometry
VVS virtual vision sensor
WGS84 World Geodetic System 1984
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Appendix A. Required Jacobians

This appendix groups together the various Jacobians employed in this article. They
are the following:

• The time derivative of the geodetic coordinates TE,GDT = [λ ϕ h]T (longitude, latitude,
and altitude) depends on the ground velocity vN per (A1), where M and N represent
the WGS84 ellipsoid radii of curvature of meridian and prime vertical, respectively.
The Jacobian with respect to vN, given by (A2) and employed in (20), is hence straight-
forward:

ṪE,GDT
=

[
vN

2
[N(ϕ) + h] cos ϕ

vN
1

M(ϕ) + h
− vN

3

]T

(A1)

J ṪE,GDT

vN =




0
1

(N + h) cos ϕ
0

1
M + h

0 0

0 0 −1


 ∈ R3×3 (A2)

• The motion angular velocity ωEN = λ̇ iE
3 − ϕ̇ iN

2 represents the rotation experienced by
any object that moves without modifying its attitude with respect to the Earth surface.
It is caused by the curvature of the Earth, and its expression when viewed in FN is
given by (A3). Its Jacobian with respect to vN, provided by (A4) and employed in (22)
and (33), is also straightforward:
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• The Coriolis acceleration acor = 2 [ωIE]× v is the double cross product between the
Earth angular velocity caused by its rotation around the iE

3 axis at a constant rate
ωE and the aircraft velocity. Its expression when viewed in FN is provided by (A5),
resulting in the (A6) Jacobian with respect to vN, which appears in (22):

aN
cor = 2

[
ωN

IE

]
× vN = 2 ωE

[
vN

2 sin ϕ
(
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1 sin ϕ− vN
3 cos ϕ

)
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2 cos ϕ
]T(A5)
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vN = 2 ωE


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− sin ϕ 0 − cos ϕ

0 cos ϕ 0


 ∈ R3×3 (A6)

• The Lie Jacobian J q⊕∆r
R represents the derivative of the function f(q, ∆r) = q⊕∆r,

that is, the concatenation between the SO(3) attitude q and its local perturbation ∆r,
with respect to the SO(3) attitude R ≡ q, when the increments are viewed in their
respective local tangent spaces, that is, tangent respectively at q and q⊕∆r. Interested
readers should refer to [4,5] for the obtainment of (A7), where R(∆r) represents the
direct cosine matrix corresponding to a given rotation vector ∆r. This Jacobian is
employed in (48).

J q⊕∆r
R = RT(∆r) = R(−∆r)

= I3 −
[∆r]×
‖∆r‖ sin ‖∆r‖+ [∆r]2×

‖∆r‖2 (1− cos ‖∆r‖) ∈ R3×3 (A7)
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• The Lie Jacobian J q⊗ v⊗q∗
R represents the derivative of the function f(q, v) = q⊗ v⊗q∗,

that is, the rotation of v according to the SO(3) attitude q, with respect to the SO(3)
attitude R ≡ q, when the R increment is viewed in its local tangent space and that of

the resulting R3 vector is viewed in its Euclidean space. J q⊗ v⊗q∗
v is the derivative

of the same function with respect to the R3 unrotated vector v, in which the increments
of the unrotated vector are also viewed in the R3 Euclidean space. Refer to [4,5] for the
obtainment of (A8) and (A9), which appear on (21) and (23), respectively, and where R(q)
represents the direct cosine matrix equivalent to the unit quaternion q:

J q⊗ v⊗ q∗
R = −R(q) [v]× ∈ R3x3 (A8)

J q⊗ v⊗ q∗
v = R(q) ∈ R3×3 (A9)

• The Lie Jacobians J q∗ ⊗ v⊗ q
R and J q∗ ⊗ v⊗ q

v are similar to the previous ones but
refer to the inverse rotation action f(q, v) = q∗ ⊗ v⊗ q. Expressions (A10) and (A11),
which appear on (31), (33), (37), and (39), respectively, are also obtained in [4,5]

J q∗ ⊗ v⊗ q
R =

[
RT(q) v

]
×
∈ R3×3 (A10)

J q∗ ⊗ v⊗ q
v = RT(q) ∈ R3×3 (A11)
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