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Abstract: By deliberately designing microscopic internal mechanisms, architected materials can
achieve a variety of material properties without changing constituent materials. Integration of the
architected materials into a structure as substructures has a good potential to enhance structural
performance and realize wide design freedom. This paper explores the capabilities of multiscale
approaches for lattice structures, which is a major mechanism in architected materials. The objectives
of this paper are (1) to demonstrate the capabilities of the framework to evaluate stiffness charac-
teristics of lattice structures with two different two-scale analysis approaches and (2) to assess the
accuracies and validity ranges of both approaches for appropriate evaluations of lattice structures.
The two-scale analysis framework consists of the computational homogenizations for the generalized
stiffness (ABD) and 3D stiffness (C) matrices. Equivalent stiffness characteristics of the unit cell are
obtained by computational homogenizations to effectively capture the macroscopic responses of
lattice structures. This study provides a comprehensive correlation study between the prediction
accuracies of the two-scale analysis approaches in terms of tensile, bending, and torsional stiffness
characteristics for practical modeling and development of lattice structures. The study will contribute
a guideline for effective designs of high-performance structures with architected materials.

Keywords: structural analysis; multiscale analysis; lattice structures; homogenization; finite elements

1. Introduction

Architected materials, sometimes called mechanical metamaterials, have been actively
studied as emerging artificial materials for decades. Their distinctive characteristics, in
comparison to other traditional/natural materials, can be artificially programmed by the
artificial designing of microscopic internal mechanisms [1]. These materials have shown the
potential to improve/extend structural performance and capabilities. Since these artificial
materials usually result in complicated geometries, these conceptual designs have faced
manufacturing challenges for the realization and production of the materials. However,
the recent advancement in additive manufacturing (AM) technology has enabled effective
realizations of sophisticated structures that had been conceptual and difficult to fabricate.
Mechanical metamaterials can exhibit unique material characteristics and/or behaviors
attributed to the micro/mesoscale mechanisms, such as truss or porosity, in addition to
constituent material properties constructing the microscopic internal structures [2–6]. For
instance, Bauer et al. demonstrated that these materials can realize various structural
characteristics (strength, stiffness, weight, etc.) and exotic properties such as zero/negative
Poisson’s ratio, ultralightweight, and high specific stiffness [7].

Applications of such materials in a macroscopic structural design would enhance
the performance of aerospace structures. Architected materials, especially those based on
micro/mesoscale lattice structures, provide good compatibility with the AM technique,
although a variety of design concepts have been proposed in the literature [7–9]. However,
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a realization of preferred structural characteristics with structural integrity requires an
elaborate design of microscale internal mechanisms in lattice structures. With the complex
internal geometry of lattice-based structures, the conventional approach to evaluate the
structural characteristics with the finite element method (FEM) by directly modeling de-
signed structures is challenging. Although various topological designs can be precisely
evaluated with FEM [10,11], constructions and simulations of sophisticated models with
various geometries result in high costs. In the optimization of internal lattice geometry for
a product, finite element models for every possible design need to be constructed even
if their microscopic designs are highly complex. Moreover, a simulation of a large-scale
structure with lattice-based substructures using a detailed FE model is computationally im-
practical since such a simulation requires sufficiently small element sizes to obtain accurate
FE solutions.

The Gibson–Ashby (GA) model is an alternative approach to predicting the character-
istics of cellular structures, including lattice structures [9,12,13]. The GA model evaluates
the effective properties of a representative unit cell of architected materials as property
fractions of constituent material, such as elastic modulus and strength, based on the relative
density [7,13,14]. The technique enables simple estimations of structural properties for
preliminary studies, and it is commonly used in studies of cellular or periodic structures.
It is reported that the predictions of structural characteristics based on the GA model are
consistent with specific experimental results [15]. Zargarian et al. reported that fatigue
performance can also be predicted by the GA model [16]. However, it is sometimes difficult
to identify appropriate coefficients and parameters in the GA model, which causes discrep-
ancies in the predictions and experimental results as reported by Macona-chie et al. [9].
Also, since the GA model only provides effective material properties, microscopic me-
chanics for lattice structures cannot be captured, which architected materials sometimes
exploit to realize unique characteristics. Theoretical equations for specific topologies have
also been proposed for a further evaluation of the mechanical characteristics of lattice
structures [17,18], although such a theoretical model is only valid for a target topology.

The multiscale modeling approach has been developed to evaluate the characteristics
of composites by using the computational homogenization method [19–26]. Although the
analysis technique originally focused on composite materials, it is reasonably applicable to
heterogeneous structures such as architected materials. Therefore, the multiscale modeling
approach has been accommodated to evaluate the structural characteristics of lattice-based
architected materials by the authors [27]. Numerical multiscale analysis approaches for
heterogeneous materials are commonly classified into two schemes: coupled [28–30] and
decoupled schemes [25,31]. The coupled scheme has advantages in evaluations of nonlinear
behaviors for which macroscopic constitutive equations are difficult to formulate. However,
the computational cost increases significantly, which would be challenging in the practical
design process. The decoupled scheme evaluates the discrete macroscopic stress–strain
responses by performing a series of “numerical material tests”. Based on the numerical
test results, the macroscale simulation is then carried out by deriving the macroscopic
constitutive model and its parameters. Therefore, a cost-effective analysis can be performed
for practical or large-scale structural designs such as aerospace applications [32–35]. Al-
though it is difficult to deal with microscopic nonlinear behaviors in macroscopic structural
analysis using the decoupled multiscale approach, due to its methodological nature, the
decoupled scheme offers excellent effectiveness in terms of computational cost. However,
as mentioned by White et al. [36], the homogenization approaches have to be employed
with special care in their validity ranges and assumptions.

In our previous studies, two types of decoupled two-scale analysis schemes with
homogenization methods have been developed. One is based on a homogenization for
the generalized stiffness (ABD) matrix, which can be used for simulations with shell finite
elements. The other is based on a homogenization for the C matrix, which can be generally
used for solid finite elements. A representative unit cell of the structure with two-/three-
dimensional periodicity is modeled as representative finite elements in the computational



Aerospace 2023, 10, 723 3 of 19

homogenization procedures. Equivalent stiffness characteristics of the representative unit
cell are obtained based on the computational homogenization procedures. The equivalent
structural characteristics are then used to effectively capture the macroscopic structural
responses of lattice structures. Both approaches have been experimentally validated in
previous works [27,31]. Although the set of two-scale analysis approaches with shell and
solid elements enable efficient evaluations of various designs of architected materials, they
have different advantages and limitations in finite element modeling. For example, the
homogenization for the C matrix exhibits significant errors in the case of a plate with
heterogeneity in the thickness direction if the plate thickness is small [26]. On the contrary,
the homogenization for the ABD matrix is not suitable for thick plates as the method is
based on the thin plate theory. The characteristics of homogenization for thin plates can
be found in Refs. [37,38]. In addition, there are choices in the selection of the types of
finite elements used in practical structural design and development depending on the
geometry of the structure under development. The characteristics and limitations of the
homogenization approaches should also be taken into account in the determination of the
types of finite elements.

Therefore, multiscale approaches for lattice structures based on the different numerical
homogenizations are further explored in this paper. The objectives of this paper are (1)
to demonstrate the capabilities of the framework to evaluate stiffness characteristics of
lattice structures and (2) to assess the accuracies and validity ranges of both approaches
for appropriate predictions of responses of lattice structures. In the following sections,
descriptions of both numerical homogenizations are first provided. A correlation study
on the different multiscale approaches to effectively evaluate structural characteristics of
lattice-based structures to achieve high-performance structures is then performed.

2. Numerical Procedures for Two-Scale Analysis

Descriptions of decoupled two-scale numerical procedures to evaluate the stiffness of a
lattice structure are provided in this section. These procedures provide reasonable accuracy
and efficiency to evaluate the properties of heterogeneous materials, which usually brings
high computational costs to the modeling and simulations. Figure 1 illustrates the overview
of decoupled two-scale modeling of lattice structures. Microscales and macroscales are
introduced for the two-scale analysis. The microscale evaluation is performed by modeling
components of the lattice with solid elements to take into account the heterogeneous char-
acteristics of the lattice. In macroscale evaluation, the whole lattice structure is represented
as a homogeneous Kirchhoff plate with shell elements or a homogeneous elastic solid with
solid elements. The computational homogenization methods for plate [19–26] or solid [31]
are incorporated as a scale-up approach to link the two different scales. The homogeniza-
tion methods provide macroscopic equivalent stiffness of a Kirchhoff plate or elastic solid
(i.e., the ABD and C matrices) based on the microscale periodic unit cell (PUC) of the lattice
structure. Using an effective stiffness, a macroscopic structural simulation can be performed
to evaluate the structural performance and integrity of the lattice structures. Note that
the deformation of the lattice component is assumed to be small even in the macroscopic
large deformation problem. In other words, the geometrical and material nonlinearities are
neglected in the microscale evaluation. The formulations of the homogenization methods
are summarized in the following sections.

2.1. Computational Homogenization Method for Plates

A lattice-based heterogeneous plate consisting of periodic microlattice is considered
as shown in Figure 1. Equivalent homogeneous stiffness for a Kirchhoff plate of a PUC
is obtained based on a three-dimensional solid model of the lattice PUC by using the
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homogenization method for plates [19–26]. The following microscale governing equations
are solved in the PUC, as shown in Figure 2.

∂σij
∂xj

= 0, σij = Cijklεkl , εαβ = E0
αβ + x3K0

αβ + ε
(per)
αβ , εi3 = ε

(per)
i3

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, ε

(per)
ij = 1

2

(
∂u(per)

i
∂xj

+
∂u(per)

j
∂xi

)
(1)

where σij, εij, and ui are the microscopic stress, strain, and displacement in the PUC. Cijkl is
the stiffness tensor of the material in the lattice component. E0

αβ and K0
αβ are the macroscopic

in-plane strain and curvature on the reference plane. The microscopic displacement and
strain with in-plane periodicity are indicated as u(per)

i and ε
(per)
ij . Latin indices i, j, k, and l

range from one to three, while Greek indices α, β, γ, and δ take one and two.
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Figure 1. A concept of computational homogenization for the lattice structure. Effective characteristics
of a lattice structure constructed with periodic unit cells are evaluated based on computational
homogenizations with the representative unit cell. The obtained effective properties are used to
predict macroscopic responses of the structure with a homogenized structural model.
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Figure 2. A concept of computational homogenization for the lattice structures. Effective characteris-
tics of a lattice structure constructed with periodic unit cells are evaluated based on computational
homogenizations with the representative unit cell. The obtained effective properties are used to
predict macroscopic responses of the structure with a homogenized structural model. (a) A periodic
unit cell; (b) a lattice structure constructed with periodic unit cells.
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Based on the Kirchhoff–Love theory, the macroscopic constitutive relation of the
effective anisotropic lattice plate is given as:

Nαβ = AαβγδE0
γδ + BαβγδK0

γδ

Mαβ = BαβγδE0
γδ + DαβγδK0

γδ

(2)

with:
Nαβ = 1

|S|
∫

V σαβdV, Mαβ = 1
|S|
∫

V σαβx3dV (3)

where Nαβ and Mαβ are the resultant forces and moments. The area of PUC is |S| = |v1 × v2|.
Aαβγδ, Dαβγδ, and Bαβγδ are the effective extension, bending, and coupling stiffness tensors.
These equivalent stiffnesses are obtained in the following procedure.

(1) The microscopic stress in the PUC is calculated by assigning the macroscopic unit
strain or curvature (ex. E0

11 = 1, E0
22 = E0

12 = K0
11 = K0

22 = K0
12 = 0) for the microscale

problem defined by Equation (1).
(2) The components of effective stiffness tensor are obtained by calculating the macro-

scopic resultant force and moment with Equation (3) (ex. A1111 = N11,
A1122 = N22, A1133 = N12, B1111 = M11, B1122 = M22, B1133 = M12, in the case
of E0

11 = 1, E0
22 = E0

12 = K0
11 = K0

22 = K0
12 = 0).

The periodic boundary conditions (PBCs) are imposed on the PUC to solve the mi-
croscale problem given by Equation (1) [27,31,39,40]. In the case of the homogenization for
plates, only the x-z and y-z planes of a PUC have periodicity, as shown in Figure 2. These
procedures are implemented in the preprocesses and postprocesses of the commercial finite
element software Abaqus 2019 [41] via the Python script.

2.2. Computational Homogenization Method for Solids

A lattice structure, which is a heterogeneous solid with three-dimensional periodicity,
as shown in Figure 2, can be considered in an analogous manner to the homogenization
method for plates. Instead of calculating an equivalent homogeneous Kirchhoff plate
stiffness (i.e., the ABD matrix), an equivalent 3D stiffness matrix, C, is calculated.

Now, the macroscopic constitutive relation of the equivalent anisotropic lattice-based
plate is given as:

Σij = CijklEkl (4)

where Σij is the resultant stresses, and Cijkl is the effective 3D stiffness tensor. The indepen-
dent components of the macrostrain tensor are E11, E22, E33, E12, E22, and E31 instead of
E0

11, E0
22, E0

12, K0
11, K0

22, andK0
12 in Kirchhoff–Love theory.

The other procedures are analogous to the ones for the homogenization of lattice-based
plates. The procedures are implemented in Multiscale.simTM for Ansys® WorkbenchTM [42],
which was developed by CYBERNET SYSTEMS Co., Ltd. Of Tokyo, Japan.

3. Correlation Study of Different Homogenization Approaches for Lattice-Based
Structures

In this section, a comprehensive correlation study between the prediction accuracies
of the two-scale analysis approaches in terms of tensile, bending, and torsional stiffness
characteristics is performed for practical modeling and development of lattice structures
for high-performance aerospace structures. A series of static analyses were performed to
evaluate the stiffness characteristics of multiscale analysis with different approaches. In
this study, a plate model based on simple cubic (SC) lattice PUCs as described in Figure 3
was first considered. The in-plane dimensions of the plate model were 315 mm and 105 mm
in the x- and y-directions. The thickness t of the plate was 3.0 mm. The length of each side
of the PUCs was 3.0 mm. Different widths b of the square lattice beams composing the SC
lattice PUCs ranging from 1.2 mm, 1.6 mm, and 2.0 mm are investigated. Young’s modulus
E, Poisson’s ratio ν, and density ρ of the structure were 2.8852 GPa, 0.4, and 1385.2 kg/m3,
respectively. The correlation study was performed by comparing numerical solutions of a
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detailed model and homogenized models based on the equivalent ABD and C matrices
for the plates with the periodically distributed cubic unit cells. The homogenized model
based on the equivalent C matrix was further divided into three models. The first one is a
model with solid elements, the second one is with shell elements, and the last one is with
solsh elements. The solsh element is a shell element type with a wide range of thicknesses
offered by Ansys Mechanical [43,44]. These models were simulated by the Abaqus for
the detailed and homogenized models with the equivalent ABD matrix and by Ansys
Mechanical [42] for the homogenized models based on the equivalent C matrix. Figure 4
shows finite element models with fine solid elements and homogenized elements. For
example, approximately 1.3 million hexahedral solid elements were used for the detailed
model with b = 1.2 mm to ensure enough accuracy for the study. On the other hand, the
homogenized shell models were divided into 3675 quadratic shell or solsh elements, while
the homogenized solid model with the equivalent C matrix used 0.24 million hexahedral
solid elements. In this study, the tensile, bending, and torsional properties of the plate
models were investigated.
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Figure 3. A plate model constructed with simple cubic unit cells. The in-plane dimensions of the
plate model were 315 mm and 105 mm in the x- and y-directions. The unit cell is bounded by
3 mm × 3 mm × 3 mm.
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Figure 4. Plate models with different finite elements. The lattice plate is modeled as five different finite
element models: the detailed model with hex solid elements, the homogenized model based on the
computational homogenization for plates, and the homogenized models based on the computational
homogenization for solids. The * symbols represent which software was used.

Tensile characteristics of all models under a forced tensile displacement were first
evaluated. The boundary conditions for the study are described in Figure 5. One edge
of the models was fixed, while a forced displacement in the x-direction was applied on
the other edge of the models by 1 mm. The forced edge displacement was modeled by a
point displacement at the center node on the free edge, rigidly connected to the other nodes
on the edge/face. Figure 6 describes the simulated deformations of the detailed model
and the homogenized shell model based on the equivalent ABD matrix. The results for



Aerospace 2023, 10, 723 7 of 19

the homogenized shell, solsh, and solid models based on the equivalent C matrix are also
shown in Figure 6. The resultant loads on the applied nodes for all models with different
widths of the lattice beam are given in Table 1. The differences in the solutions from the
homogenized models to the ones of the detailed models were denoted in parentheses. The
solutions of the homogenized shell models based on the equivalent ABD matrix agreed with
less than 2.6% of the difference, while the homogenized models based on the equivalent C
matrix showed slightly larger differences.

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 5. Boundary conditions of the plate models. The cantilevered condition is applied at one edge 

by fixing six degrees of freedom. The forced loading is applied at the center node on the other end. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6. Deformations of detailed and homogenized models under forced tensile displacement. 

The maximum error in the homogenized shell model with the equivalent ABD matrix is 2.5%. The 

maximum error in the homogenized models with the equivalent C matrix is 5.9%. (a) Detailed solid 

model; (b) homogenized shell model (equivalent ABD matrix); (c) homogenized shell model 

(equivalent C matrix); (d) homogenized solsh model (equivalent C matrix); (e) homogenized solid 

model (equivalent C matrix). The color indicates the displacements in the x direction. 

  

Figure 5. Boundary conditions of the plate models. The cantilevered condition is applied at one edge
by fixing six degrees of freedom. The forced loading is applied at the center node on the other end.

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 5. Boundary conditions of the plate models. The cantilevered condition is applied at one edge 

by fixing six degrees of freedom. The forced loading is applied at the center node on the other end. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6. Deformations of detailed and homogenized models under forced tensile displacement. 

The maximum error in the homogenized shell model with the equivalent ABD matrix is 2.5%. The 

maximum error in the homogenized models with the equivalent C matrix is 5.9%. (a) Detailed solid 

model; (b) homogenized shell model (equivalent ABD matrix); (c) homogenized shell model 

(equivalent C matrix); (d) homogenized solsh model (equivalent C matrix); (e) homogenized solid 

model (equivalent C matrix). The color indicates the displacements in the x direction. 

  

Figure 6. Deformations of detailed and homogenized models under forced tensile displacement.
The maximum error in the homogenized shell model with the equivalent ABD matrix is 2.5%. The
maximum error in the homogenized models with the equivalent C matrix is 5.9%. (a) Detailed
solid model; (b) homogenized shell model (equivalent ABD matrix); (c) homogenized shell model
(equivalent C matrix); (d) homogenized solsh model (equivalent C matrix); (e) homogenized solid
model (equivalent C matrix). The color indicates the displacements in the x direction.
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Table 1. Resultant loads on the center node of the detailed and homogenized models under the
forced tensile.

Model b, mm Resultant Load, N

Detailed

1.2

512.32
Shell (ABD matrix) 515.35 (0.59%)

Shell (C matrix) 527.83 (3.03%)
Solsh (C matrix) 527.88 (3.04%)
Solid (C matrix) 527.85 (3.03%)

Detailed

1.6

939.60
Shell (ABD matrix) 963.06 (2.50%)

Shell (C matrix) 994.68 (5.86%)
Solsh (C matrix) 994.84 (5.88%)
Solid (C matrix) 994.74 (5.87%)

Detailed

2.0

1575.1
Shell (ABD matrix) 1585.6 (0.67%)

Shell (C matrix) 1625.4 (3.19%)
Solsh (C matrix) 1626.0 (3.23%)
Solid (C matrix) 1625.7 (3.21%)

Out-of-plane bending and torsional characteristics of the models under forced bending
and torsional deformations were then evaluated. For the cantilevered models, a 1-rad
rotation around the z-axis or a 1-rad rotation around the x-axis were applied with a point
rotation at the center node on the free edge/face as shown in Figure 5. Figures 7 and 8
show the deformations for the bending and torsional analyses. Tables 2 and 3 give the
comparison of solutions in terms of the resultant moments.
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Figure 7. Deformations of detailed and homogenized models with the equivalent ABD matrix under
the forced bending rotation. The maximum error in the homogenized shell model with the equivalent
ABD matrix is 2.4%. The maximum error in the homogenized models with the equivalent C matrix
is more than 46%. (a) Detailed solid model; (b) homogenized shell model (equivalent ABD matrix);
(c) homogenized shell model (equivalent C matrix); (d) homogenized solsh model (equivalent C
matrix); (e) homogenized solid model (equivalent C matrix). The color indicates the displacements in
the z direction.
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Figure 8. Deformations of detailed and homogenized models with the equivalent ABD matrix under
forced torsional rotation. The maximum error in the homogenized shell model with the equivalent
ABD matrix is 2.3%. The maximum error in the homogenized models with the equivalent C matrix
is more than 49%. (a) Detailed solid model; (b) homogenized shell model (equivalent ABD matrix);
(c) homogenized shell model (equivalent C matrix); (d) homogenized solsh model (equivalent C
matrix); (e) homogenized solid model (equivalent C matrix). The color indicates the displacements in
the z direction.

The differences in the resultant moments obtained from the detailed and homogenized
shell model with the effective ABD matrix were less than 2.5%. On the other hand, although
the models based on the equivalent C matrix show a good consistency even if the element
types (shell, solsh, solid) are different, there are significant differences to the detailed model.
The case represents a limitation of homogenization with the equivalent C matrix. Since
the simulation models were thin plates with a single unit cell in the thickness direction,
which gave the in-plane periodic condition, the assumption of the homogenization for
the equivalent C matrix was violated for the cases. The limitation also applies to the
homogenization for the equivalent ABD matrix with a structure with three-dimensional
periodic conditions.
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Table 2. Resultant moments on the center node of the detailed and homogenized model with the
equivalent ABD.

Model b, mm Resultant Moment, N·mm

Detailed

1.2

12.903
Shell (ABD matrix) 13.013 (0.85%)

Shell (C matrix) 6.9361 (46.24%)
Solsh (C matrix) 6.9204 (46.37%)
Solid (C matrix) 6.9189 (46.38%)

Detailed

1.6

20.038
Shell (ABD matrix) 20.520 (2.41%)

Shell (C matrix) 13.133 (34.46%)
Solsh (C matrix) 13.065 (34.80%)
Solid (C matrix) 13.133 (34.46%)

Detailed

2.0

27.704
Shell (ABD matrix) 28.234 (1.91%)

Shell (C matrix) 21.630 (21.92%)
Solsh (C matrix) 21.417 (22.69%)
Solid (C matrix) 21.633 (21.91%)

Table 3. Resultant moments on the center node of the detailed and homogenized model with the
equivalent ABD matrix under the forced torsional rotation.

Model b, mm Resultant Moment, N·mm

Detailed

1.2

9.0123
Shell (ABD matrix) 9.2158 (2.26%)

Shell (C matrix) 3.7271 (58.64%)
Solsh (C matrix) 3.6902 (59.05%)
Solid (C matrix) 3.6699 (59.28%)

Detailed

1.6

23.019
Shell (ABD matrix) 23.442 (1.84%)

Shell (C matrix) 11.645 (49.41%)
Solsh (C matrix) 11.541 (49.86%)
Solid (C matrix) 11.473 (50.16%)

Detailed

2.0

41.934
Shell (ABD matrix) 41.549 (0.92%)

Shell (C matrix) 25.644 (38.85%)
Solsh (C matrix) 25.424 (39.37%)
Solid (C matrix) 25.266 (39.75%)

To perform further investigations of the validity ranges for both homogenization
approaches, additional simulations were performed using plate models with different
numbers of unit cell layers by increasing thickness-wise periodicity from one to six. In
the cases, the cross-sectional areas and the width of lattice beams were fixed to 324 mm2

and 1.2 mm, while the width of the plates ranged from 108 mm to 18 mm. The length
of the plates was still 315 mm. The five models are shown in Figure 9. The equivalent
stiffness properties of the plates were calculated for the homogenized models based on the
effective C and ABD matrices. However, in the calculations of the equivalent ABD matrices
with multiple cells in the thickness direction, a set of unit cells in the thickness direction
are considered as a “representative unit cell”, as shown in Figure 10, since the approach
assumes in-plane periodicity. Also, plate models with solid elements were evaluated for
homogenized models based on the equivalent C matrix.
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Figure 9. Plates with different numbers of unit cell layers for detailed solid models. The numbers
of unit cell layers are varied from one to six to change the thickness-wise periodicity, while the
cross-sectional areas and the width of lattice beams are fixed. (a) Model 1 with the cross-sectional
aspect ratio = 36; (b) Model 2 with the cross-sectional aspect ratio = 9; (c) Model 3 with the cross-
sectional aspect ratio = 4; (d) Model 4 with the cross-sectional aspect ratio = 2.25; (e) Model 5 with the
cross-sectional aspect ratio = 1.
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The results are given in Tables 4–6. Figures 11–13 show the errors of resultant loads
and moments for the homogenized models to the ones for the detailed model with different
cross-sectional aspect ratios (i.e., different cell layers) under the forced deformations. Firstly,
the errors in the resultant moments based on the homogenized models with the equivalent
C matrices, which were related to the bending and torsional stiffnesses, were significantly
decreased as the layers increased. When the cross-sectional aspect ratio was reduced below
2.25, the homogenized models showed agreement with the detailed models with errors
of less than 6.1%. Secondly, the number of cell layers did not have a significant influence
on the prediction accuracy of the tensile stiffnesses in the homogenized models with both
equivalent ABD and C matrices. Both models maintained the prediction differences to
the detailed models of less than 4%. For the homogenized model with the equivalent
ABD matrices, the bending stiffnesses also agreed with the detailed models even if the cell
layers were increased. Finally, the torsional stiffnesses in the homogenized models with the
equivalent ABD matrices were drastically increased (overestimated) as the cross-sectional
aspect ratio decreased to less than nine. According to Tables 4–6, it can also be confirmed
that the tensile stiffness obtained by the homogenization with the C matrices could not
capture the influence of the aspect ratio. In other words, the tensile stiffnesses almost did
not change with different aspect ratios. In addition, the homogenization with the C matrices
underestimated the effective bending and torsional stiffnesses for the higher aspect ratios.
Therefore, it is recommended that the homogenization approach for simulations of a lattice-
based structure should be determined based on the cross-sectional aspect ratio, the border
of which is around four in this study. However, one has to carefully examine the threshold
since the value may be changed based on the geometrical design of the structure. The
homogenization approach with shell elements based on an equivalent ABD matrix can be
used for a plate model with the cross-sectional aspect ratio being more than four to ensure
the prediction accuracy of the stiffness. On the other hand, the homogenization approach
based on an equivalent C matrix should be used for a model with the cross-sectional aspect
ratio being less than the threshold.

Table 4. Resultant loads on the center node of the detailed and homogenized models with multiple
cell layers under the forced tensile displacement.

b, mm Width, mm Thickness, mm
Resultant Load, N

Detailed Shell
(ABD Matrix)

Solid
(C Matrix)

1.2

108 3 526.996 530.083 (0.59%) 545.720 (3.55%)
54 6 533.166 535.813 (0.50%) 545.540 (2.32%)
36 9 535.078 537.723 (0.49%) 545.490 (1.95%)
27 12 535.843 538.677 (0.53%) 545.470 (1.80%)
18 18 536.225 539.631 (0.64%) 545.460 (1.72%)

1.6

108 3 987.637 990.646 (0.30%) 1023.210 (3.60%)
54 6 999.829 1002.53 (0.27%) 1022.384 (2.26%)
36 9 1003.39 1006.47 (0.31%) 1022.151 (1.87%)
27 12 1004.82 1008.44 (0.36%) 1022.061 (1.72%)
18 18 1005.54 1010.41 (0.48%) 1022.017 (1.64%)

2.0

108 3 1633.99 1631.08 (−0.18%) 1672.289 (2.34%)
54 6 1647.24 1642.77 (−0.27%) 1669.681 (1.36%)
36 9 1651.11 1646.60 (−0.27%) 1668.957 (1.08%)
27 12 1652.69 1648.52 (−0.25%) 1668.685 (0.97%)
18 18 1653.49 1650.44 (−0.18%) 1668.556 (0.91%)
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Table 5. Resultant moments on the center node of the detailed and homogenized models with
multiple cell layers under the forced bending rotation.

b, mm Width, mm Thickness, mm
Resultant Moment, N·mm

Detailed Shell
(ABD Matrix)

Solid
(C Matrix)

1.2

108 3 13.2743 13.3873 (0.85%) 7.154 (46.11%)
54 6 33.9294 34.189 (0.77%) 28.579 (15.77%)
36 9 68.6652 69.1156 (0.66%) 64.272 (6.40%)
27 12 117.475 118.291 (0.69%) 114.240 (2.75%)
18 18 257.200 259.103 (0.74%) 257.020 (0.07%)

1.6

108 3 20.9876 21.1148 (0.61%) 13.439 (35.97%)
54 6 59.6814 59.9601 (0.47%) 53.598 (10.19%)
36 9 124.748 125.31 (0.45%) 120.463 (3.43%)
27 12 216.184 217.178 (0.46%) 214.066 (0.98%)
18 18 477.997 480.607 (0.55%) 481.534 (0.74%)

2.0

108 3 28.8551 29.0628 (0.72%) 22.034 (23.64%)
54 6 92.8346 92.9382 (0.11%) 87.637 (5.60%)
36 9 199.988 199.98 (0.00%) 196.772 (1.61%)
27 12 350.387 350.214 (0.05%) 349.517 (0.25%)
18 18 780.946 780.662 (0.04%) 786.025 (0.65%)

Table 6. Resultant moments on the center node of the detailed and homogenized models with
multiple cell layers under forced torsional rotation.

b, mm Width, mm Thickness, mm
Resultant Moment, N·mm

Detailed Shell (ABD Matrix) Solid (C Matrix)

1.2

108 3 9.37778 9.58021 (2.16%) 3.873 (58.70%)
54 6 17.9976 18.8126 (4.53%) 13.402 (25.53%)
36 9 30.1893 33.3146 (10.35%) 26.474 (12.31%)
27 12 42.0466 50.8146 (20.85%) 39.482 (6.10%)
18 18 52.3985 83.9939 (60.30%) 51.423 (1.86%)

1.6

108 3 23.9114 24.2967 (1.61%) 11.901 (50.23%)
54 6 52.9161 54.6308 (3.24%) 42.151 (20.34%)
36 9 92.9082 99.7746 (7.39%) 83.874 (9.72%)
27 12 132.062 151.731 (14.89%) 125.723 (4.80%)
18 18 166.669 236.039 (41.62%) 164.490 (1.31%)

2.0

108 3 42.5185 43.017 (1.17%) 26.130 (38.54%)
54 6 109.803 111.973 (1.98%) 93.362 (14.97%)
36 9 201.765 212.075 (5.11%) 187.237 (7.20%)
27 12 292.105 323.915 (10.89%) 281.315 (3.69%)
18 18 372.514 486.983 (30.73%) 368.809 (0.99%)

Figures 14–16 show the errors of resultant loads and moments for the homogenized
models to the ones for the detailed model with widths of lattice beams under the forced
deformations. Since the lattice plates become solid plates as the width of the lattice beams
increases, the errors of the homogenized models are mostly reduced. In other words, one
needs extra caution in evaluations with homogenizations when a filling rate (ratio between
the lattice volume to the unit cell volume) is small, which is the case for lightweight lattice
structures. In addition, the homogenization approach for periodic beams could also be
used for a beam-like structure such as Model 5, although such a homogenization approach
is out of the scope of the current study.
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the detailed model with different cell layers under the forced tensile displacement. The homogenized
models with both equivalent ABD and C matrices maintain the prediction differences to the detailed
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Figure 12. Errors of resultant moments on the center node for the homogenized models to the ones
for the detailed model with different cell layers under the forced bending rotation. The errors of the
homogenized models with the equivalent ABD matrices are maintained at less than 1%, while the
ones with the equivalent C matrices increase for the higher cross-sectional aspect ratios.
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for the detailed model with different cell layers under the forced torsional rotation. The errors of the
homogenized models with the equivalent ABD matrices increase for the lower aspect ratio, while the
ones with the equivalent C matrices increase for the higher cross-sectional aspect ratios.
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Figure 14. Errors of resultant loads on the center node for the homogenized models to the ones for
the detailed model with different widths of lattice beams under forced tensile displacement. The
errors of the homogenized models are reduced as the width of the lattice beams increases. (a) ABD
matrices; (b) C matrices.
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errors of the homogenized models are mostly reduced as the width of the lattice beams increases.
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4. Conclusions

Multiscale approaches based on the different computational homogenizations for
lattice-based architected materials were explored in this paper. This study demonstrated
the capabilities of the framework to evaluate stiffness characteristics of lattice structures
with two different two-scale analysis approaches and assessed the accuracies and validity
ranges of both approaches for appropriate predictions of responses of lattice structures.
The two-scale analysis framework consisted of the computational homogenizations for
the generalized stiffness (ABD) matrix and 3D stiffness (C) matrix. The former could be
used for simulations with shell elements, while the latter offers options for solid, shell, and
thick shell (solsh) elements. A representative unit cell of the structure with two-/three-
dimensional periodicity was modeled as representative finite elements in the computational
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homogenization procedures. Equivalent stiffness characteristics of the representative unit
cell were obtained based on the computational homogenization procedures. The equivalent
structural characteristics were then used to effectively capture the macroscopic structural
responses of lattice-based structures.

To assess the correlation between the prediction accuracies of the two-scale analysis
approaches in terms of tensile, bending, and torsional stiffness characteristics, a series of
static analyses were performed. When a model violated assumptions in periodic conditions,
most homogenized models with both two-scale analysis approaches exhibited large discrep-
ancies to detail models with fine meshes, which were used as reference solutions. However,
it was found that the homogenized models for plates still provided good accuracy for
tensile and bending stiffness characteristics, although deviations in torsional characteristics
drastically increased as the cross-sectional aspect ratio increased if multiple PUCs in the
third direction were modeled as a “unit cell” in the homogenization for plates. The numeri-
cal studies also indicated that the approach with the computational homogenization for
solids was more susceptible to a violation of periodic conditions. In the current study, the
border to switch the approaches was the cross-sectional aspect ratio of about four. However,
one has to carefully examine the threshold since the value may be changed based on the
geometrical design of the structure. The homogenization approach with shell elements
based on an equivalent ABD matrix can be used for a plate model with the cross-sectional
aspect ratio being more than the threshold to ensure the prediction accuracy of the stiffness.
On the other hand, the homogenization approach based on an equivalent C matrix should
be used for a model with the cross-sectional aspect ratio being less than the threshold.

The novelty of this study is the comprehensive correlation study between the pre-
diction accuracies of the two-scale analysis approaches in terms of tensile, bending, and
torsional stiffness characteristics for practical modeling and development of lattice struc-
tures, while most preceding studies have focused on specific properties. The numerical
studies elucidated the advantages and limitations of homogenization for plates/solids. The
multiscale analysis with the homogenization approach is a powerful tool for the practi-
cal analysis and development of high-performance structures with architected materials
as substructures. When homogenization approaches are employed in the modeling and
analysis of lattice structures or other architected materials, one needs to pay extra atten-
tion to their validity ranges and approximations. As most homogenization approaches
assume an infinite periodicity of representative unit cells, the physical assumption must be
appropriately taken into account. The recommendations obtained from this study are:

(1) Tensile stiffness can be estimated by both homogenizations with reasonable accuracy
even if the assumptions in periodic conditions are violated. Therefore, one can choose
both homogenization approaches for cost-effective analysis of lattice structures if a
focus is on tensile responses;

(2) Predictions of bending and torsional stiffnesses by both homogenizations can provide
enough accuracy within a certain threshold. Also, the validity range would be ex-
tended if a unit cell of lattices has a higher filling rate. Hence, these homogenizations
can still be used for finite periodic arrays of lattices within the threshold.

These facts are important when one wants to use lattice structures as substructures or
components. To achieve high performance in applications with lattice structures, there are
cases in which lattices should not be completely periodic but distributed quasiperiodically,
or in which lattice structures are limited in finite arrays due to the size of parts. In such
cases, these homogenization approaches could still be used as efficient and reasonable
modeling techniques.

This study contributes a guideline for effective designs and developments of high-
performance aerospace structures with lattice-based architected materials since the cost-
effective multiscale analysis would also enable the design optimization of such structures.
The current study focused on the specific lattice topology, which was a simple cubic lattice.
However, there are a variety of choices for lattice designs, including lattice topologies, unit
cell sizes, lattice beam geometries, etc. Therefore, a detailed study with a wider range of
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design variables will be performed in future work to investigate the influences of each
design variable.
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