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Abstract: This paper investigates a practical time-varying formation control method for quadrotors
subjected to disturbances, uncertainties, and switching-directed topologies. A fully distributed
formation control scheme is proposed using a linear-velocity independent position controller (LVIPC)
and a nonsingular terminal sliding mode attitude controller (NTSMAC). A distributed observer is
adopted to eliminate the measurement of linear-velocity states, and only local neighbor states are
needed to realize formation flight. A time-varying nonsingular terminal sliding mode manifold is
designed to suppress the reaching phase and ensure the finite-time convergence. Adaptive estimators
are employed to remove the reliance on the prior knowledge of the upper bound of lumped uncer-
tainties. It is then proven that all the closed-loop signals are bounded under the proposed method.
Comparative experimental results based on a practical outdoor hardware solution are presented to
confirm the effectiveness of the suggested control algorithm.

Keywords: time-varying formation; TVNTSM; adaptive control; switching topology; linear-velocity
free; formation experiment

1. Introduction

In recent years, the formation control technology of unmanned aerial vehicles (UAVs)
has received widespread attention. Compared to a single UAV, a formation of multiple
UAVs has greater application efficiency and enormous potential in the aerospace domain
due to its capacity for aerial environmental surveillance, cooperative remote sensing,
and even military applications [1–3].

As a typical small UAV, a quadrotor (QR) has advantages such as its light weight, sim-
ple structure, maneuverability, and hovering capability [4], making it an ideal platform for
formation control. Due to its well-known under-actuation, strong coupling, and nonlinear
characteristics [5], the QR system can be transformed into a dual-loop structure. However,
the position control (outer-loop) highly relies on attitude tracking (inner-loop) [6], which
makes control design challenging. Nevertheless, most existing results on QR formation
control assumed that QR has an attitude autopilot [7–9] and only focuses on the position
control design. The few studies that involved attitude control usually adopted simplified
models under the “small-angle approximation” assumption [10–12], which narrows the ap-
plication scope. Moreover, in practical application, environmental disturbances and system
uncertainties heavily impact QR’s flight, with the attitude control system being particularly
sensitive to these effects [13]. Therefore, a robust attitude controller based on a full nonlinear
model is critical for QRs to achieve the desired formation flight. A variety of robust control
strategies have been studied recently, including H-∞ control [14,15], sliding mode control
(SMC) [16,17], super-twisting control [18,19], and integral backstepping control [20,21].
Among these, SMC is widely used in the control of satellites, aircrafts, and robots owing to
its fast response, easy implementation, and robustness. Nevertheless, conventional SMC
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based on linear hyperplanes can only guarantee asymptotic convergence [22,23]. In order
to obtain finite-time convergence, the nonlinear hyperplane-based terminal sliding mode
(TSM) and its variants—the nonsingular terminal sliding mode (NTSM) and the fast nonsin-
gular terminal sliding mode (FNTSM) techniques—have emerged. In [24], the finite-time
tracking control of a QR under input delay, uncertainty, and disturbance was addressed
by combining NTSM with adaptive laws. In [25], adaptive super-twisting NTSM tracking
control was designed for a QR with bounded disturbances to decrease the chattering phe-
nomena. In [26,27], adaptive FNTSM controllers were adopted to ensure the finite-time
convergence of the QR’s attitude states subjected to disturbances. However, there are still
obstacles and limitations to its practical application. Firstly, the system state is sensitive
to disturbances and uncertainties during the reaching phase, before entering the sliding
phase, which degrade the robustness of the system [28–30]. Secondly, these methods can
only ensure that the convergence time is bounded but cannot be easily adjusted, which
may cause inconvenience in engineering applications. To address these problems, a novel
time-varying nonsingular terminal sliding mode (TVNTSM) manifold is adopted in this
paper. To the best of our knowledge, the application of TVNTSM in formation control is
still very scarce [31–33].

The role of the formation position controller of the QR is to exchange information
with neighboring QRs, to obtain the tracking error, and to generate the command signal
for inner-loop and thrust. In the past few decades, owing to its scalability and distributed
nature [34,35], the consensus theory has stood out from among various formation con-
trol approaches, including behavior-based [36,37], virtual structure [38,39], and leader-
follower [40,41] approaches. In [42], the formation control of multiple QRs subjected to
perturbations was executed with the use of a consensus error model and adaptive laws.
In [43], modified model predictive control was applied to realize the formation flight of
networked QRs subjected to disturbances. In [44], the predefined-time formation control for
QR clusters was realized by employing the state observer and SMC. However, the formation
pattern was time-invariant in these works. In practical applications such as target enclos-
ing [45] and area coverage [46], the formation pattern needs to be adjustable in order to
obtain a wider range of detection angles and to be able to capture more varied information.
In [47], a PD-like controller was designed for the time-varying formation control (TVFC) of
multiple UAVs with delays and uncertainties. In [48], the distributed finite-time TVFC of
multiple QRs with aperiodic sampled data was studied. In [49], the neural adaptive TVFC
of multiple QRs with faults was studied in a practical application. However, only fixed
topology was adopted in the results. To maintain a reliable connection, the interconnection
should be switchable to accommodate the varying distance between UAVs and possible
signal blocking during the formation adjustment [50]. In [51–53], the eigenvalues of the
Laplacian matrix of networks were required to achieve formation control. However, such
global information is hard to obtain in large-scale formations [54]. In [55–57], the fully
distributed schemes without global information were investigated. Nevertheless, these
methods still have limitations. Firstly, in addition to position state, formation members also
need to measure velocity state, which can be inaccessible due to the measure noise. Sec-
ondly, these methods lack practical flight verification, and most of the existing experimental
results are based on indoor solutions such as motion capture systems or UWB positioning.
However, these indoor experimental schemes cannot well reflect wind disturbance and
other factors in outdoor natural environments. Therefore, outdoor experiments based on
practical hardware is conducted in this paper.

Based on the above discussions, this paper investigates a fully distributed and adaptive
robust time-varying formation control method for QRs with switching topology. Compared
to existing research, the main contributions of this paper, both in theory and application,
are as follows:

1. In terms of theory, firstly, for easy application, adaptive laws were adopted to remove
the reliance on the prior knowledge of the unknown upper bound of lumped uncer-
tainties. Secondly, the TVNTSM manifold was designed to suppress the impact of the



Aerospace 2023, 10, 735 3 of 23

reaching phase on system robustness and guarantee the convergence of the system
state in adjustable finite time, thereby improving practicality. Thirdly, distributed
observers were employed to eliminate the measurement of linear velocity, with the
possibility of realizing formation control without any global topology information,
thereby making it fully distributed. Fourthly, both formation pattern and directed
topology could be dynamically adjusted, making it suitable for scenarios such as
target enclosing, area coverage, and target tracking.

2. In terms of application, this study differs from most previous research that only
conducted experimental verification in ideal indoor environments based on motion
capture or UWB positioning. Instead, an outdoor scheme was designed for this study,
with all QRs flying in natural disturbed environments. Their positions were pro-
vided by the RTK system in accordance with actual working conditions. In addition,
unlike most previous research that relied on a robot operating system (ROS) with
high hardware requirements or Wi-Fi with a limited range to establish the intercon-
nection of UAVs, this paper utilized bi-directional wireless modules to build the
QR network, such that total control could be achieved through micro control unit
(MCU)-based hardware solutions, which is currently the mainstream solution used in
the drone industry.

2. Preliminaries and Problem Formulation
2.1. Notations

Let a⊗ b denote the Kronecker product of matrices a and b, and λmin(•) and λmax(•)
respectively indicate the minimum and maximum eigenvalues of a matrix. Let 0 denote
the zero matrix with a proper size, and s(•) and c(•) denote sin(•) and cos(•). Im denotes
the m-dimensional identity matrix. |•| denotes the absolute value of a real number, ‖•‖ the
Euclidean norm of a vector, and ‖•‖F the Frobenius norm of a matrix. Let (•)k denote the k-
th row of a matrix. For a vector X = [X1, · · · , Xn]T , let sigβ(X) = [sigβ(X1), · · · , sigβ(Xn)]T

with sigβ(Xi) = |Xi|βsign(Xi).

2.2. Graph Theory

A directed graph of N QR followers can be defined by GF = {Q, E ,A} with the node
set Q = {q1, q2, · · · , qN}, the edge set E ⊆ Q×Q, and the weighted adjacency matrix A.
A = [aij] ∈ RN×N is defined as aij => 0, if (qi, qj) ∈ E , otherwise aij = 0. aii = 0 for all i ∈
Σ = {1, 2, · · · , N}. The set of neighbors of the i-th QR is defined by Ni =

{
qj|(qi, qj) ∈ E

}
.

The Laplacian matrix of GF is denoted by LF = [lF
ij ] ∈ RN×N , with lF

ij = −aij(i 6= j) and

lF
ii = ∑qj∈Ni

aij. The total flight time interval of the QRs is defined as [0, Tt), which can
be divided into an infinite sequence of bounded time intervals [tp, tp+1)(p ∈ Π), where
Π represents all natural numbers, with t0 = 0. The dwell time Td meets 0 < Td ≤
tp+1 − tp ≤ Tt, and the graph is fixed during [tp, tp+1). GF

A is denoted as the set of all
possible graphs, with the index set being ΓGF

A
∈ Π. S(t) : R+

0 → ΓGF
A

is defined as the
switching signal. The follower graph, Laplacian matrix, and neighbor set of the i-th QR
at time t are GF

S(t), L
F
S(t), and N S(t)i , respectively. If the leader q0 is a neighbor of the i-th

QR at time t, then the connection weight bi = 1, otherwise, bi = 0. The whole graph of
N QRs and the leader at time t is GS(t), with the corresponding Laplacian matrix being

LS(t) =
[

0 0
LL
S(t) L

F
S(t)

]
, where LL

S(t) = [−b1,−b2, · · · ,−bN ]
T . LetWS(t) = LS(t) + BS(t),

with BS(t) = diag{b1, b2, · · · , bN}. If there is a node that has a path to all other nodes, it is
said that GS(t) has a directed spanning tree.

Lemma 1. WS(t) is positive-definite when there is a directed spanning tree in GS(t), with the leader
q0 being the root node.

Assumption 1. All the possible graphs of GS(t) have a directed spanning tree rooted at q0.



Aerospace 2023, 10, 735 4 of 23

2.3. Problem Formulation

Consider N QRs following a leader, with their topology described by GS(t). The non-
linear dynamics of the QR can be obtained as follows through Newton’s laws [58]:{

Ṗi = Vi

V̇i = −ge3 − KitVi + Rit
Ti
mi

e3
(1)

{
η̇i = RirΩi

JiΩ̇i + CirΩi + KirΩi = τi + τid
(2)

where i ∈ Σ, Pi = [xi, yi, zi]
T , Vi = [vix, viy, viz]

T , and ηi = [φi, θi, ψi]
T are position, linear

velocity, and Euler angle in an earth-fixed frame, respectively. Ωi = [pi, qi, ri]
T repre-

sents the angular velocity in a body-fixed frame. mi and Ji = diag
{

Jix, Jiy, Jiz
}

are the
total mass and inertia matrix. Ti denotes the total lift, e3 = [0, 0, 1]T and g represent the
gravity. Kit = diag

{
Kixt, Kiyt, Kizt

}
and Kir = diag

{
Kixr, Kiyr, Kizr

}
are the translational

and rotational damping matrices, respectively. Cir = S(Ω)Ji represents the Coriolis term.
τi = [τi1, τi2, τi3]

T and τid are control torque and disturbance acting on the QRs. Rit, Rir
and S(Ωi) are expressed as follows:

Rit =

cθi cψi sθi cψi sφi − sψi cφi sθi cψi cφi + sψi sφi

cθi sψi sθi sψi sφi + cψi cφ1 sθi sψi cφi − cψi sφ

−sθi cθi sφi cθi cφi

,

Rir =
1

cθi

cθi sφi sθi cφi sθi
0 cφi cθi −sφi cθi
0 sφi cφi

, S(Ωi) =

 0 −ri qi
ri 0 −pi
−qi pi 0

,

In order to facilitate the subsequent control design, the attitude dynamics can be
transformed from the body-fixed frame to the earth-fixed frame. Taking the time derivative
of the kinetics part in (2), we have the following:

η̈ = ṘirΩi + RirΩ̇i (3)

Combining (3) and the attitude dynamics in (2), we have:

Ji Äi + Cir Ȧi + Kir Ȧi = τi + τid (4)

where Ji = Ji0 + ∆Ji, Cir = Cir0 + ∆Cir and Kir = Kir0 + ∆Kir are the nominal and
uncertain terms of the QR’s attitude model, with Ji0 = JiR−1

ir , Cir0 = (Cir − JiR−1
ir Ṙir)R−1

ir
and Kir0 = KirR−1

ir . Then, (4) can be rewritten as follows:

Ji0 Äi + Cir0 Ȧi + Kir0 Ȧi = τi + di (5)

where di = −∆Ji Äi − ∆Cir Ȧi − ∆Kir Ȧi + τid is the lumped uncertainty of the attitude system.
The pattern of the QR formation is defined by a vector ΥP(t) = [ΥT

1 (t), ΥT
2 (t), · · · ,

ΥT
N(t)]

T , where Υi(t) = [Υi1(t), Υi2(t), Υi3(t)]T , i ∈ Σ, Υik(t) is the second-order differ-
entiable motion mode function that defines the movement of the i-th QR with respect
to the leader, k = 1, 2, 3. The leader’s position and velocity are P0(t) = [x0, y0, z0]

T and
Ṗ0(t) = V0(t) = [v0x, v0y, v0z]

T , and the bounded control input U0(t) = V̇0(t) of the leader
is unknown to all follower QRs, thus satisfying ‖U0(t)‖ ≤ UM. Based on the consensus
theory, the following definition is given:

Definition 1. The formation tracking is said to be achieved when

lim
t→∞

(Pi − P0 − Υi) = 0, ∀i ∈ Σ (6)
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The snap shots of a rotating formation with N = 3 at time t1, t2 are shown in Figure 1 to
illustrate Definition 1. One sees that if Pi − P0 − Υi = 0 for ∀i ∈ 1, 2, 3, then the triangle P1P2P3
would precisely be the expected pattern defined by Υ1, Υ2, Υ3, namely the formation pattern is
formed. Then, the QRs will follow the leader P0 along its trajectory to achieve formation tracking.

Leader’s trajectory
( )

( )

)

( )

( )

( )

( )
( )

( )

Figure 1. Illustration of a triangle formation with the N = 3 scheme.

2.4. Control Objective

The objective of this paper is to enable, under the proposed TVFC method, the trajec-
tory of the leader P0(t) to be tracked and the predefined time-varying formation pattern
ΥP(t) to be formed by follower QRs subjected to uncertainties and disturbance in (5).
The detailed control objectives are shown below:

• The QR’s formation pattern and directed topology can be dynamically adjusted under
the fully distributed TVFC protocol;

• The measurement and transmission of the QR’s linear-velocity can be eliminated by
distributed observers;

• The influence of the reaching phase can be suppressed by adopting TVNTSM, and the
finite convergence time of the attitude tracking error can be adjusted;

• The reliance on the prior knowledge of the unknown upper bound of lumped uncer-
tainty di can be removed by adaptive laws.

3. Main Results

The desired TVFC scheme can be divided into a linear-velocity independent position
controller (LVIPC) and a nonsingular terminal sliding mode attitude controller (NTSMAC),
as shown in Figure 2. The inputs of its outer-loop, including the local neighbor information
(Pj, V̂j)j∈N S(t)i

, leader information P0, and pattern vector ΥP were transferred to the LVIPC.

Meanwhile, the linear velocity estimation value V̂i was generated by the observer, and the
global information was estimated by an adaptive coupling weight. Then, the output UiP of
LVIPC was utilized to calculate the desired thrust TiC and command attitude signal φiC, ψiC.
The inputs of the inner-loop, including φiC, ψiC, and ψiC, were entered into the NTSMAC.
Then, the attitude-tracking errors eiA and eiΩ were used to construct the TVNTSM manifold
si(t) and adaptive laws Dikm for lumped uncertainty rejection. Finally, TiC and the output
τi of NTSMAC were applied to the i-th QR for the TVFC.
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QR-Position 

Control

Adaptive

Coupling weight

,

, ,

Command

Attitude&Thrust

Extraction

QR-Position 
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State

( )

QR-Attitude 
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QR-Attitude 

Dynamics

QR-Attitude 

Control

Upper Bound 

Estimator

TVNTSM

Manifold

,

LVIPC (Outer-loop)

NTSMAC (Inner-loop)

Figure 2. Block diagram of the proposed TVFC scheme.

3.1. Design of LVIPC

For each QR, the position and velocity tracking errors are constructed using the local
neighbor’s information as follows:

eiP(t) = ∑
j∈N S(t)i

aij[Pi(t)− Pj(t)−Λij(t)] + bi(Pi(t)− P0(t)− Υi(t)) (7)

eiV(t) = ∑
j∈N S(t)i

aij[V̂i(t)− V̂j(t)− Λ̇ij(t)] + bi(V̂i(t)− V0(t)− Υ̇i(t)) (8)

where Λij = Υi − Υj, V̂i is the estimation of the linear velocity of the i-th QR, which is given
by an observer that needs to be designed later. Let Ei(t) = eiP(t) + eiV(t) and regard the
control input of the i-th QR’s position subsystem (1) as Uip(t) = −ge3 + Rit

Ti
mi

e3, and Uip
can now be designed as follows:{

UiP(t) = −ΦG(Ei(t))−Wi(t)Ei(t) + Ϋi − KitV̂i

Ẇi(t) = wiET
i (t)Ei(t)

(9)

where Φ ≥ UM is the gain constant, and the nonlinear function G(Ei(t)) = Ei(t)(‖Ei(t)‖+
E0)
−1, with E0 > 0, is a small constant. Wi(t) is the adaptive law used to estimate the global

information for the current graph GS(t), with Wi(0) > 0. wi is a positive design parameter.
Then, the linear velocity observer is designed as follows:{

V̂i(t) = γi(t) + Ψ(Pi − Υi)

γ̇i(t) = −ΨV̂i(t) + UiP(t) + KitV̂i(t) + ΨΥ̇i
(10)

where γi(t) is the observer state, and Ψ > Kt is a gain constant, with Kt = max(‖Kit‖F), i ∈ Σ.

Lemma 2. According to [59], the following three inequalities hold simultaneously for an asym-

metric matrix v =

[
v11 v12
vT

12 v22

]
: (1) v11 < 0, v22 − vT

12v−1
11 v12 < 0; (2) v22 < 0, v11 −

v12v−1
22 vT

12 < 0; (3) v < 0.

Theorem 1. Under Assumption 1, along with the control law (9) and the observer (10), a group of
N QRs described by position system (1) will form the desired time-varying formation pattern ΥP
and track the leader along its trajectory P0(t).
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Proof. Let Fi = [PT
i , V T

i ]T , F̂i = [PT
i , V̂ T

i ]T , L0 = [PT
0 , V T

0 ]T and Θi = [ΥT
i , Υ̇T

i ]
T . By substi-

tuting the control input (9) into the QR’s position dynamics (2), the closed-loop dynamics
of the QRs can be constructed as follows:

Ḟi = B1BT
2 Fi + B2KitVi − B2ΦG(Ei(t))−Wi(t)B2Ei + B2Υ̇i − B2KitV̂i (11)

where i ∈ Σ, B1 = [I3, 0]T and B2 = [0, I3]
T . Let κi(t) = F̂i − Θi − F0 and

κκκi(t) = BT
2 Fi − BT

2 F̂i. Then, (6) is equivalent to limt→∞ κi(t) = limt→∞ κκκ(t) = 0. Take the
time derivative of κi(t) and combine it with (10), we then have the following:

κ̇i(t) = B2γ̇i(t) + (B1 + ΨB2)BT
1 Ḟi − (I6 + ΨB2BT

1 )Θ̇i − Ḟ0 (12)

Transform the observer state as follows:

˙γi(t) = (−ΨBT
2 )F̂i + UiP + KitV̂i + ΨBT

2 Θi (13)

and by combining (11)–(13), we have the following equation:

κ̇i(t) =B2(−ΨBT
2 )F̂i + B2UiP + B2KitV̂i + (B1 + ΨB2)BT

1 (B1BT
2 ) Fi

− (I6 + ΨB2BT
1 )Θ̇i + ΨB2BT

2 Θi − B1BT
2 L0 − B2 U0

+ (B1 + ΨB2)BT
1 B2KitVi + (B1 + ΨB2)BT

1 B2UiP

(14)

Substitute the designed UiP into (14), and notice that:

B1BT
2 (Fi − L0) + ΨB2BT

2 (F̂i − Fi) = B1BT
2 κi(t) + (B1 + ΨB2)κκκi(t) + B1BT

2 (15)

which yields the following:

κ̇i(t) =B1BT
2 κi(t) + (B1 + ΨB2)κκκi(t) + B1BT

2 −Wi(t)B2Ei(t) + B2Υ̂i

− (I6 + ΨB2BT
1 )Θi + ΨB2BT

2 Θ−ΦB2G(Ei(t))− B2U0
(16)

Let κi1(t) = BT
1 κi(t) and κi2(t) = BT

2 κi(t), and their time derivatives are expressed as
follows:{

κ̇i1(t) = κi2(t) +κκκi(t) + BT
2 Θi − BT

1 Θ̇i

κ̇i2(t) = Ψκκκi(t)−Wi(t)Ei(t) + Ϋi + ΨBT
2 Θi − (BT

2 + ΨBT
1 )Θ̇i −ΦG(Ei(t))−U0

(17)

Take the time derivative of κκκi(t) and combine it with the expression of the observer
(10) and we obtain the following:

κ̇κκi(t) = (−ΨBT
2 )B2κκκi(t)−ΨBT

2 Θi + ΨBT
1 Θ̇i + Kit(Vi(t)− V̂i(t)) (18)

Then, the error dynamics in (17) and (18) can be expressed in a compact form as
follows:

κ1(t) = (IN ⊗ I3)κ2(t) + (IN ⊗ I3)κκκ(t) + (IN ⊗ BT
2 )ΥP − (IN ⊗ BT

1 )Υ̇P
κ2(t) =(IN ⊗ΨI3)κκκ(t)− (W(t)WS(t) ⊗ I3)(κ1(t) + κ2(t)) + (IN ⊗ I3)(ΫP − εN ⊗U0)

− (IN ⊗ (BT
2 + ΨBT

1 )))Υ̇P + (IN ⊗ΨBT
2 )ΥP − (IN ⊗ΦI3)Ξ(E(t))

κ̇(t) = (IN ⊗ (−ΨI3))κκκ(t)− (IN ⊗ΨBT
2 )ΥP + (IN ⊗ΨBT

1 )Υ̇P + Kit(Vi(t)− V̂i(t))

(19)

where κk(t) = [κT
1k(t), κT

2k(t), · · · , κT
Nk(t)]

T with k = 1, 2, κκκ(t) = [κκκT
1 (t),κκκT

2 (t), · · · ,
κκκT

N(t)]
T , W(t) = [WT

1 (t), WT
2 (t), · · · , WT

N(t)]
T , Ξ(E(t)) = [GT(E1(t)), GT(E2(t)), · · · ,

GT(EN(t))]T with E(t) = [ET
1 (t), ET

2 (t), · · · , ET
N(t)]

T . VΣ(t) = [V T
1 KT

1t, V T
2 KT

2t, · · · ,
V T

NKT
Nt]

T , V̂Σ(t) = [V̂ T
1 KT

1t, V̂ T
2 KT

2t, · · · , V̂ T
NKT

Nt]
T , the N dimensional all-one vector
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εN = [1, 1, · · · , 1]T . Then, define ξ = [κT
1 (t), κT

3 (t),κκκT(t)]T as the state of the following QR
formation error system:

ξ̇(t) = (BS(t) ⊗ I3)ξ(t) + Υ + UP + VΣ (20)

where UP = [0, (−(IN ⊗ΦI3)Ξ(E(t)))T , 0]T and V Σ = [0, 0, (VΣ(t)− V̂Σ(t))T ]T ,

BS(t) =

 0 IN IN
−W(t)WS(t) −W(t)WS(t) ΨIN

0 0 −ΨIN

,

Υ =

 (IN ⊗ BT
2 )

(IN ⊗ΨBT
2 )

−(IN ⊗ΨBT
2 )

ΥP +

 −(IN ⊗ BT
1 )

−(IN ⊗ (BT
2 + ΨAT

1 ))
(IN ⊗ΨBT

1 )

Υ̇P +

 0
(IN ⊗ I3)

0

ΫP.

Select the Lyapunov candidate as follows:

VP(t) = ξT(χ⊗ I3)ξ +
1
2

N

∑
i=1

(Wi(t)−W0)
2

wi
(21)

where χ =

2µIN µIN 0
µIN µIN 0

0 0 µ0 IN

, with µ = λ1λ−1
2 , λ1 = λmax(WT

S(t)WS(t)) and

λ2 = λmin(WT
S(t) +WS(t)). W0 and µ0 are positive constants. By combining them with (20),

the time derivative of VP(t) is as follows:

V̇P(t) = 2ξT(χ⊗ I3)((BS(t) ⊗ I3)ξ(t) + Υ + UP + V Σ) +
N

∑
i=1

(Wi(t)−W0)Ẇi(t)
wi

(22)

Notice that in (22),

2ξT(χ⊗ I3)(BS(t) ⊗ I3)ξ(t) = ξT((BT
S(t)χ + χBS(t))⊗ I3)ξ(t), (23)

then the following inequality can be obtained according to the expression of µ.

ξT((BT
S(t)χ + χBS(t))⊗ I3)ξ(t) ≤ ξT(

 −W(t)λ1 2µIN −W(t)λ1 (2 + Ψ)µIN
2µIN −W(t)λ1 2µIN −W(t)λ1 (1 + Ψ)µIN
(2 + Ψ)µIN (1 + Ψ)ΨIN −2µ0ΨIN

⊗ I3)ξ (24)

Referring to the expression of Ẇi(t) in (9) and λ1, we have the following:

N

∑
i=1

(Wi(t)−W0)Ẇi(t)
wi

= ξT(

ρS(t) ρS(t) 0
ρS(t) ρS(t) 0

0 0 0

⊗ I3)ξ ≤ ξT(

ρλ1 ρλ1 0
ρλ1 ρλ1 0
0 0 0

⊗ I3)ξ (25)

where ρS(t) = (W(t)−W0 IN)WT
S(t)WS(t) ≤ ρλ1 = (W(t)−W0 IN)λ1. For the term VΣ

in (22), observe that if ‖Kit(Vi − V̂i)‖ ≤ Kt‖Vi − V̂i‖, with Kt = max(‖Kit‖F), ∀i ∈ Σ, the
following equation is obtained:

2ξT(χ⊗ I3)V Σ) = 2µ0κκκT(t)(VΣ(t)− V̂Σ(t)) ≤ ξT(

0 0 0
0 0 0
0 0 2Ktµ0 IN

⊗ I3)ξ (26)

By combining (24)–(26), the following inequality can be obtained from (22):

V̇P ≤ ξT(χ⊗ I3)ξ + 2ξT(χ⊗ I3)Υ + 2ξT(χ⊗ I3)UP (27)



Aerospace 2023, 10, 735 9 of 23

where χ =

 −W0λ1 IN (2µ−W0λ1)IN (2 + Ψ)µIN
(2µ−W0λ1)IN (2µ−W0λ1)IN (1 + Ψ)µIN
(2 + Ψ)µIN (1 + Ψ)µIN 2µ0(Kt −Ψ)IN

. Notice that when

BT
2 Θi − BT

1 Θ̇i = 0 and Ϋi − BT
2 Θ̇i = 0, one can see that the term 2ξT(χ ⊗ I3)Υ = 0

in (27). Based on the expressions of UP, ξ and E(t), the following can be obtained:

2ξT(χ⊗ I3)UP = −2µET(t)(IN ⊗ΦI3)Ξ(E(t))− 2µET(t)(IN ⊗ I3)(εN ⊗U0(t)) (28)

where the following can be noticed:{
ET(t)(IN ⊗ΦI3)Ξ(E(t)) = Φ ∑N

i=1
‖Ei(t)‖2

‖Ei(t)‖+E0
≤ Φ ∑N

i=1‖Ei(t)‖
−2µET(t)(IN ⊗ I3)(εN ⊗U0(t)) ≤ 2µ ∑N

i=1‖Ei(t)‖‖U0(t)‖ ≤ 2µUM ∑N
i=1‖Ei(t)‖

(29)

Then, (28) can be transformed into:

2ξT(χ⊗ I3)UP ≤ −2µ(Φ−UM)
N

∑
i=1
‖Ei(t)‖ (30)

where Φ can be selected as Φ ≥ UM to ensure that 2ξT(χ⊗ I3)UP ≤ 0.
Finally, go back to (27), and the equation can be expressed as follows:

V̇P ≤ ξT(χ⊗ I3)ξ (31)

One can see that χ has a form that is consistent with Lemma 2 and can therefore

be rewritten as a block matrix: χ =

[
χ11 χ12
χT

12 χ22

]
with χ22 = 2µ0(Kt − Ψ)IN . By selecting

W0 > 2
λ2

and Ψ > Kt, it has χ11 < 0 and χ22 < 0. By choosing a sufficiently large µ0,
the following inequality will hold:

χ11 − χ12χ−1
22 χT

12 = χ11 +
1

2µ0(Ψ− Kt)
χ12χT

12 < 0 (32)

which implies that χ < 0 refers to Lemma 2, that is, V̇P ≤ 0, therefore VP is bounded.
According to LaSalle’s Invariance principle [60], the asymptotic convergence of the error
state ξ to zero is guaranteed, which means the desired TVFC defined by ΥP and P0 can
be realized using the control law (9) and the observer (10) for the N QRs described by (1)
subjected to switching topology GS(t).

3.2. Design of NTSMAC

The command signal of NTSMAC, AiC(t) = [φiC, θiC, ψiC]
T , and the thrust TiC of the

i-th QR can be extracted by UiP = [UixP, UiyP, UizP]
T , which was designed earlier and can

be derived as follows: 
TiC = mi

√
U2

ixP + U2
iyP + (UizP + g)2

φiC = arcsin(
UixPsinψiC−UiyPcosψiC

m−1
i Ti

)

θiC = arctan(
UixPcosψiC+UiyPsinψiC

UizP+g )

(33)

where the free variable ψiC is set as ψiC = 0 for convenience.

Remark 1. It is feasible to ensure that UizP + g is constantly positive to avoid singularity be-
cause UizP is bounded by selecting a suitable gain constant Φi, wi and KitV̂i, Ϋi is in a certain range
when calculating θiC in (33).
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To facilitate the control design, some useful lemmas and reasonable assumptions
are posted:

Assumption 2. During the formation flight, the attitude of the QRs satisfy |φi| < π
2 and |θi| < π

2 .

Remark 2. In most practical applications, except for some special QRs such as racing drones,
the roll and pitch attitude angles do not usually reach π

2 due to the constraints of mission payloads
and operational quality requirements [49]. As a result, the maneuvering actions are relatively mild.
Therefore, Assumption 2 is reasonable and practical.

Lemma 3. For a positive definite function M(t), if its time derivative satisfies the extended form
Ṁ(t) ≤ −λ0Mα0 , ∀t > t0 with λ0 > 0 and 0 < α0 < 1, then M(t) will converge to zero in a
finite time described by TF ≤ t0 +

M1−α0(t0)

λ0(1−α0)
[61].

Lemma 4. According to [62], the upper bound of the lumped uncertainty di can be expressed as
follows:

|dik| ≤ Dik1 + Dik2
∣∣Ȧik

∣∣+ Dik3
∣∣Ȧik

∣∣2 (34)

where Dik1, Dik2, Dik3(k = 1, 2, 3) are unknown positive constants, and Aik are elements of Ai.

Let the attitude tracking errors of i-th be defined as eiA = Ai − AiC = [ei1A, ei2A, ei3A]
T

and eiΩ = Ȧi − ȦiC = [ei1Ω, ei2Ω, ei3Ω]T , and the following error system will be obtained:{
ėiA = eiΩ

ėiΩ = J−1
i0 (−Cir0 Ȧi − Kir0 Ȧi − Ji0 ÄiC + τi + di)

(35)

Now, design the TVNTSM surfaces of the i-th QR as follows:

sik = eikA + hik(t) + kiSsigβi (eikΩ + ḣik(t)) (36)

where k = 1, 2, 3 is the index of the attitude channels. kiS > 0 is a positive number, 1 <
βi < 2, and the piecewise continuous function hik(t) is the element of hi(t) = [hi1, hi2, hi3]

T

and is expressed by:

hik(t) =

{
hik(t), t ≤ Ti

0, t > Ti
(37)

where Ti is a given switching time. To suppress the reaching phase, hik(t) is chosen to
satisfy the following:{

eikA(0) + hik(0) + kiSsigβi (eikΩ(0) + ḣik(0)) = 0

hik(Ti) = ḣik(Ti) = 0
(38)

which implies that the initial state of the attitude error system (35) was right on the sliding
surface from very beginning, hik(t) is continuous, and there is no rapid change in eikA and
eikΩ at t = Ti.

By taking the time derivative of sik and combining it with (35), the following is
obtained:

ṡik = eikΩ + ḣik(t) + βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1[
(J−1

i0 )k(−(Cir)k Ȧi − (Kir0)k Ȧi + τik + dik) + ḧik(t)
]

(39)

Let ṡik = 0 and dik = 0, and the equivalent control law can be obtained as follows:

τikE = (Ji0)k ÄiC + (Cir0)k Ȧi + (Kir0)k Ȧi − (Ji0)k
[
ḧi(t) +

1
βikiS

sig2−βi (eikΩ + ḣik(t))
]

(40)
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Moreover, under the influence of di, the attitude error states will not stay on the sliding
surface even if sik(0) = 0. Therefore, the switching control law is designed as follows:

τikS = −(Ji0)k
[
Hisi + (‖(J−1

i0 )1‖d̂ik + εiS) f sat(si)
]

(41)

where k = 1, 2, 3. Hi = diag{Hi1, Hi2, Hi3} is positive definite, εiS > 0 is a small design
constant, d̂ik = D̂ik1 + D̂ik2‖Ȧik‖ + D̂ik3‖Ȧik‖2 is the estimation of the unknown upper
bound of dik, and the saturation function f sat(si(t)) is adopted to eliminate the chattering
problem [63] and is expressed as follows:

f sat(si) =

sign(si), ‖si‖ > ιi
sigσi (si(t))

ι
σi
i

, ‖si‖ ≤ ιi
(42)

where ιi > 0, 0 < σi < 1.
The update laws are designed as follows:

˙̂Dik1 = ςi1‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

˙̂Dik2 = ςi2‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣

˙̂Dik3 = ςi3‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣2 (43)

Now, the overall control torque of the i-th QR can be obtained as follows:

τik = τikE + τikS (44)

Theorem 2. Under Assumption 2, if the TVNTSM manifold is represented by (36), with the
piecewise continuous function (37) satisfying condition (38), and if the control torque is designed
according to (44) with the adaptive laws in (43), the tracking error of the i-th QR attitude subsystem
described by (2) will converge to zero in finite time.

Proof. For k = 1, 2, 3, select the following Lyapunov function candidate:

Vik =
1
2

s2
ik + βikiS

3

∑
m=1

ϑim
2

D̃2
ikm (45)

where ϑim, m = 1, 2, 3 are positive constants, and D̃ikm = D̂ikm − Dikm. Taking the time
derivative of (45) and combining (35) and (44) yield the following:

V̇ik =βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1
[
(J−1

i0 )kdisik − Hiks2
ik − εiS|sik| − ‖(J−1

i0 )k‖(D̂ik1 + D̂ik2
∣∣Ȧik

∣∣+ D̂ik3
∣∣Ȧik

∣∣2)|sik|
]

+ βikiS

3

∑
m=1

ϑimD̃ikm
˙̂Dikm

(46)

Substituting the adaptive laws in (43) into (46) yields the following:

V̇ik =βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1
[
(J−1

i0 )kdisik − Hiks2
ik − εiS|sik| − ‖(J−1

i0 )k‖(D̂ik1 + D̂ik2
∣∣Ȧik

∣∣+ D̂ik3
∣∣Ȧik

∣∣2)|sik|
]

+ βikiS

[
ϑi1ςi1D̃ik1‖(J−1

i0 )k‖
∣∣eikΩ + ḣik(t)

∣∣βi−1|sik|+ ϑi2ςi2D̃ik2‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣

+ ϑi3ςi3D̃ik3‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣2]

(47)

To show that the convergence occurs in finite time, (47) can be transformed as follows:
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V̇ik =βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1
[
(J−1

i0 )kdisik − Hiks2
ik − εiS|sik| − ‖(J−1

i0 )k‖(D̂ik1 + D̂ik2
∣∣Ȧik

∣∣+ D̂ik3
∣∣Ȧik

∣∣2)|sik|
]

+ βikiS

[
ϑi1ςi1D̃ik1‖(J−1

i0 )k‖
∣∣eikΩ + ḣik(t)

∣∣βi−1|sik|+ ϑi2ςi2D̃ik2‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣

+ ϑi3ςi3D̃ik3‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣2]

+ βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1‖(J−1
i0 )k‖(Dik1 + Dik2

∣∣Ȧik
∣∣+ Dik3

∣∣Ȧik
∣∣2)|sik|

− βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1‖(J−1
i0 )k‖(Dik1 + Dik2

∣∣Ȧik
∣∣+ Dik3

∣∣Ȧik
∣∣2)|sik|

=βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1
[
(J−1

i0 )kdisik − Hiks2
ik − εiS|sik| − ‖(J−1

i0 )k‖(Dik1 + Dik2
∣∣Ȧik

∣∣+ Dik3
∣∣Ȧik

∣∣2)|sik|
]

+ βikiS

[
ϑi1ςi1D̃ik1‖(J−1

i0 )k‖
∣∣eikΩ + ḣik(t)

∣∣βi−1|sik|+ ϑi2ςi2D̃ik2‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣

+ ϑi3ςi3D̃ik3‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣2]

− βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1‖(J−1
i0 )k‖(D̃ik1 + D̃ik2

∣∣Ȧik
∣∣+ D̃ik3

∣∣Ȧik
∣∣2)|sik|

(48)

Then, the following inequality is obtained:

V̇ik ≤βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1
[∣∣∣(J−1

i0 )kdi

∣∣∣|sik| − εiS|sik| − ‖(J−1
i0 )k‖(D̂ik1 + D̂ik2

∣∣Ȧik
∣∣+ D̂ik3

∣∣Ȧik
∣∣2)|sik|

]
− βikiS

[
(1− ϑi1ςi1)D̃ik1‖(J−1

i0 )k‖
∣∣eikΩ + ḣik(t)

∣∣βi−1|sik|

+ (1− ϑi2ςi2)D̃ik2‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣

+ (1− ϑi3ςi3)D̃ik3‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣2]

=− Cik|sik| −
√

βikiS

3

∑
m=1

cikm
∣∣D̃ikm

∣∣
=− Cik

√
2
|sik|√

2
−
√

βikiS

3

∑
m=1

cikm

√
ϑim
2

∣∣D̃ikm
∣∣√

ϑim
2

≤− Cik

[ |sik|√
2
+
√

βikiS

3

∑
m=1

√
ϑim
2

∣∣D̃ikm
∣∣]

≤− CikV
1
2

ik

(49)

where

Cik = βikiS
∣∣eikΩ + ḣik(t)

∣∣βi−1
[
−
∣∣∣(J−1

i0 )kdi

∣∣∣+ εiS + ‖(J−1
i0 )k‖(D̂ik1 + D̂ik2

∣∣Ȧik
∣∣+ D̂ik3

∣∣Ȧik
∣∣2)]

cik1 =
√

βikiS(1− ϑi1ςi1)‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

cik2 =
√

βikiS(1− ϑi2ςi2)‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣

cik3 =
√

βikiS(1− ϑi3ςi3)‖(J−1
i0 )k‖

∣∣eikΩ + ḣik(t)
∣∣βi−1|sik|

∣∣Ȧik
∣∣2

Cik = min

{
Cik
√

2, cik1√
ϑi1
2

, cik2√
ϑi2
2

, cik3√
ϑi3
2

} (50)

In (34), one can see that Cik > 0. Furthermore, cikm > 0 if ϑimςim < 1, m = 1, 2, 3.

According to Lemma 2, Vik will converge to zero in finite time TikF ≤ 2
Cik

V
1
2

ik (0), which

means that the convergence of sik and D̃ikm, m = 1, 2, 3 will also occur in finite time.
By setting the attitude tracking error on the sliding surface at the very beginning of the
QR’s motion, that is, sik(0) = 0, then Vik(0) is reduced and the upper bound of TikF is
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lowered, thereby shortening the convergence time. Furthermore, once sik = 0 after t = TikF,
the following is obtained from (36):

eikΩ + ḣik(t) = −k
− 1

βi
iS sig

1
βi (eikA + hik(t)) (51)

Choose the following Lyapunov function candidate:

VikS =
1
2
[eikA + hik(t)]2 (52)

Differentiating VikS and combining it with (51) yields the following:

V̇ikS = −k
− 1

βi
iS |eikA + hik(t)|

1+βi
βi = −2

βi+1
2βi k

− 1
βi

iS V
βi+1
2βi

ikS (53)

According to Lemma 2, VikS converges to zero within the time:

TikS =
βi

k
− 1

βi
iS (βi − 1)

|eikA(0) + hik(0)|
βi−1

βi (54)

Thus, eikA + hik(t) will converge to zero at TikS, considering hik(t) = 0 after t = Ti.
Therefore, the attitude tracking errors eiA = [ei1A, ei2A, ei3A]T and eiΩ = [ei1Ω, ei2Ω, ei3Ω]T

of the i-th QR will finally converge to the origin within the time:

TiF = max{Ti1F, Ti2F, Ti3F}+ max{Ti, Ti1S, Ti2S, Ti3S} (55)

It is obvious that the control law (44) is continuous and will not lead to chattering
phenomena. Moreover, it is singularity-free due to the absence of negative fractional power
in (44).

The proof is complete.

Remark 3. Under the proposed control law (44), the convergence time of the QR’s attitude tracking
error can be adjusted in advance by designing βi, kiS and hik(t). However, the selection process
lacks guidance and direction. For this purpose, the hik(t) with the following form can be adopted:

hik(t) =

{
νik1 + νik2t + νik3t2, t ≤ Ti

0, t > Ti
(56)

where νikm, m = 1, 2, 3 are parameters to be determined. To be more general, choose TikS > Ti, then
kikS can be computed for βi with a fixed value using kikS = [ βi

TikS(βi−1) ]
−βi |eikA(0) + hik(0)|1−βi .

Then, with (38), it is easy to obtain νik1 = T2
i νik3, νik2 = −2Tiνik3 and νik3 = [eikΩ(0) +

βi
TikS(βi−1) eikA(0)][2Ti −

βiT2
i

TikS(βi−1) ]
−1, k = 1, 2, 3.

4. Experiment Results

In this section, comparative flight experiment data from a formation of five QRs is pre-
sented to validate the effectiveness of the proposed TVFC method. Each QR was equipped
with a customized user-programmable MCU-based flight controller, which includes a
main MCU for running control algorithms and a co-MCU for managing peripherals, thus
freeing up the computing power of the main MCU. As a result, the inner loop was run at
400 Hz, while the outer loop was run at 20 Hz. The onboard sensors were mainly composed
of a three-axis gyroscope, a three-axis accelerometer, a three-axis magnetometer, and a
barometric pressure sensor. It is worth noting that the measured linear velocity was not
used for flight control during the test. The formation platform employed a distributed
RTK positioning system, which consisted of a ground-based reference station and mobile
stations carried by the QRs. The reference station broadcasted the satellite observation
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data via a wireless module to create an RTK environment, while the airborne mobile sta-
tions provided centimeter-level positioning accuracy for each QR. The communication
framework of the QRs was established through a duplex wireless module, with each QR
broadcasting its flight status and picking up the status of neighbor QRs to complete the
formation flight. By adjusting the reception address of the data packages, the topology
structure of QR formation could be modified, which enabled topology switching. Finally,
the status of all QRs was picked up by the ground station for monitoring. All QRs were
equipped with high-brightness LED labels to increase visibility, and they also came with a
micro SD card for the recording of key flight parameters. The recording frequency used
was RF = 10 Hz. The detailed hardware architecture and data flow can be seen in Figure 3.

All of the possible graphs for GS(t) are depicted in Figure 4, which contains five
networks with different structures satisfying Assumption 1. The physical parameters of the
QRs are mass, mi = 0.65 (kg); wheelbase, 270 mm; inertia matrix, Ji = diag{0.02351, 0.02351,
0.04701}; and damping matrix, Kit = diag{0.005, 0.005, 0.01} and Kir = diag{0.003, 0.003,
0.002}. The duration of the flight test was Tt = 165 (s), with the leader’s trajectory given
as follows:

P0 =


[−7, 7, 0]T + L1

‖L1‖
VLt, 0 s ≤ t ≤ 30 s

[RLc(π −ωL(t− 30)), RLs(π −ωL(t− 30)), 10]T , 30 s < t ≤ 135 s
[21, 21, 0]T + L2

‖L2‖
VL(t− 135), 135 s < t ≤ 165 s

where RL = 21 (m), L1 = [−14, 14, 10]T (m), L2 = [−14,−14,−10]T (m), VL = 0.8 (m/s),
and ωL = π

105 (rad/s). The formation pattern was set as ΥP = [ΥT
1 , ΥT

2 , ΥT
3 , ΥT

4 , ΥT
5 ]

T , with
Υi calculated as follows:

Υi =


RF[s(

(i−1)2π
5 ), c( (i−1)2π

5 ), 0]T , 0 s ≤ t ≤ 30 s

RF[s(ωF(t− 30) + (i−1)2π
5 ), c(ωF(t− 30) + (i−1)2π

5 ), 0]T , 30 s < t ≤ 135 s

RF[−s( (i−1)2π
5 ),−c( (i−1)2π

5 ), 0]T , 135 s < t ≤ 165 s

where i = 1, 2, 3, 4, 5. RF = 5 (m) and ωF = 11π
105 (rad/s).
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Figure 3. Hardware framework and data flow of the QR TVFC platform.
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a. b. c. d. e.

Figure 4. All five possible graphs labeled as (a–e).

The initial conditions of the QRs were: Pi(0) = Υi(0) + P0(0), Vi(0) = 0 (m/s),
D̂ik1(0) = D̂ik2(0) = D̂ik3(0) = 0, k = 1, 2, 3, Wi(0) = 10−3, and γi(0) = [10−3, 10−3, 10−3]T .
The parameters of the controller were designed as follows: wi = 0.02, Ψ = 4, E0 = 0.02,
Φ = 25. βi =

5
3 , kiS = 12, Hi = diag{20, 20, 20}, σi = 0.14, ιi = 1, εiS = 0.5, TikS = 0.5s,

Ti = 0.5s, i = 1, 2, 3, 4, 5.
The experiment footage can be seen at https://v.youku.com/v_show/id_XNTk3NTI2

MDM1Ng==.html (accessed on 20 June 2023) or https://www.youtube.com/watch?v=
0Mk93U2-V9E (accessed on 20 June 2023). The footage demonstrates that the formation
flight of the QRs is very stable and smooth. According to the on-site wind speed monitoring
data, the recorded wind speed during the testing period was 1.8–2.3 (m/s) from the
southwest, with gusts reaching up to 3.4 (m/s). The trajectories and position snap shots at
t = 20, 50, 110, 165 (s) are illustrated in Figure 5. It can be seen that the QRs were able to
successfully achieve and maintain the desired formation pattern ΥP and track the leader’s
trajectory P0. Figure 6 shows how the topology graph GS(t) was switched randomly every
5 s. The position tracking errors on the three axes are shown in Figure 7. One can see that
under the proposed LVIPC and with the help of the RTK system, the peak value of the
position tracking error of each QR is less than 0.1 (m), and it remains within 0.05 (m) for
most of the time. Figures 8 and 9 depict the estimated linear velocity and the corresponding
error with respect to the measured values, which show that the estimated value is close
to the real value, thus verifying the effectiveness of the proposed linear-velocity observer.
Figure 10 shows the measured acceleration signals of the QRs.
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Figure 5. Trajectories and position snapshots of the QRs.
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Figure 6. The topology switching signal S(t) of QR formation.
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Figure 7. Position tracking errors of the QRs.
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Figure 9. Linear-velocity estimation errors of the QRs.
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Figure 10. Measured acceleration rates of the QRs.

The attitude signals and tracking errors are shown in Figures 11 and 12. From the
perspective of the attitude tracking error curve, the attitude tracking error of all QRs remains
near zero, with the maximum amplitude not exceeding 2 degrees. This indicates that the
performance of the designed NTSMAC is quite good. The measured angular velocities
can be seen in Figure 13, and the estimated upper bounds of the lumped uncertainties are
shown in Figure 14. It can be seen that all estimates are bounded. The curves of |di1| and
|di2| rise in the middle section, which is due to the short-term increase in the wind force at
that moment.

To further verify the performance of NTSMAC, we introduced two practical attitude
control algorithms based on the same set of parameters for LVIPC—namely the classical
cascade PID (CPID) [64] and the active disturbance rejection control (ADRC) [65]—as com-
parative baselines. The parameters used by both algorithms were well tuned to achieve
relatively good tracking performance, as shown in Tables 1 and 2.
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Figure 11. Attitude signals of the QRs.
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Figure 12. Attitude tracking errors of the QRs.
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Figure 14. Estimation of lumped uncertainties’ upper bound.

Table 1. Parameter selection of CPID for the QRs.

Channel kiP1 kiP2 kiI2 kiD2

Roll 5.2 0.31 0.03 0.0012
Pitch 4.85 0.28 0.025 0.0011
Yaw 2.5 0.62 0.015 0

The above parameters are all dimensionless, with i = 1, 2, 3, 4, 5.

Table 2. Parameter selection of ADRC for the QRs.

Parameter Value Parameter Value Parameter Value

ri0 19.5 ci 4 βi01 243
ri 235 bi0φ 42.6 βi02 2150
hi 0.006 bi0θ 42.6 βi03 2920
hi1 36 bi0ψ 22.2

The above parameters are all dimensionless, with i = 1, 2, 3, 4, 5.

Due to the adoption of the same control parameters, the attitude tracking performance
of each QR was relatively consistent. To save space, we chose QR1 as an example in
Figure 15 to show the attitude tracking error of the QR under the control of CPID, ADRC,
and NTSMAC. It is more or less apparent in the figure that the attitude tracking error
of NTSMAC is relatively small as compared to the three methods. In order to evaluate
the performance of the NTSMAC more quantitatively and intuitively, we adopted two
commonly used error measurement indicators, which are the root mean square error
(RMSE) and the maximum error (MAXE). The definitions of these indicators for the i-th QR
are given as follows: RMSEik =

√
∑N0

j=1
e2

ikA(j)
N0

MAXEik = max{|eikA(j)|}
(57)

where k = 1, 2, 3 is the index of the attitude channels, N0 = TtRF is the amount of the
recorded data samples, with j = 1, 2, · · · , N0.
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Figure 15. Attitude tracking errors of QR1 under the control of CPID, ADRC, and NTSMAC.

Table 3 presents the comparison results of MAXE and RMSE for all five QR members
across three attitude channels. It is clear that the MAXE and RMSE of the proposed
NTSMAC are the smallest in the presence of wind disturbance from among the three
methods, while the performance of CPID is the worst. Thus, the proposed NTSMAC
greatly improves the attitude tracking performance, which provides the crucial assurance
needed for precise position control.

Table 3. Attitude tracking error comparisons.

QR’s ID Controller

Channel

Roll Pitch Yaw

RMSE MAXE RMSE MAXE RMSE MAXE

1
CPID 2.944 5.347 2.807 4.936 0.989 1.691

ADRC 1.847 3.855 2.286 4.104 0.627 1.299
NTSMC 0.776 1.653 0.850 1.499 0.362 0.714

2
CPID 2.874 4.985 3.340 5.732 1.022 1.547

ADRC 1.758 3.673 2.194 3.890 0.754 1.107
NTSMC 0.825 1.420 0.784 1.427 0.323 1.020

3
CPID 2.901 5.104 2.905 5.300 0.856 1.603

ADRC 2.641 4.012 2.008 3.922 0.878 1.318
NTSMC 0.951 1.834 0.863 1.422 0.434 0.966

4
CPID 3.113 5.073 3.502 5.112 1.104 1.707

ADRC 2.372 3.976 2.223 4.207 0.823 1.243
NTSMC 0.998 1.678 0.790 1.972 0.412 0.820

5
CPID 2.975 5.217 3.476 4.876 1.020 1.824

ADRC 2.406 3.874 1.983 4.046 0.796 1.192
NTSMC 0.932 1.738 0.905 1.384 0.433 0.649

The unit of the data in the table is degrees.

5. Conclusions

In this paper, a practical TVFC method for QRs subjected to disturbances, uncertainties,
and switching directed topologies was investigated. A fully distributed formation control
scheme was proposed, which comprised LVIPC and NTSMAC. In LVIPC, the distributed
observer was adopted to eliminate the measurement of linear-velocity states as only the
local neighbor’s states were needed to realize formation flight. In NTSMAC, a novel time-
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varying nonsingular terminal sliding mode manifold was designed to suppress the reaching
phase and ensure the finite-time convergence. Furthermore, adaptive estimators were
employed to remove the reliance on the prior knowledge of the upper bound of lumped
uncertainties. The effectiveness of the proposed TVFC was proven through the Lyapunov
theory, and the comparative outdoor flight experiment based on practical hardware further
illustrated the good performance of the proposed TVFC method. Future work may bring
in the collision avoidance mechanism to enhance flight safety.
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