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Abstract: Accurate estimation of spare part demand is challenging in the case of intermittent or
lumpy demand, characterised by infrequent demand occurrence and variability in demand size.
While prior research has considered the effect of exogenous variables on spare part demand, there
is a lack of research considering the effects of repair quality and aggregated spare part demand
behaviour across fleets of assets under the influence of multiple simultaneously acting drivers of
failure. This research provides new insights towards the problem of estimating variable spare part
demand through modelling and simulation of the effects of multiple, simultaneously considered
spare part demand drivers. In particular, a contribution to the state of the art is introduced by the use
of a Branching Poisson Process (BPP) to model repair quality effects for spare part demand generation
in conjunction with several demand drivers. The approach is applied in a numerical study which
involves component failure characteristics based on real-life data from an aircraft maintenance, repair
and overhaul (MRO) provider. It is shown that repair quality improvements drive down the variance
in the demand and the total number of failures over time, and outperform the effect of environmental
drivers of failure in terms of demand generation.

Keywords: spare part demand; repair quality; aircraft components; Branching Poisson Process;
intermittent demand

1. Introduction

In aviation, it is crucial for airlines to maintain their fleet in an airworthy state. Each
individual aircraft is required to meet a high standard of technical reliability, which is ac-
complished through maintenance. Aircraft maintenance encompasses a variety of tasks that
can be deployed to keep the aircraft in an airworthy state. One of these tasks is replacement.
As components are replaced, demand for new components is generated. To minimize the
associated downtime of an aircraft, maintenance, repair and overhaul (MRO) providers (a
term used here to indicate the contributions of Part 145 Approved Maintenance Organiza-
tions and Part M Continued Airworthiness Maintenance Organizations) aim to meet this
generated demand by having spare parts available in their inventory. However, available
inventory may not always be sufficient for the experienced demand, a phenomenon which
is compounded by the highly variable nature (in both frequency and quantity) of spare
part demand in aviation [1–3]. Due to this high variability, actual demand is difficult to
estimate or forecast accurately. Consequently, this drives companies to keep relatively high
stock buffers in order to ensure the availability of parts, leading to increased holding costs
and waste of part life.

As noted by Regattieri et al. [2], many MROs and airlines do not use sophisticated
techniques for demand estimation and forecasting, but rely on in-house experience or
component supplier suggestions. If forecasting is in place, time-series techniques are often
employed. Regattieri et al. [2] analysed the accuracy of twenty time-series forecasting
techniques and noted their strengths and weaknesses. In a similar vein, Ghobbar and
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Friend [4] stated that airline operators could improve their forecasts by identifying which
drivers induce the variable behaviour of demand.

The latter points towards one of the noteworthy limitations in the current state of the
art, which is that many studies do not provide further understanding of the generation of
demand due to the use of time-series techniques, where demand is the only variable taken
into account. Multiple demand drivers are not usually considered, either individually
or on a joint basis. Furthermore, a substantial subset of the literature assumes that the
state of installed components is always in a “as-good-as-new” state, i.e., denoting perfect
repairs, or a “bad-as-old” state, i.e., denoting minimal repairs [5]. Neither assumption
necessarily matches with spare part configurations in which overhauled or refurbished
components are reintroduced into service. While the current state of the art does present
models for imperfect repairs [6–10] and applies them for policy evaluation and optimisation
purposes [11,12], their use for the prediction of demand behaviour has not been explored,
to the best of the authors’ knowledge.

One of the downsides of the use of time-series techniques is that no further under-
standing of the generation of the demand is provided. As the study of Van der Auw-
eraer et al. [13] noted, installed base information can be used to forecast the upcoming
demand of spare parts. Similarly, environmental conditions can be used to improve the
quality of forecasts [14]. The research by Lowas and Ciarallo [15] uncovered some rea-
sons for the unpredictable behaviour of spare part demand. The most significant single
factor driving demand variability was found to be the size of the fleet of aircraft. It was
concluded that smaller fleets have higher values for the Coefficient of Variance (CV) and
Average Demand Interval (ADI)—measures of the variability in quantity and frequency of
demand—when compared to large fleets. The authors of the study recommended further
study to better understand demand generation drivers, as only some were tested.

One commonly made assumption throughout the literature is related to the state of
the component when installed on an aircraft. Studies using the expected lifetime of com-
ponents often neglect the fact that errors in the repair process occur and hence repairable
components are not restored in an as-good-as-new state [6,7,16]. As maintenance personnel
face high levels of time pressure and the effects of environmental circumstances in the
industry, errors in the process will occur. Research has shown that in at least 39% of cases,
maintenance errors are related to installation errors or incomplete repairs [17]. Broken
components that are placed back into operation result in subsequent failures due to the
incorrect state of the component [18]. This leads to concentrations in failures, resulting in
a peak in spare part demand. However, this type of failure dependency is typically not
addressed within the scope of spare part demand forecasting.

This research aims to address the aforementioned limitations in the state of the art by
(1) modelling, simulating and evaluating the effect of incorrect repairs on demand patterns;
and (2) quantifying the effect of multiple demand drivers in conjunction, leading to an
improved understanding of demand driver priority. In terms of demand drivers, fleet
size, incorrect repairs, environmental conditions, and different component commonality
strategies are considered.

Section 2 gives an overview of the academic state of the art regarding the research topic,
and further highlights limitations that will be addressed in this research. Section 3 presents
the modelling and simulation approach. Subsequently, this approach is applied to a case
study comprising real-life component data from an aircraft MRO provider that services
CS25 category aircraft. Section 4 presents the case study characteristics and gives the results
of a quantitative evaluation. Next, Section 5 discusses the validity and applicability of
the results. Finally, Sections 6 and 7 present the conclusions and recommendations for
future studies.

2. Literature Review

In this section, the state of the art with respect to spare part demand estimation and
forecasting, as well as the modelling of dependent failures, is discussed. This includes
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an identification of gaps, highlighting the associated research contributions of the cur-
rent work.

2.1. Spare Part Demand Characterisation and Forecasting

For MRO providers, being able to accurately forecast spare part demand is crucial to
optimally maintain aircraft. When spare part demand is more predictable, as expressed
in lower levels of forecast error, inventory levels can be lowered. Currently, the avia-
tion industry carries around EUR 30 billion yearly in spare parts stock to keep aircraft
airworthy [19].

To classify spare part demand behaviour, a variety of metrics can be employed. Two
metrics are prevalent: average inter-demand arrival (ADI); and the squared coefficient
of variation (CV2) [20]. Figure 1 visualises four resulting demand patterns that can be
identified using these two metrics and their associated threshold values. Demand is
typically characterised as intermittent for patterns that have infrequent demand with low
variability in quantity (with cut-off values in the literature suggesting an ADI > 1.32 and
a CV2 < 0.49), and as lumpy for demand that is highly variable in both frequency and
quantity (ADI > 1.32 and CV2 > 0.49) [20,21].
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As stated in Section 1, various studies have found that spare part demand in aviation
tends to be intermittent or lumpy [1,4,14].

The research by Boone et al. [22], which focused on critical challenges related to
inventory management in service parts supply, concluded that the inaccuracy of spare
parts forecasts was the only challenge selected unanimously by the participating panel
members. Furthermore, it was ranked as the second-most-difficult challenge facing spare
parts inventory managers. Hence, intermittent and lumpy behaviour results in a problem
for the inventory management of MRO providers.

Over the years, methods used for forecasting have been further developed and im-
proved. Ghobbar and Friend [1] highlight various categories of methods used for forecast-
ing, including trending methods, causal methods and time-series methods. Time-series
methods range from relatively simple methods, such as moving averages and exponen-
tial smoothing variants, to more advanced methods, such as Croston’s method [23]. In
the latter method, the forecasts for the demand size and the demand interval are treated
separately in order to minimise the error of the forecast. In 2005, Syntetos and Boylan [24]
improved upon Croston’s method by addressing the bias present in this method using an
adjusted forecast factor (1 − α/2). Another improvement to Croston’s method was realised
in the research of Romeijnders et al. [25]. This research proved that two-step forecasting
methods are more accurate than the benchmarked technique. The method showed a 20%
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reduction in forecast error. In summary, the current literature is still working to improve
the applicability and accuracy of various time-series techniques.

In recent years, causal methods have seen increased interest. As multiple factors
influence the demand of different aircraft components, it is crucial for deeper understanding
to identify these causalities and quantify their impact. Demand is generated when a
component is removed from service, mostly due to failure or a strategic decision to replace
the component.

At the aircraft level, the research of Ghobbar and Friend [4] showed the effects of
aircraft utilisation and flight hours on the failures of components, as the wear and tear of
components increased with increasing utilisation and flying hours, therefore increasing the
demand rate for spare parts. When considering fleet-level demand, Low and Ciarallo [15]
proved that small fleets have higher demand CV2 and higher ADI than large fleets, and that
higher buy periods tend to inflate the CV2 and ADI as well. In both studies, a correlation
between spare part demand and certain demand drivers was substantiated. However, both
studies stated that there was still little understanding of the causes of fluctuations in spare
part demand. Notably, to the best of the authors’ knowledge, existing research into causal
methods does not address the influence of the maintenance quality of the components. In
other words, whether a component is correctly or incorrectly repaired is typically not taken
into account in the existing demand forecasting literature. The state of the component
upon installation is crucial for the lifetime—and therefore the moment of failure—of the
component. As the intermittency of the demand of spare parts is one of the key aspects
limiting the improvement of the predictability of demand, a better understanding of the
drivers of demand-generating behaviour is needed. Incorrect repairs lead to components
that do not function when put into service, triggering subsequent failures. Hence, this
results in a demand peak for the components under consideration. Given this, the current
research aims to address the associated gap in the state of the art regarding the potential
influence of incorrect repairs on spare part demand.

2.2. Dependent Failures

Despite the goal of part M and part 145 organisations being to prevent the failure of
components from happening while extending their lifetime for as long as possible within
safety margins, failures do occur in aviation. Incorrect repairs cause components to remain
in a broken state, having a crucial impact on the functioning both of the component itself
and of interdependent components. When placed back into service, a broken component
will not function as desired, and hence, interdependent components will also be affected.
An example of this is the failure of components due to overloading; the given workload is
fully dependent on the working components, as broken components cannot take any load,
which may lead to subsequent overloading of the components that are still functioning.
These phenomena are currently present in the aviation industry [17,26–28].

Various models can be used to represent imperfect or incorrect repairs [16,29,30]. Of
these, the Branching Poisson Process [29] makes it possible not only to model incorrect
repairs, but also to estimate the occurrence of subsequent dependent failures, making it
highly suitable for application in the context of the stated research aim. According to the
underlying theory, a primary failure might trigger subsequent failures, dependent on the
correctness of the repair. Here, r is the probability that a repair is not performed correctly.
Hence, 1 − r represents the chance that the repair is executed correctly. In cases where the
repair is performed incorrectly, the incorrect repair will spawn a finite renewal process of
subsidiary failures. The number of subsidiary failures is a discrete random variable. At the
time of the first primary failure (Z1) = z, the expected number of failures in the interval
[0, t] can be expressed as H(t− z). Then, the contribution of the first event in the subsidiary
process for the expected events can be described as follows:

E
[

N(1)(t)
]
=
{

E
[

N(1)(t)
∣∣∣Z1

]}
=
∫ t

0
E
[

N(1)(t)
∣∣∣Z1 = z

]
f1(z)dz =

∫ t

0
H(t− z) f1(z)dz (1)
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where f1(z) represents the probability density function of the primary events. The same
representation can be made for the expected number of failures Nk(t) in [0, t] due to the
kth subsidiary process:

E
[

N(k)(t)
]
=
∫ t

0
H(t− z) fk(z)dz (2)

That stated, the expected number of failures of any type in [0, t], Λ(t), can be expressed
as the sum of the expected number of primary failures in [0, t] and the expected number of
subsidiary failures. This leads to:

Λ(t) = E[N(t)] = Λz(t) +
∫ t

0
H(t− z)Λ′z(z)dz (3)

A graphical overview of the occurrence of primary and subsidiary failures is provided
in Figure 2. As can be seen from the figure, the complete process considers the superposition
of the primary and subsidiary events of failures. Here, the assumption is made that the
two types of events are indistinguishable.
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3. Modelling and Simulation Approach

In this section, in which the model formulation and implementation are described,
the required input data and the simulation setup are elaborated. Section 3.1 provides
the explanation of the modelling and simulation approach, and Section 3.2 describes the
approach towards a systematic evaluation of the influencing parameters.

3.1. Methods

The approach aims to provide a quantitative answer to what the impact of different
levels of repair quality is on spare part demand. Therefore, it was decided to capture the
impact on ADI, CV2 and the overall number of failures when varying the levels of repair
quality. The first two metrics cover the variability in demand, whereas the final metric
captures the overall demand size.

In order to incorporate the effect of incorrect repairs on spare part demand in con-
junction with several other drivers of demand, the developed approach incorporates a
model for characterising incorrect repair in combination with a Monte Carlo simulation
to generate spare part demand sequences on the basis of multiple input parameters. A
visualisation of this approach is provided in Figure 3. As randomness is in play with
the occurrence of incorrect repairs and the distribution of subsidiary failures, a total of
50 iterations of the model are performed before analysing the results. The final results are
based on distributional characteristics taken from across the individual iterations.
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For modelling incorrect repairs, a Branching Poisson Process (BPP) is implemented.
The BPP utilises a parameter, r, that represents the chance of an incorrect repair being
performed. This parameter influences the discrete random variable that represents the
spawning of subsequent failures. Hence, when an incorrect repair takes place and the
component is placed back into service, the number of failures during a relatively short
timespan may peak due to a certain number of subsequent failures. The influence of this
parameter on CV2 and ADI is the core attribute of this model. Although it could be argued
that the value of r might change over time, and that therefore a time-dependent function
r(t) might be present, this is not undertaken in this study.

Aside from the main parameter r, additional parameters that may influence spare part
demand patterns are considered. The work of Lowas and Ciarallo [15] showed the influence
of fleet size on demand patterns. Thijssens and Verhagen [14] showed that environmental
conditions impact the reliability of components for multiple different reasons. Air pollutants
and salinity all have an impact on the corrosion process of components. In addition to a
natural reference climate (i.e., temperate), humid and desert climates are taken into account
as well, both of which affect the Mean Time Between Failure (MTBF) (note that other
relevant metrics include Mean Time Between Repair (MTBR) and Mean Time Between
Overhaul (MTBO), but the cited study focuses on MTBF). The impact of incorrect repairs in
combination with these other varying circumstances provides a wider perspective on the
general behaviour of spare part demand.

The BPP and the previously highlighted parameters are implemented and subse-
quently simulated for every aircraft in the fleet. Failures at the selected aircraft component
locations (expressed using system ATA codes; see Section 3.2) are simulated according to
their corresponding failure rate λ, obtained from the analysis of the underlying data. Based
on the number of primary removals that contain subsequent removals in a data set, an
estimate of the probability of an incorrect repair r can be made for the specific component
location. Subsequently, possible subsequent failures are simulated. Next, the results of the
individual aircraft are summed, resulting in the sum of the failures over time for every ATA
location that is selected to be part of the model. This is done for multiple combinations of
parameters. The values for ADI and CV2 are stored. The above-mentioned metrics describe
the predictability of the failures over time, but do not provide an answer regarding the
quantity of failures. Therefore, this metric is added to the results as well, in order to capture
both the behaviour as well as the sum of the failures.

The model can be applied across a variety of scenarios. In this study, four scenario
variants are considered: each variant builds on the previous one to allow for the progressive
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generation of results, enabling the evaluation of individual effects followed by joint effects.
The variants and their progressive nature are briefly discussed below.

• Variant 1—Base: In this variant, the level of repair is the only parameter to be varied.
Only temperate environmental conditions are taken into account. All fleet sizes are
taken into account, but no distinction is made in the presentation of the results. No
increase in component commonality across different aircraft is taken into consideration.

• Variant 2—Incorporation of varying fleet sizes: This variant uses the same set of
results as Variant 1, but a distinction between the different fleet sizes is made in the
presentation of the results.

• Variant 3—Incorporation of varying fleet sizes and environmental conditions: As
different environmental conditions influence the effect of the expected lifetime of
components, this will result in varying values for the different λs. Here, the results of
humid and desert environments are also taken into account.

• Variant 4: Incorporation of varying fleet sizes, environmental conditions, and com-
ponent commonality strategies. As flag carriers tend have more diverse fleets when
compared to low-cost carriers [31], MRO providers have to deal with different aircraft
types. Component commonality across the aircraft types is typically limited, with
aircraft types in a family concept usually sharing the greatest degree of commonality.
However, recent research by Zhang et al. [32] has shown promising results regard-
ing potential gains with respect to costs when component commonality is increased.
Hence, this variant investigates the effect of the increment of component commonality.
From a practical perspective, this may give insights into any additional requirements
on aircraft and component design, where OEMs have an opportunity to increase the
similarity of components across multiple aircraft types. This has obvious manufactur-
ing and supply chain benefits, but using Variant 4, it becomes possible to assess any
potential effects on spare part demand.

The model algorithm can be described as per the pseudo-code given in Algorithm 1.

Algorithm 1: Pseudocode of model
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a scenario in which the amount of incorrectly repaired components that is placed back 
into service is twice as high as the reference scenario. The second alteration represents a 
scenario in which the chances of an incorrect repair are decreased by 50%. Therefore, less 
incorrectly repaired components are placed back into service. The last option represents a 
scenario where no incorrectly repaired components are placed back into the aircraft, and 
thus all components that are placed back function properly.  

The work of Thijssens and Verhagen [14] showed the impact of three environmental 
factors on the Restricted Mean Survival Time (RMST) of components in aviation. The 
RMST is equal to the mean survival time, except that the RMST is restricted to within a 
time range [0,𝜃] to avoid the negative influences of the poorly determined right tail of a 
survival curve during estimation [33]. In this study, the impact of the environmental fac-
tors is directly related to the MTBF of components by the numerical factor provided in 
Table 1. For every aircraft considered in the analysis, the airline can be traced back via the 
external organisation code. In this way, the dominant environmental conditions at the 
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3.2. Parameters

In order to determine the influence of the different scenarios, multiple parameter
values have to be taken into consideration.

The main goal of this research is to reveal the impact of the quality of the repair process
for components that are placed back into the aircraft on the CV2 and ADI of spare part
demand. As the initial values of r are retrieved from the data analysis of the dataset, these
values are used as reference values (i.e., the Normal scenario). Scenarios with values for r
increased by 100% (the Worse scenario), or decreased by 50% (the Improved scenario) or
100% (the Perfect scenario) are tested. The first of the mentioned alterations of r represents
a scenario in which the amount of incorrectly repaired components that is placed back
into service is twice as high as the reference scenario. The second alteration represents a
scenario in which the chances of an incorrect repair are decreased by 50%. Therefore, less
incorrectly repaired components are placed back into service. The last option represents a
scenario where no incorrectly repaired components are placed back into the aircraft, and
thus all components that are placed back function properly.

The work of Thijssens and Verhagen [14] showed the impact of three environmental
factors on the Restricted Mean Survival Time (RMST) of components in aviation. The
RMST is equal to the mean survival time, except that the RMST is restricted to within a
time range [0, θ] to avoid the negative influences of the poorly determined right tail of a
survival curve during estimation [33]. In this study, the impact of the environmental factors
is directly related to the MTBF of components by the numerical factor provided in Table 1.
For every aircraft considered in the analysis, the airline can be traced back via the external
organisation code. In this way, the dominant environmental conditions at the main hub of
the airline can be applied, and the values for the specific aircraft can be adjusted.

Table 1. The effect of environmental factors on the MTBF [14].

Natural Climate MTBF Ratio

Temperate 1
Humid 0.62
Desert 0.73

The study by Lowas and Ciarallo [15] provided insights into the reasons for lumpy
spare part demand. The study found that the parameter with the greatest impact on the
lumpiness of the demand for spare parts was the fleet size. In order to validate this finding
and to extend its scope, it is tested in this research, as well. As the reference study clearly
described the range of values selected for the fleet size, this was not further thematised in
this study, and the same range of values were chosen for the model. Finally, the increment of
component commonality across different aircraft types was tested. Here, it is assumed that
different aircraft types perform differently, resulting in variations in the average operating
time of components. A deviation of 20% is assumed. The size of the deviation itself is not
crucial, as the outcome will be directly compared to variants in which no different aircraft
are considered. If significant differences are observed, this will serve as a stepping stone
motivating the development of future research.

Table 2 represents the parameters discussed in the previous paragraph and used in
the Monte Carlo simulation in a single consistent overview.

Table 2. Monte Carlo simulation parameters.

Parameter Tested Values Number of Steps

r factor 0.0 0.5 1 2 4
Environmental factors Natural Humid Desert 3

Fleet size 8 16 32 64 96 128 (256) (512) 6 (8)
Component commonality Not present Present 2
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4. Results

Before the application of the proposed approach and the subsequent evaluation of
the results, this section starts with a brief discussion of the case study application and
the associated data characteristics. Section 4.1 provides insights into the dataset and the
manner in which input data for the model are generated.

4.1. Case Study Characteristics

In order to provide the model with the right input parameters based on the failure
behaviour of aircraft components, data from an anonymous aircraft manufacturer were
used. The data consist of removal data spanning across multiple decades.

For each data point, in this research, the part number, date, aircraft type, ATA chapter
code (denoting the associated (sub)system), the serial number of the aircraft, and the
operator are used. A selection of components is made in order to limit the scope. An
overview of this analysis can be found in Table 3.

Table 3. Component trade-off at the ATA chapter level.

ATA
Chapter System Data

Points

Occurrences
with Subsidiary

Failures

Average MTBR
of Primary

Failures [days]

Removals in
All

Aircraft

Total
Unique
Aircraft

Flight
Safety-
Critical

Selected

21 Air Conditioning 2909 489 131 Yes 182 No No

22 AutoFlight 2892 332 118 Yes 159 No No

23 Communications 4053 595 131 Yes 195 Yes Yes

24 Electrical Power 1697 397 60 Yes 192 Yes Yes

25 Equipment/Furnishings 3483 342 159 Yes 166 No No

26 Fire Protection 447 117 112 Yes 112 No No

27 Flight Controls 1761 419 131 Yes 161 Yes Yes

28 Fuel 1773 318 164 Yes 175 Yes Yes

29 Hydraulic Power 1290 283 130 Yes 168 Yes Yes

30 Ice & Rain Protection 1597 365 153 Yes 177 Yes Yes

31 Indicating/Recording
System 2002 431 106 Yes 185 No No

32 Landing Gear 9195 448 127 Yes 217 No No

33 Lights 2971 416 125 Yes 189 Yes Yes

34 Navigation 8233 982 85 Yes 225 No No

35 Oxygen 4355 294 155 Yes 176 Yes Yes

36 Pneumatic 1110 184 125 Yes 170 No No

38 Water/Waste 803 154 107 Yes 108 No No

49 Airborne Auxiliary
Power 1533 349 149 No 108 No No

52 Doors 328 73 180 Yes 68 No No

53 Fuselage 174 47 154 No 48 No No

55 Stabilizers 157 41 193 No 41 No No

56 Windows 666 122 143 Yes 122 No No

57 Wings 304 60 99 No 59 Yes No

61 Propellers/Propulsion 498 98 153 No 63 Yes No

71 Power Plant General 345 87 127 Yes 91 Yes No

72

Engine
Turbine/Turboprop,

Ducted Fan/Unducted
Fan

256 64 123 Yes 72 Yes No
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Table 3. Cont.

ATA
Chapter System Data

Points

Occurrences
with Subsidiary

Failures

Average MTBR
of Primary

Failures [days]

Removals in
All

Aircraft

Total
Unique
Aircraft

Flight
Safety-
Critical

Selected

73 Engine Fuel & Control 868 191 112 Yes 135 Yes No

74 Ignition 104 22 204 No 24 Yes No

75 Air 142 33 133 No 34 Yes No

75 Engine Controls 146 37 233 Yes 37 Yes No

76 Engine Indicating 1088 193 149 Yes 160 Yes No

77 Exhaust 399 107 252 Yes 107 Yes Yes

78 Oil 161 34 156 No 35 No No

79 Starting 575 132 107 Yes 132 Yes No

80 Airborne Auxiliary
Power 1773 318 164 Yes 175 Yes No

This limits the scope to components in the following eight ATA chapters: 23 (Com-
munications), 24 (Electrical Power), 27 (Flight Controls), 28 (Fuel), 29 (Hydraulic Power),
32 (Landing gear), 34 (Navigation) and 77 (Engine Indicating). Based on the operator,
the environmental conditions can be determined for every aircraft in the data set. This
has a direct impact on the lifetime of the components, and therefore influences the Mean
Time Between Failure (MTBF), and hence the spawn rate of primary failures [14]. From
the selected data, primary and subsidiary removals could be identified. In this analysis,
a subsidiary removal is defined as a removal occurring within fourteen days of the pri-
mary removal. Here, it is assumed that components are interdependent if and only if they
are located in the same ATA chapter. With this information, the spawn rate of primary
removals can be determined for every ATA chapter code and location on every aircraft.
Adjustments are made with respect to the environmental conditions in order to be able to
correctly quantify the effect of variations in environmental conditions. With an overview of
primary and subsidiary removals, the likelihood of an incorrect repair occurring at each
ATA location can be made by reviewing the number of primary failures that incorporate
subsidiary removals. For every location, the composition of subsequent failures is reviewed.
Through this, in the proposed approach, the offset of a primary failure can be varied based
on the distribution of the offset from the data. In implementation, the subsidiary failures
are randomly distributed over the fourteen days following the day on which the primary
failure occurs.

Next, for all aircraft and ATA locations, a check has to be made regarding the ho-
mogeneity of the primary removal rates of the components. The results of this test are
presented in Table 4. It can be concluded that the spawn rate of primary removals is constant
in most cases. Therefore, a Homogeneous Poisson Process can be used to simulate these
removals. Furthermore, no significant differences were found among the performances of
the different aircraft represented in the data. Hence, the results could be aggregated.

Table 4. Results of the trend analysis for the failure rate of the primary removal.

No Trend Increasing Trend Decreasing Trend

92.86% 2.44% 4.70%

The results are presented in the order of the four different variants considered in this
study. Visualisations of the results are available, although only a small selection of all
visualisations are provided here for ease of interpretation. In the figures, each data point
represents the average demand characteristics (ADI and CV2) of a unique combination of
varying parameters.
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For each variant, the impact of improving the repair quality is quantified. The mo-
tivation for presenting the deviations resulting from this improvement originates from
the desire of MRO providers to minimize the number of errors during the repair process
and to strive for improvement. Therefore, MRO providers can use the outcomes of this
study to quantify the effect of improving their repair quality on ADI, CV2 and total number
of failures.

The results of the statistical tes”s ar’ provided in Appendix A. The results are presented
in the form of p-values of the Mann–Whitney U test and the Kruskal–Wallis H test [34–36].
Values that are not significantly different according to these tests (p > 0.05), are marked
with an asterisk in the tables.

4.2. Variant 1—The Influence of Variations in Repair Quality

The visual representation of the results in Figure 4 does not directly indicate a dis-
cernible difference in performance with different levels of repair quality. Tables 5 and 6
provide a quantitative comparison. Here, the comparison is made between the current
level of repair quality (left column) and the desired level of repair quality (top row). The
number provides a ratio of the average value of the metric of the desired level of repair
quality and the current level of repair quality. Table 7 provides the total number of failures
for the different levels of repair quality. Here, it can be seen that improved levels of repair
quality result in lower numbers of failures.
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Table 6. Overview of the influence on the average CV2 of varying the level of repair quality.

Repair Quality Worse Normal Improved Perfect

Worse 1.000 0.970 0.916 0.842

Normal 1.031 1.000 1.011 0.926

Improved 1.091 0.989 1.000 0.961

Perfect 1.187 1.079 1.041 1.000

Table 7. Average number of failures for the different levels of repair quality per iteration.

Repair Quality Worse Normal Improved Perfect

Failures 18,329 15,115 12,763 10,200

Improving the repair quality from “Worse” to “Normal” increased the ADI by 15.1%,
decreased the CV2 by 3.0% and decreased the total number of failures by 17.5%.

Improving the repair quality from “Normal” to “Improved” led to an increase in the
ADI by 12.6%, an increase in the CV2 by 1.1%, and a reduction in the total number of
failures by 15.6%. Hence, this improvement has a positive effect on the total number of
failures, but decreases the predictability of failures over time.

Improving the repair quality from the “Improved” level to the “Perfect” level resulted
in an improvement in ADI by 15.2%, a reduction in CV2 by 3.9%, and a reduction in the
total number of failures by 20.1%.

4.3. Variant 2—The Influence of Variations in Repair Quality and Fleet Size

It can be seen from the results presented in Figure 5 that an increased fleet size lowers
the ADI and increases the CV2. The results of varying the repair quality for all fleet sizes
are provided in Table 8.
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Table 8. Quantitative overview of evaluation of Variant 2.

Improvement Fleet Size ADI CV2 Failures

Worse—Normal

8 +18.4% −17.8% −19.9%
16 +13.2% −29.7% −17.2%
32 +16.5% −23.4% −18.9%
64 +11.2% −9.2% −17.7%
96 +9.2% −7.3% −17.7%
128 +7.8% −2.2% −18.5%

Normal—Improved

8 +16.4% +3.9% −13.0%
16 +17.1% +7.8% −16.0%
32 +12.1% +0.7% −15.2%
64 +9.8% −4.9% −16.1%
96 +6.8% +0.5% −15.2%
128 +5.3% −0.0% −15.2%

Improved—Perfect

8 +18.6% −10.8% −21.4%
16 +20.4% −9.1% −19.4%
32 +14.5% −16.3% −19.8%
64 +11.4% −11.3% −19.9%
96 +10.8% −6.9% −20.7%
128 +7.8% −2.1% −20.1%

Generally, it can be concluded that improved repair quality results in a higher ADI, a
lower CV2 and a lower total number of failures. It can be seen from Table 8 that the impact
of improvements in repair quality is larger with smaller fleet sizes. However, the impact on
the number of failures is not strongly influenced by fleet size. Hence, it can be seen that
this decrease remains somewhat constant for different fleet sizes.

It is interesting to note that the improvement in repair quality from “Normal” to
“Improved” in most cases does not have a positive effect on CV2—wee the italicised
numbers in Table 8. This can be explained by the fact that, although fewer subsequent
failures occur, the variance in demand quantity increases at a higher rate than the mean
value of demand quantity. An example is given in Table 9. For each level of repair quality,
an overview of the number of failures at each time point is provided. Primary failures
are indicated by bold numbers, subsequent failures are provided as regular text. It can
be observed that the time series for the “Improved” scenario has longer periods of zero
demand, causing a more lumpy demand pattern when compared to the “Normal” and
“Worse” scenarios. The CV2 rises accordingly.

Table 9. Straightforward example of increasing CV2 with better repair quality.

Worse Normal Improved

1 1 1 1
2 1 0 0
3 2 0 0
4 0 0 0
5 1 1 1
6 2 2 0
7 2 2 0
8 0 0 0
9 1 1 1
10 2 2 2
11 0 0 0
12 2 2 2

µ 1.56 1.57 1.4
σ 0.50 0.49 0.49

CV2 0.103 0.097 0.122
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4.4. Variant 3—The Influence of Variations in Repair Quality, Fleet Size and Environmental
Conditions

The combination of fleet size and climate is taken into account here, and eighteen dif-
ferent scenarios (six fleet sizes, three environmental conditions) were generated. However,
these scenarios were increasingly hard to interpret. Hence, only a quantitative overview in
the form of Table 10 is provided. The table provides the influence of changing the level of
repair quality on ADI and CV2. Note that the results of temperate environmental conditions
were already provided in Section 4.3. The table shows the deviations of the improvement
displayed in the first column.

Table 10. Quantitative overview of evaluation of Variant 3.

Improvement Fleet
Size ADI CV2 Failures

Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse—
Normal

8 +18.4% +13.9% +13.9% −17.8% −22.7% −18.8% −19.9% −16.7% −16.8%
16 +13.2% +15.2% +15.6% −29.7% −27.8% −24.6% −17.2% −17.2% −17.4%
32 +16.5% +12.8% +13.5% −23.4% −10.7% −15.7% −18.9% −16.8% −16.9%
64 +11.2% +8.7% +10.1% −9.2% −6.1% −7.8% −17.7% −15.8% −17.4%
96 +9.2% +6.1% +7.8% −7.3% −1.0% −1.0% −17.7% −16.0% −17.2%
128 +7.8% +4.8% +6.0% −2.2% +2.7% +0.4% −18.5% −16.0% −16.9%

Normal—
Improved

8 +16.8% +17.1% +15.7% +3.9% +12.9% +3.4% −13.0% −13.3% −13.8%
16 +17.1% +10.8% +13.6% +7.8% +2.8% +6.0% −16.0% −12.3% −13.7%
32 +12.1% +8.9% +11.4% +0.7% −5.6% −3.8% −15.2% −13.5% −14.8%
64 +9.8% +6.9% +7.2% −4.9% −2.0% −2.8% −16.1% −14.0% −13.4%
96 +6.8% +5.0% +5.7% +0.5% +1.6% −1.6% −15.2% −13.5% −14.0%
128 +5.3% +3.6% +4.0% −0.0% +4.4% +3.4% −15.2% −13.1% −14.2%

Improved—
Perfect

8 +18.6% +14.2% +17.0% −10.8% −13.4% −7.3% −21.4% −17.9% −18.3%
16 +20.4% +16.2% +15.5% −9.1% −13.7% −10.4% −19.4% −18.6% −19.1%
32 +14.5% +13.0% +12.5% −16.3% −12.0% −13.6% −19.8% −17.8% −18.9%
64 +11.4% +8.0% +9.8% −11.3% −4.3% −6.4% −19.9% −17.8% −19.4%
96 +10.8% +6.7% +7.2% −6.9% −0.0% −1.7% −20.7% −18.3% −18.8%
128 +7.8% +4.7% +5.8% −2.1% +3.5% +1.2% −20.1% −18.1% −18.7%

The main addition of Variant 3 to the study is the exploration of the effect of improving
the level of repair quality for varying environmental conditions, expressed in the values for
ADI, CV2 and total failures.

For desert and humid environments, patterns similar to those of temperate environ-
mental conditions were found. The changes in ADI and CV2 were dampened when the fleet
size becomes larger, while the relative losses in total failures remained somewhat constant.
Both the “Worse to Normal” and “Improved to Perfect” improvements performed similarly
for all metrics. However, the improvement in repair quality from “Normal to Improved”
saw a limited decrease in CV2. In fact, many scenarios induce an increase in the CV2. This
is similar to the results of Variant 2.

By comparing the temperate and humid environmental scenarios, it can be concluded
that under humid conditions, the ADI is less sensitive to the improvement in the repair
quality. This results in smaller increments in ADI compared to under temperate envi-
ronmental conditions. The results of the deviation in CV2 provide no clear winner, as
both environmental conditions outperform the other conditions for different values of
fleet size and improvement. The relative losses in total failures are higher for temperate
environmental conditions, although the difference between the two scenarios is small.

When comparing the temperate and desert environmental scenarios, it is clear that
the desert environmental conditions perform slightly better than the temperate conditions
when it comes to increasing the ADI. That is to say, the increase in the ADI under the same
situation is slightly less compared to the increase in the ADI under temperate environmental
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conditions. When comparing the deviations in CV2, no clear pattern can be found. In some
cases, desert conditions outperform the temperate conditions, but the opposite occurs for
the same number of scenarios. With respect to decreasing the total number of failures, desert
conditions are slightly less advantageous compared to temperate environmental conditions.

Generally, the increment in ADI with improvement is the most limited under humid
conditions, the performance with decreasing CV2 is similar for all environmental conditions,
and the relative reduction in the total number of failures is similar for all environmental
conditions, although the temperate environmental conditions perform slightly better in
most cases.

4.5. Variant 4—The Influence of Variations in Repair Quality, Fleet Size, Environmental
Conditions and Component Commonality Strategies

The individual results of the outcome of this variant are not presented, but are directly
compared with the results of Variant 3. In this way, the impact of increasing the component
commonality index can be evaluated. Hence, the results are discussed with the support of
Table 11. Here, the results are presented as the difference in performance between Variant 3
and Variant 4. Therefore, if, in a certain scenario, the ADI of Variant 3 is increased by 1.0%
and the ADI of Variant 4 is increased by 2.0%, the table will state a difference of +1.0%.

Table 11. Quantitative overview of evaluation of Variant 3.

Improvement Fleet
Size ADI CV2 Failures

Temperate Humid Desert Temperate Humid Desert Temperate Humid Desert

Worse—
Normal

8 −8.0% +1.2% −0.3% −1.6% −4.0% −12.7% +3.8% −0.3% +0.1%
16 +3.7% +2.1% −0.8% +1.6% +1.1% +6.9% −1.7% −0.9% +0.4%
32 −3.1% −1.3% −0.7% +6.7% −3.9% −1.8% +2.5% +1.1% −0.3%
64 −0.6% +0.5% −0.2% −1.0% +1.1% +0.2% −0.1% −0.6% +0.5%
96 +1.1% +0.2% +0.2% +1.0% +0.3% −0.9% −1.4% −0.0% −0.2%
128 −0.4% −0.3% −0.2% +0.1% −0.0% +2.3% +0.2% +0.1% −0.2%

Normal—
Improved

8 +5.4% −1.3% +4.9% +1.9% +5.0% +1.3% −3.0% +0.5% −2.9%
16 +1.7% +1.2% +1.3% −2.7% −0.3% −0.8% −0.8% −0.4% −0.7%
32 +0.7% +2.3% −1.3% −6.6% +0.4% −1.2% −0.3% −0.2% +0.7%
64 −0.4% −0.7% +0.2% +2.1% −0.2% −0.2% +0.8% +1.0% +0.7%
96 +0.3% −0.2% −0.8% −2.6% −0.7% +0.6% −0.0% +0.3% +0.5%
128 +0.9% +0.2% +0.2% −0.0% −0.3% −2.6% −0.2% −0.5% −0.0%

Improved—
Perfect

8 −5.2% −1.6% −6.5% +2.4% −5.3% −1.3% +3.4% +1.7% +2.8%
16 −7.4% +1.7% −2.6% −0.7% −2.1% −6.7% +2.0% +0.1% +1.2%
32 −0.2% −0.4% +0.5% −1.7% +1.1% +4.4% −0.0% −0.3% +0.3%
64 +0.9% +0.4% −0.1% +0.7% +0.4% −0.9% −0.1% +0.3% +0.6%
96 −1.5% −0.2% +0.7% +0.8% +0.1% +0.6% +0.3% +0.6% −0.2%
128 −0.4% −0.1% +0.1% −0.2% −0.5% +0.1% −0.3% +0.3% +0.1%

Although in some cases there are significant differences, most of the deviations are
relatively small. Hence, the variability in spare part demand is not deteriorated by the
introduction of components that are operable for multiple aircraft types.

5. Discussion

For different fleet sizes, employing shared component strategies among different
aircraft types and environmental conditions, the influence of repair quality was quantified
by capturing the changing values for the ADI and CV2. Table 12 provides the total-effect
indices obtained using Sobol’s sensitivity analysis for the different variables [37].
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Table 12. Sensitivity analysis: first- and total-effect indices.

Fleet Size Repair Quality Component Commonality Environment

S1
CV2 0.818 0.083 0.028 0.028
ADI 0.868 0.021 0.012 0.022

ST
CV2 0.885 0.136 0.078 0.090
ADI 0.942 0.052 0.049 0.063

The total-effect index translates the contribution to the output variance of the variable.
The influence of the fleet size is dominant for the variance in the outcomes of both ADI
and CV2. Therefore, it can be concluded that the fleet size is the main influencing factor
for both metrics. This suggests that adjusting the fleet size will have the greatest impact
on potentially lowering the ADI and CV2. However, for many reasons, the expansion
of the fleet is not always possible. In cases where this expansion is not feasible and the
fleet sizes cannot be increased, the influence of repair quality on the demand pattern
becomes more dominant. This can be seen in Table 13, where the fleet size is fixed and
the variance in the outcome depends on repair quality, component commonality, and
environmental conditions.

Table 13. Sensitivity analysis: first- and total-effect indices.

Repair Quality Component Commonality Environment

S1
CV2 0.427 0.182 0.204
ADI 0.293 0.286 0.367

ST
CV2 0.636 0.361 0.413
ADI 0.354 0.339 0.440

A critical note has to be made regarding the values of parameters for different levels of
repair quality. The results obtained from the data analysis are used as a reference scenario
(i.e., the “Normal” repair quality), while the other three are based on a multiplication
of this scenario. The values of the parameters for different levels of repair quality were
chosen in order to conduct a thorough numerical evaluation. In practice, the difference in
performance is unlikely to be of this size.

The strong assumption regarding the interdependency among components in the
same ATA chapter results in the limitation of the usefulness of the outcome when it comes
to the location of failures and the corresponding failure patterns. In other words, while the
ATA chapter results are related to aircraft systems, and an assumption of interdependency
is made, this is not necessarily true. The same ATA code can refer to multiple instances
of a system on a single aircraft; for example, a failure related to ATA chapter 38, which
covers waste/water systems, may in fact relate to different instances of galleys, bathrooms,
wastewater tanks, etc., which are located at a number of different places in the aircraft, and
may not have interdependent functionality. In addition, components could be connected
with and dependent on components belonging to different ATA chapters. Without detailed
ATA chapter indications (using the full six digits to describe systems at the unit level) or
additional information on the location (for instance, through ATA zonal codes), conclusions
with respect to failure location and their associated patterns are difficult to draw, and spare
part demand can only be determined at a higher level of system aggregation. From this
perspective, when aggregating the results of the failures, the locations of the components
are not decisive for the outcomes of this research.

Another assumption is made in Variant 4, where the effect of the different component
commonalities in a fleet is tested. Due to the lack of research and data on component
commonality across heterogeneous fleets, only a rough estimation of the associated effect
on component demand was performed.
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As this research quantifies the impact of repair quality on the different demand metrics,
repair quality is used as a varying parameter in the model. However, the influence of
changes in other varying parameters might also affect the metrics. Hence, there is no proof
that all changes are the result of variations in repair quality alone, and variances caused
by the interaction of the different parameters should also be included. Table 12 provides
the first- and total-effect indices of the sensitivity analysis. As can be seen from the table,
the differences among the first- and total-effect indices are relatively small. Hence, the
influence of the interaction is limited.

Another important note should be made regarding the statistical outcomes of the
Kruskal–Wallis H and Mann–Whitney U tests. As the commonly chosen 95% interval
provides a fair threshold for the rejection of the null hypothesis, p-values below 0.05 cause
the null hypothesis to be rejected and thus it can be assumed that different groups of data
have different medians. However, this p-value is highly dependent on the number of data
points in the compared groups. As the number of iterations for the simulation was set to
50, the sizes of the subsets grew by a factor 50. Therefore, the p-values became smaller,
resulting in a more frequent rejection of the null hypothesis. However, when reviewing
only a single iteration, the p-values are higher, and the null hypothesis is rejected less often.
It is, however, not an option to exclude the iterations from the model, as these iterations
provide outcome stability by omitting the random factor.

A final critical note can be made on the limited set of drivers for failures. As frequently
stated in previous research, not all drivers of failure are known, resulting in research that
includes a limited number of drivers. However, this research provides a broadening to the
current knowledge by including the effect of different levels of repair quality.

6. Conclusions

The impact of changing repair quality on the predictability of the failures of compo-
nents was quantified. In general, the following can be established:

• An improvement in repair quality induces an increase in ADI, a reduction in CV2 and
a reduction in the total number of failures.

• For larger fleet sizes (more than 64 aircraft of the same type), the effects of increased
repair quality on the ADI and CV2 become less significant, while the effect on the total
failures remains the same.

Therefore, it can be concluded that when facing larger fleets, the improvement in
repair quality has a wider support base, as the downside of the implementation becomes
smaller. Ironically, larger fleets have fewer problems with variability in spare part demand.

This research contributes towards a more complete understanding of the way in
which drivers for component spare part demand may behave. To the best of the authors’
knowledge, this study is the first to explicitly address the influence of repair quality on
the demand behaviour of components, while systematically exploring and verifying the
influence of a range of additional demand drivers. This gives further insight into spare part
demand behaviour under more realistic conditions, where multiple drivers may apply at
the same time.

7. Recommendations and Future Research

Based on the presented research, the following recommendations can be identified:

• Future research investigating the variance in the repair quality among different MRO
providers is advised in order to verify the assumptions included in the presented
approach.

• Furthermore, not only incorrect repairs, which leave the component in the same broken
state as before, but minimal and imperfect repairs, for instance as represented in the
Kijima Type I or II models, can be considered, as well [30]. This would enable a
more realistic representation of the repair process, instead of the current somewhat
simplified representations available in spare part demand driver literature.
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• Regarding practical considerations, should the aviation industry decide to further
investigate the possibilities regarding component pooling across multiple aircraft
types, a detailed analysis of the performance of individual aircraft types would lead to
a more accurate prediction of the performance of a heterogeneous fleet compared to
representation as a homogeneous fleet.

• Finally, future research may address and reveal interdependencies among flight-safety-
critical components for different types of aircraft. The results of such a study would
contribute to the practical relevance regarding the patterns and locations of primary
and subsidiary failures over time.
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Appendix A. Statistical Test Results

Table A1. Overview of the p-values of the Mann-Whitney U-test for ADI of the different scenarios.

Repair Quality Worse Normal Improved Perfect

Worse 0.500 0.008 0.000 0.000
Normal 0.008 0.500 0.029 0.000

Improved 0.000 0.029 0.500 0.015
Perfect 0.000 0.000 0.015 0.500

Table A2. Overview of the p-values of the Mann-Whitney U-test for CV2 of the different scenarios.

Repair Quality Worse Normal Improved Perfect

Worse 0.500 0.010 0.000 0.000
Normal 0.010 0.500 0.056 0.000

Improved 0.000 0.056 0.500 0.003
Perfect 0.000 0.000 0.003 0.500

Table A3. Outcome of the p-values of the Mann-Whitney U-tests.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.062 0.000 0.500 0.081 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.007 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500
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Table A3. Cont.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.008 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.289 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.010 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.021 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

Table A4. Outcome of the p-values of the Kruskal-Wallis H-test.

Fleet Size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000
CV2 0.000 0.000 0.000 0.000 0.000 0.000

Table A5. Outcome of the p-values of the Mann-Whitney U-tests for humid conditions.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.007 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.001 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.013 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.006 0.001 0.000
Normal 0.500 0.000 0.000 0.500 0.262 0.001

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.382 0.288 0.390
Normal 0.500 0.000 0.000 0.500 0.303 0.271

Improved 0.500 0.000 0.500 0.149
Perfect 0.500 0.500
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Table A6. Outcome of the p-values of the Mann-Whitney U-tests for desert conditions.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.004 0.000 0.500 0.049 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.001 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.001 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.010 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.267 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.008
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.111 0.076 0.000
Normal 0.500 0.000 0.000 0.500 0.426 0.004

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

Table A7. Outcome of the p-values of the Kruskal-Wallis H-test for humid conditions.

Fleet Size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000
CV2 0.000 0.000 0.000 0.000 0.000 0.780

Table A8. Outcome of the p-values of the Kruskal-Wallis H-test for desert conditions.

Fleet Size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000
CV2 0.038 0.002 0.000 0.007 0.000 0.000

Table A9. Outcome of the p-values of the Mann-Whitney U-tests for for temperate conditions and
mixed fleet composition.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.011 0.000

Improved 0.500 0.001 0.500 0.001
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.003 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500
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Table A9. Cont.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

32

Worse 0.500 0.000 0.000 0.000 0.500 0.004 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.014 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.024 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.033 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

Table A10. Outcome of the p-values of the Mann-Whitney U-tests for for humid conditions and
mixed fleet composition.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.001 0.000 0.500 0.093 0.000

Improved 0.500 0.001 0.500 0.000
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.003 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.011 0.000

Improved 0.500 0.000 0.500 0.002
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.116 0.001 0.000
Normal 0.500 0.000 0.000 0.500 0.031 0.000

Improved 0.500 0.000 0.500 0.033
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.417 0.479 0.106
Normal 0.500 0.000 0.000 0.500 0.465 0.060

Improved 0.500 0.000 0.500 0.073
Perfect 0.500 0.500
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Table A11. Outcome of the p-values of the Mann-Whitney U-tests for for desert conditions and mixed
fleet composition.

Fleet Size Repair Quality ADI CV2

Worse Normal Improved Perfect Worse Normal Improved Perfect

8

Worse 0.500 0.000 0.000 0.000 0.500 0.001 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.024 0.000

Improved 0.500 0.006 0.500 0.005
Perfect 0.500 0.500

16

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.012 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

32

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.000 0.000

Improved 0.500 0.000 0.500 0.001
Perfect 0.500 0.500

64

Worse 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.005 0.000

Improved 0.500 0.000 0.500 0.000
Perfect 0.500 0.500

96

Worse 0.500 0.000 0.000 0.000 0.500 0.076 0.000 0.000
Normal 0.500 0.000 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.019
Perfect 0.500 0.500

128

Worse 0.500 0.000 0.000 0.000 0.500 0.388 0.009 0.000
Normal 0.500 0.000 0.000 0.500 0.004 0.000

Improved 0.500 0.000 0.500 0.008
Perfect 0.500 0.500

Table A12. Outcome of the p-values of the Kruskal-Wallis H-test for normal conditions and mixed
fleet composition.

Fleet Size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000
CV2 0.000 0.000 0.000 0.000 0.000 0.000

Table A13. Outcome of the p-values of the Kruskal-Wallis H-test for humid conditions and mixed
fleet composition.

Fleet Size 8 16 32 64 96 128

ADI 0.000 0.000 0.000 0.000 0.000 0.000
CV2 0.000 0.000 0.000 0.000 0.000 0.381

Table A14. Outcome of the p-values of the Kruskal-Wallis H-test for desert conditions and mixed
fleet composition.

Fleet Size 8 16 32 64 96 128

ADI 0.001 0.000 0.000 0.000 0.000 0.000
CV2 0.001 0.000 0.000 0.002 0.000 0.000



Aerospace 2023, 10, 731 23 of 24

References
1. Ghobbar, A.A.; Friend, C.H. Evaluation of forecasting methods for intermittent parts demand in the field of aviation: A predictive

model. Comput. Oper. Res. 2003, 30, 2097–2114. [CrossRef]
2. Regattieri, A.; Gamberi, M.; Gamberini, R.; Manzini, R. Managing lumpy demand for aircraft spare parts. J. Air Transp. Manag.

2005, 11, 426–431. [CrossRef]
3. Syntetos, A.; Keyes, M.; Babai, M. Demand categorisation in a European spare parts logistics network. Int. J. Oper. Prod. Manag.

2009, 29, 292–316. [CrossRef]
4. Ghobbar, A.; Friend, C. Sources of intermittent demand for aircraft spare parts within airline operations. J. Air Transp. Manag.

2002, 8, 221–231. [CrossRef]
5. Badía, F.; Berrade, M.D.; Cha, J.H.; Lee, H. Optimal replacement policy under a general failure and repair model: Minimal versus

worse than old repair. Reliab. Eng. Syst. Saf. 2018, 180, 362–372. [CrossRef]
6. Liu, X.; Finkelstein, M.; Vatn, J.; Dijoux, Y. Steady-state imperfect repair models. Eur. J. Oper. Res. 2020, 286, 538–546. [CrossRef]
7. Yevkin, A.; Krivtsov, V. A generalized model for recurrent failures prediction. Reliab. Eng. Syst. Saf. 2020, 204, 107125. [CrossRef]
8. Soro, I.W.; Nourelfath, M.; Aït-Kadi, D. Performance evaluation of multi-state degraded systems with minimal repairs and

imperfect preventive maintenance. Reliab. Eng. Syst. Saf. 2010, 95, 65–69. [CrossRef]
9. Doyen, L.; Gaudoin, O. Classes of imperfect repair models based on reduction of failure intensity or virtual age. Reliab. Eng. Syst.

Saf. 2004, 84, 45–56. [CrossRef]
10. Tanwar, M.; Rai, R.N.; Bolia, N. Imperfect repair modeling using Kijima type generalized renewal process. Reliab. Eng. Syst. Saf.

2014, 124, 24–31. [CrossRef]
11. Zhang, F.; Shen, J.; Ma, Y. Optimal maintenance policy considering imperfect repairs and non-constant probabilities of inspection

errors. Reliab. Eng. Syst. Saf. 2019, 193, 106615. [CrossRef]
12. Do, P.; Voisin, A.; Levrat, E.; Iung, B. A proactive condition-based maintenance strategy with both perfect and imperfect

maintenance actions. Reliab. Eng. Syst. Saf. 2015, 133, 22–32. [CrossRef]
13. Van der Auweraer, S.; Boute, R.N.; Syntetos, A.A. Forecasting spare part demand with installed base information: A review. Int. J.

Forecast. 2018, 35, 181–196. [CrossRef]
14. Thijssens, O.; Verhagen, W.J. Application of Extended Cox Regression Model to Time-On-Wing Data of Aircraft Repairables.

Reliab. Eng. Syst. Saf. 2020, 204, 107136. [CrossRef]
15. Lowas, A.F.; Ciarallo, F.W. Reliability and operations: Keys to lumpy aircraft spare parts demands. J. Air Transp. Manag. 2016, 50,

30–40. [CrossRef]
16. Kijima, M. Some results for repairable systems with general repair. J. Appl. Probab. 1989, 26, 89–102. [CrossRef]
17. Rankin, W.; Hibit, R.; Allen, J.; Sargent, R. Development and evaluation of the Maintenance Error Decision Aid (MEDA) process.

Int. J. Ind. Ergon. 2000, 26, 261–276. [CrossRef]
18. Lewis, P.A.W. A Branching Poisson Process Model for the Analysis of Computer Failure Patterns. J. R. Stat. Soc. Ser. B (Stat.

Methodol.) 1964, 26, 398–441. [CrossRef]
19. Wong, H.; Van Oudheusden, D.; Cattrysse, D. Cost allocation in spare parts inventory pooling. Transp. Res. Part E: Logist. Transp.

Rev. 2007, 43, 370–386. [CrossRef]
20. Syntetos, A.A.; Boylan, J.E.; Croston, J. On the categorization of demand patterns. J. Oper. Res. Soc. 2005, 56, 495–503. [CrossRef]
21. Babai, M.; Chen, H.; Syntetos, A.; Lengu, D. A compound-Poisson Bayesian approach for spare parts inventory forecasting. Int. J.

Prod. Econ. 2021, 232, 107954. [CrossRef]
22. Boone, C.A.; Craighead, C.W.; Hanna, J.B. Critical challenges of inventory management in service parts supply: A Delphi study.

Oper. Manag. Res. 2008, 1, 31–39. [CrossRef]
23. Croston, J.D. Forecasting and Stock Control for Intermittent Demands; Taylor & Francis: Abingdon, UK, 1972; Volume 23.
24. Syntetos, A.A.; Boylan, J.E. The accuracy of intermittent demand estimates. Int. J. Forecast. 2004, 21, 303–314. [CrossRef]
25. Romeijnders, W.; Teunter, R.; van Jaarsveld, W. A two-step method for forecasting spare parts demand using information on

component repairs. Eur. J. Oper. Res. 2012, 220, 386–393. [CrossRef]
26. Illankoon, P.; Tretten, P.; Kumar, U. A prospective study of maintenance deviations using HFACS-ME. Int. J. Ind. Ergon. 2019, 74,

102852. [CrossRef]
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