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Abstract: Turbofan engines are known as the heart of the aircraft. The turbofan’s health state
determines the aircraft’s operational status. Therefore, the equipment monitoring and maintenance
of the engine is an important part of ensuring the healthy and stable operation of the aircraft, and it is
vital to monitor the remaining useful life (RUL) of the engine. The monitored data of turbofan engines
have high dimensions and a long time span, which cause difficulties in predicting the remaining
useful life of the engine. This paper proposes a residual life prediction model based on Autoencoder
and a Temporal Convolutional Network (TCN). Among them, Autoencoder is used to reduce the
dimension of the data and extract features from the engine monitoring data. The TCN network
is trained on the obtained low-dimensional data to predict the remaining useful life. The model
mentioned in this article is verified on the NASA public data set (C-MAPSS) and compared with
common machine learning methods and other deep neural networks. The SAE-TCN model achieved
better scores on the FD001 independent testing data set with an RMSE of 18.01 and a score of 161.
The average relative error of the model relative to other common learning models is 0.9499 in RMSE
and 0.2656 in Scoring Function. The experimental results show that the model proposed in this paper
performs the best in the evaluation, and this conclusion has important implications for engine health.

Keywords: deep learning; turbofan engine; remaining useful life prediction; Temporal Convolutional
Network; autoencoder; target generation

1. Introduction

The turbofan engine is a critical system of an aeroplane. Its health determines whether
the aircraft can run stably and reliably [1]. Determining the remaining useful life (RUL) of
a turbofan engine is important for equipment monitoring and maintenance [2]. Traditional
maintenance of the turbofan engine adopts simple passive and active strategies; that is,
parts of the turbofan engine are repaired or replaced when the engine fails, or the parts
are uniformly updated when the turbofan engine runs to the default time limit. Due
to the complex structure of the turbofan engine, the operating state is easily affected
by many environmental factors, and its service life range is relatively large. The fixed
default time limit setting cannot balance the safety and economy of the maintenance
strategy. The research on turbofan engine failure prediction and health management
(Prognostics and Health Management, PHM) has been widely carried out in recent years.
The remaining life indicates how long the turbofan engine can function before it fails. The
remaining life prediction is an important link in the field of engine failure prediction and
health management [3–8]. Accurate prediction on the remaining life of a turbofan engine
can provide a reference for equipment overhaul and maintenance, thereby avoiding cost
increases caused by excessive maintenance or potential safety hazards caused by neglected
maintenance [9]. By accurately predicting the remaining service life and monitoring the
health status of the aero engine in a timely manner, it can guide the engine management
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personnel to take reasonable maintenance measures to maintain the reliability of an aircraft
while reducing the maintenance cost of the engine [10]. Therefore, establishing a suitable
model to predict the remaining life of the engine in real time is a common goal of academia
and industry, and it is of great significance to ensure the safety of aircraft flight.

RUL prediction methods in the PHM field are mainly divided into three categories:
model-driven approaches, data-driven approaches, and combined approaches [11–13]. The
model-driven method, also known as physical modeling, refers to a method of predicting
the probability of equipment failure and the remaining service life by establishing an accu-
rate physical model that can describe the operating conditions of the equipment system.
The principle of establishing this physical model is to restore the natural state of equip-
ment operation as much as possible. Therefore, once this physical model is established,
a relatively accurate and precise prediction of the remaining life of the equipment and
the occurrence of failures can be obtained. Model-driven forecasting methods are also
widely used in research and practice. A model-based approach was applied to construct a
real-time algorithm for predicting and detecting bearing and gear failures. Specifically, they
combined sensor data with a constructed physical model to achieve the final prediction.
In the model’s construction, the authors used the Yu–Harris model to describe the state
of bearings and gears before the crack occurred, and they used the crack growth model
to describe the state of the equipment after the crack occurred. The results of the study
found that using model-based estimation can make good predictions throughout the life
of the equipment [14]. A new approach for equipment remaining life prediction based
on a dynamical system approach to damage evolution is proposed. This approach does
not rely on the knowledge of specific damage physics and is suitable for systems where
damage evolves on a slower timescale than directly observable dynamics. The results of
the study show that the model described in the article is very accurate in predicting the
remaining life of spur gears [15]. The physical models are highly dependent on expert
knowledge of turbofan engines to reveal the component degradation. Data-driven ap-
proaches construct predictive models provided data from multi-source sensors. Statistics,
machine learning, and deep learning methods show their powerful abilities in this field.
The combined approaches usually use data-driven methods to learn and tune the physical
model parameters.

Accurately modeling a turbofan engine according to its physical law is challenging
due to the complex engine structure. The data-driven method has been widely studied.
The data-driven method is also an important method for remaining life prediction. This
type of method does not require the establishment of a physical model that can accurately
describe the dynamic change process of the component but, rather, is directly based on
the operating parameters of the component obtained from the sensors. Historical data of
the real operating state embody the information of the degradation process. Therefore,
data-driven approaches usually require sufficient historical data to train the model. When
the amount of data is large enough, the data-driven method can accurately identify the
correlation between sensor parameters and equipment operating status from the data and
make accurate predictions for the remaining life of the equipment. Initially, researchers
used continuous-time hidden Markov models (HMM) [16] based on the time of normal
operation, the time when the engine begins to degenerate, and the time of engine failure
for the RUL prediction of turbofan engines. Recurrent Neural Network (RNN) models
are also used to extract information from the time series [17,18]. RNN models transfer the
state of the previous moment to the output of the current moment through its recursive
structure. Some information will be forgotten in the long-term iterative process and
will have weaker influence in the output; therefore, a Long Short-Term Memory (LSTM)
model [19] is introduced. LSTM brings control gates to the RNN. These control gates
cooperate to transmit effective long-term information. A straightforward and high-quality
method for estimating remaining useful life based on random forest regression is proposed.
Specifically, they first screened out the feature variables closely related to the remaining
life of the engine from NASA’s C-MAPSS data set through Lasso regression and further
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input these features into the random forest regression model to realize the prediction of
the remaining service life of the engine [20]. However, these conventional methods cannot
cope with the turbofan engine’s degradation process, which is non-linear, time-variant,
and high-dimensional. These methods are improved to enhance their prediction accuracy
and robustness. To extract complex features, a 1D convolutional neural network with a
complete convolutional layer and LSTM was proposed [21]. To alleviate the impact of
different operating conditions, a CNN-XGB (extreme gradient boosting) method with an
extended time window was proposed [22].

Ordinary convolution usually leads to the leakage of future information, and it may
violate the truth that the future state of the engine is determined only by its past and present
state. The complex dynamic process that comprises an engine state change means longer
historical information is important for more accurate prediction. A Temporal Convolutional
Network (TCN) is proposed in this paper to deal with these difficulties. In addition to
those difficulties, the TCN can process an input sequence of any length to adapt to the
dynamics and diversity of engine sensor data. Engine sensors’ sampling characteristics,
such as frequency and length, may vary with time and scenarios. Last but not the least, a
TCN can parallelize calculations to improve the efficiency of model training and prediction.
For engine condition monitoring, it is important to find out the remaining life accurately
in a short time. Due to the high dimensionality of engine monitoring data, a stacked
sparse Autoencoder (SAE) is used in this paper to accomplish data dimension reduction
and improve the generalization ability of the model. Therefore, we propose an SAE-TCN
turbofan engine remaining useful life prediction model in this paper. An SAE model is
first trained to extract useful features from engine monitoring data. After that, a TCN
model is trained to predict the RUL based on the reduced-dimensional data from the SAE
model. The experimental results show that the SAE-TCN model can predict the RUL more
accurately and efficiently by combining the advantages of Autoencoder and the TCN.

The following contents of this paper include three sections. Section 2 presents the struc-
ture of the SAE-TCN model. Section 3 includes the experiments and results. Conclusions
can be found in the last section.

2. Feature Extraction Based on Stacked Autoencoder Neural Network
2.1. Sparse Autoencoder
2.1.1. Autoencoder

Autoencoder (AE) is a fully connected, multi-layer, unsupervised neural network [23].
Like a general neural network, AE also includes an input layer, three hidden layers, and
an output layer. There are the same number of neurons in the input and output layer
of AE so that the input data can be reconstructed. At the same time, the number of
neurons in the middle hidden layer is arbitrary, which determines the final dimension of
the data. Like multi-layer perceptrons, Autoencoder neural networks are trained by back
propagation. The input layer and the first two hidden layers form an encoder, while the last
two hidden layers and output layer form a decoder. After being well-trained, the encoder
part functions as a feature extraction method. The original data can be better expressed as
lower-dimensional feature vectors without losing key information.

The AE network can be trained by minimizing the difference between the output
data and the input data. The objective function in the training process is measured
by Equation (1).

J(θ, x) =
1
N

N

∑
n=1

1
2

∥∥∥(x′)n − xn
∥∥∥2

(1)

where x represents the original data input into the encoder network and z is the output.
Then, z is input into the decoder network and x

′
is output. After training, z is the low-

dimensional features the Autoencoder extracts out.
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2.1.2. Sparse Autoencoder

In order to extract better feature vectors, it is necessary to add sparsity constraints
to the loss function. The purpose is to constrain the way the encoder is reconstructed by
adding constraints to the loss function, such as adding a regularization term to the loss
function as a penalty term, which enables the autoencoder to learn the sparse features from
the input data better [24,25]. This penalty term means a new constraint in the objective
function. The sparsity constraint plays an important role in algorithm optimization, which
limits most neurons to being suppressed. This method is usually adopted to prevent
over-fitting.

A sigmoid function is used in the hidden layer as the activation function that outputs 1
when the neuron is active and 0 when it is inactive. KL divergence is introduced as a
regular term, as shown in Equation (2).

KL
(
ρ‖ρ̂j

)
= ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(2)

where ρ̂j =
1
m ∑m

i=1

[
a(2)j x(i)

]
, m is the number of training samples, a(2)j is the j-th neuron in

the hidden layer, and xi is the i-th sample. The greater the difference between ρ and ρj, the
greater the KL divergence.

Adding the KL divergence into the objective function as a penalty term, we obtain a
new objective function, as shown in Equation (3):

Jsparse(W, b) = J(W, b) + β
s2

∑
j=1

KL
(
ρ‖ρ̂j

)
(3)

where β is the weight of the sparsity penalty.
A stacked autoencoder is constructed by a multi-layer sparse autoencoder; the output

of each autoencoder layer is used as the input of the next layer of the encoder, and the
obtained features are used as the input of the neural network prediction model to complete
the life prediction of the engine. Through the above methods, deep feature extraction is
realized, and the extracted feature information is more representative.

2.1.3. Stacked Sparse Autoencoder

The stacked sparse autoencoder has more than one hidden layer in its encoder. It can
obtain more representative eigenvalues using layer-by-layer feature extraction. In other
words, the output of the previous layer of the encoder is the input of the next layer of
the encoder. In this way, the autoencoder becomes deeper. The code of the autoencoder
network, which is also the output of the encoder, is input into the Temporal Convolutional
Network as the features. The structure is shown in Figure 1.

Figure 1. The structure of SAE model.
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2.2. Temporal Convolutional Network

The Temporal Convolutional Network (TCN) is a variant of a Convolutional Neural
Network, which can be used to process sequence modeling tasks [26–29]. Experiments on
multiple data sets and tasks show that the TCN outperforms general recursive structures,
such as RNN, GRU, LSTM, etc. [30–32]. Causal convolution is used in a TCN to extract and
transmit temporal information. In addition, residual network and dilated convolution are
combined to capture the long-term correlation between features.

2.2.1. Causal Convolutions

Causal convolution uses the information before a certain time to achieve convolution
operation. It means the results are not interfered with by the future data, and the previous
information is also completely saved.

Suppose that the input sequence is s = (s0, s1, · · · , st) and the output sequence is
y = (y0, y1, · · · , yT). The data dimensions of the input sequence and the output sequence
are the same, and the output value depends on the sequence information before t. The
input is processed before the convolution operation on the time series, and all inputs before
the current moment are replaced with 0 to achieve equal-length causal convolution. The
basic structure is shown in Figure 2.

Output

Hidden Layer

Hidden Layer

Hidden Layer

Input

Figure 2. The basic structure of Temporal Convolutional Network (TCN).

2.2.2. Dilated Convolutions

To extract information from longer time-series information, dilated convolutions are
used. The upper convolution window interval increases, so even if each hidden layer has
the same size as the input sequence, the amount of calculation is greatly reduced. The
hyperparameter of the Dilation Rate is added to the expansion convolution, that is, the
number of intervals of the convolution kernel, so that each convolution output contains a
wide range of information. Dilated Convolutions increase the dilated factor at the top level
of convolutions to reduce the computational complexity, even if each hidden layer and the
input sequence have the same dimension. Dilation is equivalent to introducing a fixed step
between every two adjacent filter taps [28,33,34]. The size of the fixed step can be set as a
hyperparameter, namely, the dilation factor. The bigger the dilation, the more information
that can be obtained by each convolution output. An illustration of dilated convolutions
is shown in Figure 3, where xT is the input time series, ŷT is the estimated value, d is the
dilation factor in the dilated convolutions, and the size of convolution kernel is 3.



Aerospace 2023, 10, 715 6 of 16

Figure 3. TCN and Dilated Convolutions.

2.2.3. Residual Connections

The residual block is an important network structure in the TCN network. When
the number of network layers increases, the phenomenon of gradient disappearance will
appear. The residual link structure is summed by x and the F(x) obtained after non-linear
changes to form a residual link. After each convolution calculation, the parameter levels
are normalized, and then the Rectified Linear Unit (Relu) activation function is used for
non-linear calculations. The obtained result is then summed with the input to realize the
residual link. Such a structure enables the meaning of the grid to be transmitted across
layers, thereby solving the problem of gradient disappearance, and the shallow neural
network is extended to a deep neural network.

As the network becomes deeper, gradient disappearance often occurs while training
the model. Residual connections are proposed to solve this problem [35]. The residual
connections are formed by summing the input features x and its non-linear transformation
F(x). After each convolution calculation, the parameter level is normalized, and then
the Relu activation function is used for non-linear calculation. The obtained result is
then summed with the input to realize the residual connections. The procedure is shown
in Figure 4.

The Temporal Convolutional Network is a network structure based on the convolu-
tional structure, which is specifically used to process sequence information. It can not
only grasp the overall information of the sequence from local to global, but it can also use
convolution instead of recursion, so it also has a great advantage in training speed. But at
the same time, there is a shortcoming in which the Temporal Convolutional Network is
sensitive to the data set.
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Dropout

ReLU

WeightNorm

Dilated Causal Conv

Dropout

ReLU

WeightNorm

Dilated Causal Conv

1 × 1 Conv

(optional)

Figure 4. TCN and Residual Connections.

2.3. SAE-TCN Prediction Model

The neural network prediction model used in this paper uses stacked Autoencoders
(SAEs) to extract useful features and reduce the data dimensionality. When training the
TCN, the network input is the output from the encoder. In this paper, a temporal neural
network which consists of multiple temporal residual blocks is used as the processor for
model prediction, and six residual blocks (TCN Block) and a fully connected layer are
stacked to obtain the final life prediction value. The fully connected layer has 64 neurons,
and it finally outputs one-dimensional data, which is the final prediction result of the
remaining life. The minimum mean square error (MSE) is used as the loss function to
measure the error between the real remaining life and the predicted value. Adaptive
moment estimation (Adam) is adopted for model training and parameter optimization.
The main structure is shown in Figure 5.

The modeling process based on a temporal convolutional neural network is as follows:

1. Obtaining the monitoring data set of each sensor parameter of the aero engine, per-
forming data preprocessing and feature extraction, and using a series of preprocessing
training sets in the time-series convolutional network model for iterative training.

2. Building the engine life prediction model: Preliminary construction of a temporal
convolutional neural network model, given initial hyperparameters, including the
dimension of the input matrix, the size of the convolution kernel (kernel size), the
number of convolutional layers (number of filters), time steps (time steps), dropout
rate, epoch, batch size, etc.

3. Engine remaining life prediction: According to the initially established TCN model,
input the prepared data set for training and evaluate it on the test set. The minimum
mean square error (MSE) is used as the loss function to measure the error between the
real remaining life and the predicted value. Import the Adam module as an optimizer
for model training and parameter optimization change.
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Figure 5. The structure of SAE-TCN model.

3. Experiments and Results
3.1. Benchmark Dataset

In this paper, an experiment is carried out on a widely used data set, which is generated
using Commercial Modular Aero-Propulsion System Simulation (C-MAPSS), which is a
turbofan engine degradation simulation platform from NASA [36]. C-MAPSS simulates
the degradation process of the turbofan engine under different operating settings and flight
conditions, and its output is the engine state monitoring data of various sensor readings
and operating condition indicators in the whole degradation process. Consistent with [37],
all 21 sensor readings and three operating condition indicators included in the data set are
used for RUL prediction in this paper. More detailed information of the selected indicators
is shown in Table 1.

Table 1. Descriptions of selected parameters in C-MAPSS data set.

No. Parameter Description Units

1 Total temperature at fan inlet R
2 Total temperature at LPC outlet R
3 Total temperature at HPC outlet R
4 Total temperature at LPT outlet R
5 Pressure at fan inlet psia
6 Total pressure in bypass inlet psia
7 Total pressure at HPC outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm

10 Engine pressure ratio -
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Table 1. Cont.

No. Parameter Description Units

11 Static pressure at HPC outlet psia
12 Ratio of fuel flow to static pressure at HPC outlet pps/psiu
13 Ratio of static pressure psia
14 Corrected fan speed rpm
15 Corrected core speed rpm
16 Bypass ratio -
17 Burner fuel–air ratio -
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 HPT cooland bleed lbm/s
21 LPT cooland bleed lbm/s
22 Altitude ft
23 Mach -
24 Throttle resolver angle deg

There are four sub-data sets in the C-MAPSS data set that record the run-to-failure
time-series data of the turbofan engine under four different simulating settings. The first
and third sub-data sets are under sea-level conditions, while the second and fourth sub-data
sets have multiple operating conditions. This paper uses the first sub-data set, FD001, to
train and test the model. FD001 contains a training set and a test set. They are mutually
independent. The details of FD001 are shown in Table 2.

Table 2. Details of FD001 data set.

Name
Number of Engines

in Training Set
Number of Engines

in Test Set
Operating
Conditions

Failure
Modes

Training
Sample

Test
Sample

Sensors Operating
Parameters

FD001 100 100 Sea Level
HPC

Degradation 20,630 13,095 21 3

The training set of FD001 records the condition monitoring information of 100 engines
from normal operation to complete failure. Thus, the data of a total of 20,630 operating
cycles is available. The task of the proposed SAE-TCN model is to predict the RUL of
the engine before a complete failure. In addition to parameters shown in Table 1, we also
include the operating cycle as one of the input features. Therefore, the inputs of the model
are the 24 original features in Table 1 plus an operating cycle index. Before being put into
the model, raw data must be normalized by Equation (4), so that the input data size is
limited between [0, 1].

xnorm
i,j =

xi,j − xmin
j

xmax
j − xmin

j
, ∀i, j (4)

In the normal operation stage, the failure rate of the turbofan engine is constant and
low. The degradation in this period can be ignored. As the number of cycles increases,
the failure rate grows quickly until the end stage of the equipment. Therefore, data in the
normal operation stage will not be used for model training. Similarly, the RUL tag is set
to be a piecewise linear function, as shown in Figure 6. When remaining life exceeds or
reaches a threshold value, the RUL is set to a constant. As the operating cycle increases
and remaining life is less than the threshold value, the RUL monotonically decreases. The
research shows that the mutation effect of the RUL in the training set is better when it is set
at the 120th operation cycle, so the threshold value of the RUL is set to 120.
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Figure 6. The remaining useful life setting.

3.2. Performance Measures

This paper uses the Root Mean Squared Error (RMSE) and Scoring Function to evaluate
the accuracy of RUL prediction [13,37]. To assess the performance of the SAE-TCN model
relative to each benchmark model, an average relative error indicator is used in this paper.

RMSE is widely used to measure how accurate a predictive model’s result is. It is
defined as Equation (5).

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)
2 (5)

where m is the number of turbofan engines in the test set, yi is the actual RUL of engine i,
and ŷi is the estimated RUL of engine i.

The Scoring Function is shown in Equation (6). Turbofan engines are complex equip-
ment with extremely high safety requirements. If they are not sufficiently maintained, they
will pose a great threat to the safety of an aircraft, which is not limited to the simple loss of
thrust. It is usually not acceptable for aircraft to encounter hazardous damage in its core
power system. Therefore, it is necessary to impose higher penalties on overestimation to
ensure timely maintenance. The Scoring Function is designed to be an asymmetric function.
The lower the score value is, the lower the possibility of overestimation. Figure 7 shows the
score as a function of the error. This scoring strategy tends to suppress the overestimation
of the RUL because the Scoring Function increases faster when the RUL is overestimated.

Score =

 ∑m
i=1 e−

(
ŷi−yi

13

)
− 1 ŷi − yi < 0

∑m
i=1 e

(
ŷi−yi

10

)
− 1 ŷi − yi ≥ 0

(6)

The average relative error is calculated by Equation (7).

average relative error =
ΣK

m=1error(SAE− TCN)/error(benchmarkm)

K
(7)

where K is the number of benchmark models. The function error(·) maps a model to its
performance indicator. The RMSE and Scoring Function are selected to be the error(·)
functions separately in this paper.
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Figure 7. Score as a function of error.

3.3. Experimental Environment and Parameter Configuration

The training of the deep neural network is conducted using Keras 2.3.1, the Tensorflow
2.0 library and the Adam (Adaptive moment estimation) algorithm. The Adam algorithm
is implemented by importing a relative module as an optimizer. It can adjust the speed
of gradient descent by using momentum for automatic model optimization. Taking the
high model complexity of the deep neural network into consideration, regularization is
included to prevent over-fitting by convention. The details are as follows:

1. Dropout: Dropout means the model will be retrained under a new structure where
some hidden-layer neurons are randomly deleted. For random descent algorithms,
this allows different networks to be trained on each batch of data. Finally, these
models are integrated to obtain average prediction results. This practice is intend to
reduce the dependence between neurons and improve the generalization ability.

2. Early stopping: When a model has been trained for a long time, the performance
of the model on the validation set might deteriorate [38]. This a common type of
over-fitting, which can be avoid by early stopping. By early stopping, the training
algorithm terminates when the performance of the model begins to decline. The
balance between the training time and model generalization ability is expected to be
achieved using this strategy.

The dimension number of the original data in the data set is compressed by the first
layer of the encoder in the SAE from 24 to 20 and, finally, to 11. The 24-dimensional input of
the encoder consists of 21 sensor readings and three operating condition indicators, which
are described in Table 1. The 11-dimensional output of the encoder is then input into the
TCN, and a prediction of the RUL is output.

The hyperparameters of the model greatly affect its performance. An appropriate
hyperparameter setting is beneficial to improving the prediction performance of the model.
The experiments show that there is almost no coupling between the main parameters
involved in the TCN network structure, and the optimization results are shown in Figure 8.
The acceptable hyperparameter settings of the model are shown in Table 3.

Table 3. The detailed parameters of SAE-TCN model.

Parameter Value

Time Steps 10
Dropout Rate 0.4
Kernel Size 2

Number of Filters 64
Epochs 10

Batch Size 32
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18.6

18.8
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1286432168
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Kernel Size
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18.3
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Dropout Rate

Figure 8. Model performance with different parameters.

3.4. Prediction Case

A complete performance evaluation is conducted in the next subsection. In this
subsection, two engines are randomly taken out from the test set. The trained model is
applied to these engines to show the details of the RUL prediction in the whole service
history of an engine. The final results are displayed in Figures 9 and 10.

Figure 9. The predicted RUL of Engine 1.
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Figure 10. The predicted RUL of Engine 2.

3.5. Performance Comparison

Some machine learning models are included here to evaluate the performance of the
SAE-TCN model by contrast. Standard TCN, Deep Long Short-Term Memory (DLSTM),
Bi-directional Long Short-Term Memory (Bi-LSTM), Gate Recurrent Unit (GRU), Recurrent
Neural Network (RNN), Convolutional Neural Network (CNN), Support Vector Regression
(SVR), and Multilayer Perceptron (MLP) models are trained as benchmark models. The
DLSTM model is set to have 50 units and five layers. The CNN model is set to have
60 filters, with the kernel size being 3. And the activation function of the CNN model is the
Relu function, with a pool size of 2. The SVR model is set to have the radial basis function
(RBF) as the kernel function. The MLP model is set to have a network structure of (10, 5, 1).
The performances of these different models are reported in Table 4. The average relative
error of the DSAE-TCN relative to the other eight models is 0.9499 with respect to the
RMSE. Using the Scoring Function as the error function, the average relative error is 0.2656.

Table 4. Performance for different models.

Model RMSE Score

DSAE-TCN 18.01 161
TCN 18.74 289

DLSTM 19.53 327
Bi-LSTM 19.94 435

GRU 20.60 885
RNN 22.59 780
CN4 22.93 1207
SVR 23.75 989
MLP 25.93 7890

From the experimental results, it can be seen that the SAE-TCN model performs better
than the other standard models because it achieves the smallest RMSE and score. The
SAE-TCN model has a smaller prediction error and shows a lower tendency to overestimate.
Compared with the conventional methods, the model proposed in this paper further im-
proves the prediction performance of the RUL. On the one hand, Autoencoder is effective at
feature extraction. On the other hand, the TCN has an excellent applicability for long-time-
span data processing. Therefore, the SAE-TCN model shows good prediction performance
of a turbofan engine’s remaining useful life, which might be helpful in turbofan engine
health management.
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The performance of the SAE-TCN model is compared with those of models in the
public literature. The RMSE results are reported in Table 5. The average relative error of
the RMSE is 0.9400. The average relative error of the score is 0.2979. Compared with some
of the known works, the SAE-TCN model achieved better performance. Compared with
the DCNN [39], the SAE-TCN shows a lower tendency to overestimate the RUL despite its
larger RMSE in prediction.

Table 5. Performance for different models from public literature.

Model RMSE Score

DSAE-TCN 18.01 161
CNN [40] 31.2432 N/A
SVR [41] 20.96 1381
RVR [41] 23.80 1502

DLSTM [41] 18.33 655
DCNN [39] 11.81 223

4. Conclusions

In this paper, a remaining useful life prediction model, named SAE-TCN, based on
Autoencoder and a TCN, is proposed to solve the problems of the high dimensions and
long time span of monitoring data from a turbofan engine degradation process. Firstly, the
model uses the Autoencoder model for feature extraction and data dimension reduction.
Secondly, the model then uses the TCN to capture the relationship between the reduced
features and the RUL. The experimental results in turbofan engine life prediction show that
the proposed method performs better in RMSE and score than the conventional machine
learning and deep learning models. Autoencoder brings in performance improvements to
the standard TCN model via data dimension reduction. These conclusions help a lot in the
health management of turbofan engines. It is worth noting that the method used in this
paper is a data-driven method. How well a data-driven method performs usually depends
on the quality of the data set. Also, the source of the data set limits the proposed method to
engines of similar kinds. It remains to be studied whether the proposed method is suitable
for other fault modes, especially those greatly different from engine gas path degradation.

Author Contributions: Conceptualization, X.L.; methodology, Y.Z. and C.L.; software, Y.Z.; valida-
tion, L.X.; writing—original draft preparation, Y.Z.; writing—review and editing, X.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation with grant num-
ber 68190923.

Data Availability Statement: C-MAPSS data set is currently unavailable for download now accord-
ing to the information on NASA official website. It may be found from some individual researchers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Richter, H. Advanced Control of Turbofan Engines; Springer: London, UK, 2012.
2. Salunkhe, T.; Jamadar, N.; Kivade, S. Prediction of Remaining Useful Life of mechanical components-a Review. Int. J. Eng. Sci.

Innov. Technol. (IJESIT) 2014, 3, 125–135.
3. Wang, X.; Li, Y.; Xu, Y.; Liu, X.; Zheng, T.; Zheng, B. Remaining useful life prediction for aero-engines using a time-enhanced

multi-head self-attention model. Aerospace 2023, 10, 80. [CrossRef]
4. Wang, H.; Li, D.; Li, D.; Liu, C.; Yang, X.; Zhu, G. Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random

Forest Feature Selection and Multi-Layer Perceptron. Appl. Sci. 2023, 13, 7186. [CrossRef]
5. Huang, Y.; Tao, J.; Sun, G.; Zhang, H.; Hu, Y. A prognostic and health management framework for aero-engines based on a

dynamic probability model and LSTM network. Aerospace 2022, 9, 316. [CrossRef]
6. Chen, Z.; Cao, S.; Mao, Z. Remaining useful life estimation of aircraft engines using a modified similarity and supporting vector

machine (SVM) approach. Energies 2017, 11, 28. [CrossRef]
7. Rohan, A. Deep Scattering Spectrum Germaneness for Fault Detection and Diagnosis for Component-Level Prognostics and

Health Management (PHM). Sensors 2022, 22, 9064. [CrossRef]

http://doi.org/10.3390/aerospace10010080
http://dx.doi.org/10.3390/app13127186
http://dx.doi.org/10.3390/aerospace9060316
http://dx.doi.org/10.3390/en11010028
http://dx.doi.org/10.3390/s22239064


Aerospace 2023, 10, 715 15 of 16

8. Chui, K.T.; Gupta, B.B.; Vasant, P. A genetic algorithm optimized RNN-LSTM model for remaining useful life prediction of
turbofan engine. Electronics 2021, 10, 285. [CrossRef]

9. Muneer, A.; Taib, S.; Naseer, S.; Ali, R.; Aziz, A. Data-Driven deep learning-based attention mechanism for remainging useful life
prediction: Case study application to turbofan engine analysis. Electronics 2021, 10, 2453. [CrossRef]

10. Xie, Z.; Du, S.; Deng, Y.; Jia, S. A hybrid prognostics deep learning model for remaining useful life prediction. Electronics 2020,
10, 39. [CrossRef]

11. Kang, Z.; Catal, C.; Tekinerdogan, B. Remaining useful life (RUL) prediction of equipment in production lines using artificial
neural networks. Sensors 2021, 21, 932. [CrossRef]

12. Zhao, C.; Huang, X.; Li, Y.; Yousaf Iqbal, M. A double-channel hybrid deep neural network based on CNN and BiLSTM for
remaining useful life prediction. Sensors 2020, 20, 7109. [CrossRef]

13. Elsheikh, A.; Yacout, S.; Ouali, M.S. Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing 2019,
323, 148–156. [CrossRef]

14. Orsagh, R.F.; Sheldon, J.; Klenke, C.J. Prognostics/Diagnostics for Gas Turbine Engine Bearings; American Society of Mechanical
Engineers (ASME): New York, NY, USA, 2003; Volume 36843.

15. Chelidze, D.; Cusumano, J.P. A dynamical systems approach to failure prognosis. J. Vib. Acoust. 2004, 126, 2–8. [CrossRef]
16. Giantomassi, A.; Ferracuti, F.; Benini, A.; Ippoliti, G.; Longhi, S.; Petrucci, A. Hidden Markov model for health estimation and

prognosis of turbofan engines. In Proceedings of the International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Washington, DC, USA, 28–31 August 2011; Volume 54808, pp. 681–689.

17. Wu, Q.; Ding, K.; Huang, B. Approach for fault prognosis using recurrent neural network. J. Intell. Manuf. 2018, 31,
1621–1633. [CrossRef]

18. Sikorska, J.; Hodkiewicz, M.; Ma, L. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst.
Signal Process. 2011, 25, 1803–1836. [CrossRef]

19. Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural
networks. Neurocomputing 2018, 275, 167–179. [CrossRef]

20. Chen, X.; Jin, G.; Qiu, S.; Lu, M.; Yu, D. Direct remaining useful life estimation based on random forest regression. In Proceedings
of the 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai), Shanghai, China, 16–18 October 2020;
pp. 1–7.

21. Peng, C.; Chen, Y.; Chen, Q.; Tang, Z.; Li, L.; Gui, W. A remaining useful life prognosis of turbofan engine using temporal and
spatial feature fusion. Sensors 2020, 21, 418. [CrossRef]

22. Zhang, X.; Xiao, P.; Cheng, Y.; Chen, B.; Gao, D.; Liu, W.; Huang, Z. Remaining useful life estimation using CNN-XGB with
extended time window. IEEE Access 2019, 7, 154386–154397. [CrossRef]

23. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report; California
University of San Diego, La Jolla Institute for Cognitive Science: La Jolla, CA, USA, 1985.

24. Ranzato, M.; Poultney, C.; Chopra, S.; LeCun, Y. Efficient learning of sparse representations with an energy-based model. Adv.
Neural Inf. Process. Syst. 2007, 19, 1137.

25. Meng, L.; Ding, S.; Xue, Y. Research on denoising sparse autoencoder. Int. J. Mach. Learn. Cybern. 2017, 8, 1719–1729. [CrossRef]
26. Lea, C.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks: A unified approach to action segmentation. In

Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–10 October 2016; pp. 47–54.
27. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks for action segmentation and detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 156–165.

28. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271.

29. Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural networks approach for
multivariate time series forecasting. Electronics 2019, 8, 876. [CrossRef]

30. Chen, Y.; Kang, Y.; Chen, Y.; Wang, Z. Probabilistic forecasting with temporal convolutional neural network. Neurocomputing
2020, 399, 491–501. [CrossRef]

31. Yan, J.; Mu, L.; Wang, L.; Ranjan, R.; Zomaya, A.Y. Temporal convolutional networks for the advance prediction of ENSO. Sci.
Rep. 2020, 10, 8055. [CrossRef]

32. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017,
arXiv:1707.01926.

33. Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet:
A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

34. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
36. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In

Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008;
pp. 1–9.

http://dx.doi.org/10.3390/electronics10030285
http://dx.doi.org/10.3390/electronics10202453
http://dx.doi.org/10.3390/electronics10010039
http://dx.doi.org/10.3390/s21030932
http://dx.doi.org/10.3390/s20247109
http://dx.doi.org/10.1016/j.neucom.2018.09.076
http://dx.doi.org/10.1115/1.1640638
http://dx.doi.org/10.1007/s10845-018-1428-5
http://dx.doi.org/10.1016/j.ymssp.2010.11.018
http://dx.doi.org/10.1016/j.neucom.2017.05.063
http://dx.doi.org/10.3390/s21020418
http://dx.doi.org/10.1109/ACCESS.2019.2942991
http://dx.doi.org/10.1007/s13042-016-0550-y
http://dx.doi.org/10.3390/electronics8080876
http://dx.doi.org/10.1016/j.neucom.2020.03.011
http://dx.doi.org/10.1038/s41598-020-65070-5


Aerospace 2023, 10, 715 16 of 16

37. Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long short-term memory network for remaining useful life estimation. In
Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA,
19–21 June 2017; pp. 88–95.

38. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.
39. Muneer, A.; Taib, S.; Fati, S.; Alhussian, H. Deep-learning based prognosis approach for remaining useful life prediction of

turbofan engine. Symmetry 2017, 13, 1861. [CrossRef]
40. Yuan, N.; Yang, H.; Fang, H. Aero-engine prognostic method based on convolutional neural network. Comput. Meas. Control

2019, 27, 74–78.
41. Sun, W.; Zhao, R.; Yan, R. Convolutional discriminative feature learning for induction motor fault diagnosis. IEEE Trans. Ind.

Inform. 2017, 13, 1350–1359. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/sym13101861
http://dx.doi.org/10.1109/TII.2017.2672988

	Introduction
	Feature Extraction Based on Stacked Autoencoder Neural Network
	Sparse Autoencoder
	Autoencoder
	Sparse Autoencoder
	Stacked Sparse Autoencoder

	Temporal Convolutional Network
	Causal Convolutions
	Dilated Convolutions
	Residual Connections

	SAE-TCN Prediction Model

	Experiments and Results
	Benchmark Dataset
	Performance Measures
	Experimental Environment and Parameter Configuration
	Prediction Case
	Performance Comparison

	Conclusions
	References

