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Abstract: Flow separation occurs when wind turbines operate under large inflow conditions, which
seriously affects the utilization of wind energy and reduces the output power of the blade. Therefore,
a composite flow control configuration for horizontal axis wind turbines, founded on segmented
prepositive elliptical wings, is proposed for efficiency enhancement. Taking a typical NREL Phase VI
wind turbine as the prototype, its separation effect is evaluated by the CFD method. Then, starting
from the improvement of the two-dimensional airfoil flow, the prepositive elliptic wing is designed
according to the airfoil flow, and the optimal two-dimensional flow control configuration of the blade
airfoil is obtained by simulation analysis. Finally, the two-dimensional configuration is extended to
three-dimensional, and the aerodynamic characteristics of the blade before and after flow control are
simulated and compared. The results show that, at wind speeds of 10~20 m/s, flow separation on the
blade is effectively inhibited; meanwhile, the pressure difference between the pressure surface and
the suction surface increases. These characteristics greatly improve the performance of wind turbine
and increase its torque by more than 30%. Moreover, when the flow control effect cannot be reached,
the blade torque is only reduced by approximately 2%.

Keywords: horizontal axis wind turbine; prepositive elliptic wing; computational fluid dynamics
(CFD); flow control

1. Introduction

As an important guarantee for national development, energy supply is a solid founda-
tion for promoting social prosperity and improving the quality of the living environment
for residents. With the increasing consumption of global fossil fuels and environmental
problems, new energy sources, for instance, wind energy, solar energy, and nuclear energy,
have become an important research field of worldwide concern. As one of the new energy
sources for sustainable development, wind energy has many advantages, such as abundant
storage, wide distribution, no pollution, and so on, and has great potential. Wind turbines
play a key role in wind power generation, so the evaluation of the aerodynamic perfor-
mance of wind turbine blades is a crucial part in the design of wind turbines. When a wind
turbine blade is in some operating states with large angles of attack, the surface is prone to
flow separation, resulting in reduced aerodynamic performance of the blades. Inhibiting
the flow separation on the blade surface has great significance on the improvement of the
efficiency of wind turbines, and it has become one of the research hotspots in current wind
energy utilization.

At present, there are mainly active and passive flow control methods applied to
the wind turbine blades. Active flow control technology suppresses flow separation by
introducing external energy to enhance the internal energy of the separated flow. Typical
methods include blow suction control, co-flow jets, plasma ion jets, etc. These active flow
control methods based on jets have been widely studied and have achieved good results in
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controlling the flow of wind turbine airfoils and blades [1–6]. However, because additional
energy must be introduced and components such as a gas path, actuator, controller, and the
power supply must be added, the design difficulty is greatly increased, and the applicability
is reduced in engineering applications. In contrast, it is easier to realize the passive
methods to change the characteristics of the main flow by adding auxiliary components
on the external surface and mixing the airflow of the components with the main flow. For
example, tip winglets [7–10], bionic leading edges [11–13], Gurney flaps [14–16], vortex
generators [17–24], and other components have been added to the blades to improve the
wind turbine’s aerodynamic performance. Nobari et al. [7] studied a wind turbine equipped
with flat winglets by the finite volume method, and the wind turbine power increased
by 16% after optimization. Khaled [8] and Mourad [10] et al. researched the influence
of winglet length, tilt angle, and winglet height on the aerodynamic characteristics of
horizontal axis wind turbines; they pointed out that winglet configuration and setting
position were important factors affecting blade performance. Abate et al. [12,13] designed
and calculated the flow field characteristics of a uniformly distributed wave front wind
turbine blade and found that the best effect could be achieved when the wave front was
placed at 95% of the span direction, and the export power of the new configuration was
increased by up to 10%. Yang et al. [15] tested the impact of changing the height and
thickness of Gurney flaps on wind airfoils through wind tunnel experiments; their research
showed that the height parameter of the Gurney flaps had the main influence. Wang
et al. [17] adopted a vortex generator to control the separation flow of an S809 airfoil.
After adding a vortex generator, the stall attack angle of the S809 was delayed from 14◦ to
18◦, but the effect of applying it to a three-dimensional rotating blade still needs further
research. Troldborg et al. [18] compared airfoils and blades with vortex generators through
a numerical simulation, and the results showed that there was a complicated interaction
between rotation effects and vortex generators. Suarez et al. [19] also studied the flow field
characteristics after setting the vortex generators at the tip of an NREL Phase VI blade and
found that the aerodynamic characteristics of the rotating blade were only slightly improved
after adding the vortex generators. Mueller [20] and Baldacchino et al. [21] proposed that
setting the vortex generator on the wind turbine blade makes it very sensitive to the height
and chord position. Improper setting of the height will drown the vortex generator in the
separation bubble, leading to the sudden stall of the blade in the early stage. Lee et al. [22]
studied the effect of a vortex generator on the aerodynamic load, elastic deformation, and
flow separation of a horizontal axis wind turbine blade using the fluid-structure coupling
method. The results indicated that, under the condition of steady flow, the flow separation
area of blade suction surface with a vortex generator was reduced, but the power was
only increased by 1.04% at most. Dadamoussa et al. [23] designed vortex generators with
different heights and positions to study the influence on the flow control of horizontal axis
wind turbines. Their results showed that the correct selection of the vortex generator’s
size and position played a crucial role in improving the aerodynamic performance of wind
turbine blade. Zhu et al. [24] set up a vortex generator on the two-dimensional airfoil
and performed a numerical simulation. The results indicated that the separation flow was
effectively suppressed and that its lift coefficient was greatly improved. However, when it
was set on the three-dimensional blade, the vortex generator was completely submerged
in the separation bubbles, which aggravated flow separation and reduced aerodynamic
force on the blade surface. Therefore, a vortex generator design that is based on a two-
dimensional airfoil is difficult to directly apply to a three-dimensional blade. In summary,
active flow control technology is time-consuming and labor-intensive, and its practicability
is poor, while the passive flow control method usually has problems such as low efficiency,
difficult design, and additional resistance.

In consideration of above problems, this paper innovatively proposes a segmented
prepositive wing–main blade composite configuration. This flow control method is passive
and has the advantages of simple design, no additional input energy, easy processing,
and high fault tolerance. Taking the typical NREL Phase VI wind turbine blade as the
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prototype, its S809 airfoil is first designed with the prepositive wing configuration. The
impact of position and size of the prepositive wing on the aerodynamic performance of
the airfoil is researched to find the optimal setting scheme, and its flow control mechanism
is analyzed. Then, this airfoil design is applied to the blade to verify the feasibility of
transferring the flow control effect from a two-dimensional design to a three-dimensional
design. In addition, because the conventional vortex generator positioning near the root of
the blade may cause it to stall early, five kinds of segmented prepositive wing–main blade
composite configurations are designed to study the influence of the height of the elliptical
wing. Through numerical simulation, the flow field characteristics of the original blade
and the composite configurations are compared, and the flow control mechanism of the
segmented prepositive wing–main blade composite configuration is further studied.

This work is structured as follows: In Section 2, The horizontal axis wind turbine
model, meshing method, and calculation method used in this paper are described. The
mesh independence verification and the comparison between the calculated values and
the experimental values are carried out, and the flow separation on the blade surface of
the wind turbine under different wind speed conditions is analyzed. Then, in Section 3,
the method of using a prepositive elliptical wing configuration to control the flow of the
wind turbine blade in order to improve the aerodynamic performance of wind turbine is
proposed, and this method is explored using an S809 airfoil. In Section 3.1, the flow control
mechanism of the prepositive wing–main wing composite configuration is explained. In
Section 3.2, the two-dimensional configuration is designed, including the shape, size, and
position of the prepositive wing. In Section 3.3, the control effect of the prepositive wing–
main wing composite configuration is shown, the flow control mechanism is analyzed,
and the design space that can play an effective role in the wind turbine blade airfoil is
determined. Based on Section 3, Section 4 extends the design of the composite configuration
to three dimensions. Section 4.1 shows the design of the three-dimensional segmented
prepositive elliptical wing–main blade configuration. Section 4.2 calculates five different
composite configurations and compares them with the performance of the original wind
turbine. Section 4.3 analyzes the reasons why the composite configuration improves the
performance of the wind turbine from different perspectives, such as flow separation and
surface pressure. Some useful conclusions are given in Section 5.

2. Numerical Simulation of Horizontal Axis Wind Turbine

The experimental design of this paper is divided into two parts according to the
two-dimensional and three-dimensional situation. Firstly, the combined configuration of
the wind turbine blade airfoil and the elliptical wing is designed, and the influence of the
nine position schemes and sizes of the elliptical wing on the aerodynamic performance is
studied in sequence. Secondly, based on the two-dimensional optimal scheme, five three-
dimensional configurations are used to study the influence of the elliptical wing on the
flow field characteristics of the composite configuration with different blade spans. In this
way, the optimal configuration scheme of prepositive elliptical wing–main blade composite
configuration is obtained, and their applicability in the real situation is evaluated.

2.1. Calculation Method and Mesh Division

Since the torsion angles of wind turbine blades are large and airfoils are relatively
thick, obvious flow separation occurs easily at a large deflection angle, thus affecting the
efficiency of power generation. This study is based on the typical NREL Phase VI wind
turbine with an S809 airfoil.

For the two-dimensional case, the unstructured polyhedral mesh was used for the
calculation. The chord length of the S809 airfoil is c = 1 m, and the radius of the computa-
tional domain is 50 times the chord length of the airfoil. To make the numerical calculation
more accurate, the model is stretched 1 m along the spanwise direction to generate a
three-dimensional mesh, and the number of the mesh is approximately 1.1 million. Taking
the configuration of setting a small ellipse at 5%c above the leading edge of the airfoil
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as an example, L1 = 0, and L2 = 0.05 m. The mesh and boundary conditions used in the
calculation are shown in Figure 1.
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Figure 1. Computational mesh and boundary conditions.

For the three-dimensional case, since incoming wind speed is parallel to the rotor shaft,
the model uses one blade to simplify the calculation, and a periodic boundary condition
is adopted at the junction. The calculation domain is a semicylinder containing the blade
with a radius of 50 m. The flow inlet and outlet are 50 m and 75 m from the blade center,
respectively. The calculation uses an unstructured polyhedral mesh, and the boundary
layer is set on the blade surface. The mesh division and boundary conditions are shown
in Figure 2a, and the local surface mesh is shown in Figure 2b. The calculation conditions
refer to the NREL aerodynamics experiment [25], as shown in Table 1.
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6 72.1 25.1 1.220 1.785

In this paper, Fluent software is used for the numerical simulation, and the Navicr
Stokes (N-S) equation solver, based on the finite volume method, is used. The second-order
upwind scheme is used in the convection direction, the central difference is used in the
diffusion term, and the coupled method is used in the pressure velocity coupling. The flow
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Table 1. Calculation conditions [25].

Operational
Condition

Rotating Speed
[rpm]

Wind Speed
[m/s]

Density
[kg/m3]

Viscosity × 10−5

[kg/(ms)]

1 71.9 7.0 1.246 1.769

2 72.1 10.0 1.246 1.769

3 72.1 13.0 1.227 1.781

4 72.1 15.1 1.224 1.784

5 72.0 20.1 1.221 1.786

6 72.1 25.1 1.220 1.785

In this paper, Fluent software is used for the numerical simulation, and the Navicr
Stokes (N-S) equation solver, based on the finite volume method, is used. The second-order
upwind scheme is used in the convection direction, the central difference is used in the
diffusion term, and the coupled method is used in the pressure velocity coupling. The flow
is compressible. The two-equation shear stress (k − ω SST) turbulence model [26] is used
for the calculation, and the equation is expressed as:

∂(ρk)
∂t + ui

∂(ρk)
∂xi

= Pk − βkρkω + ∂
∂xi

[(
µl +

µt
σk

)
∂k
∂xi

]
∂(ρω)

∂t + ui
∂(ρω)

∂xi
= CωPω − βωρω2 + ∂

∂xi

[(
µl +

µt
σω

)
∂ω
∂xi

]
+2ρ(1 − F1)

1
σω2

1
ω

∂k
∂xi

∂ω
∂xi

(1)

The mesh independence is verified by the four mesh division schemes, which are
shown in Table 2. Figure 3 shows that the torque numerical simulation results of Schemes 1
and 2 are quite different from the simulation results of Schemes 3 and 4. As the number of
the mesh increases, the numerical simulation results of torque tend to be stable. The torque
differences with Schemes 3 and 4 are less than 3% at each wind speed, and the maximum
error is 2.67% at 13 m/s wind speed, which meets the requirements of grid independence.
Considering the subsequent need to add a small elliptical wing at the leading edge of the
blade, to better capture the details of the flow field around the blade and elliptical wing,
Scheme 4 is used in the subsequent numerical simulation.
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Table 2. Mesh division schemes.

Scheme y+ Minimum Mesh Size
(mm)

Maximum Mesh Size
(mm)

Total Mesh Numbers
(million)

1 1 1 5000 1.21

2 1 0.5 3000 2.54

3 1 0.2 3000 5.02

4 1 0.1 3000 9.86
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2.2. Case Verification

According to the experimental values, the Mach number is set to 0.042, and the
Reynolds number is set to 1 × 106. First, the variation in the lift and drag coefficients of a
single S809 airfoil with the angle of attack is simulated. The radius of the computational
domain is 50 times the chord length of the airfoil. The comparison between the calculated
and experimental values is shown in Figure 4. The lift and drag coefficients obtained by
the experiment [25] are consistent with the simulation results in this paper, and the error is
within the allowable range. In general, the computational mesh and numerical simulation
method adopted are reliable.
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Figure 5 shows the comparison between the simulated and experimental values of
the wind turbine shaft torque. The simulation result curve is basically consistent with the
curve of the law of torque variation with wind speed in the experiment, and the calculated
value is in good agreement with the experimental value. The average error between the
calculated shaft torque and the experimental value at six different wind speeds is 9.27%
and the maximum error is 15.91% at 25 m/s wind speed, which is within the acceptable
range, proving the effectiveness and accuracy of the numerical method.
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Figure 6 shows the calculated limit streamline of the wind turbine blade suction side
at the wind speed of 7~25 m/s. Owing to the three-dimensional rotation effect of the wind
turbine blade, the Coriolis force, centrifugal force, and pressure difference in the wingspan
direction act on the blade together. As the wind speed gradually increases, the range of
the flow disorder region on the suction surface gradually increases. This separation trend
gradually spreads from the root position to the tip area, and the flow separation point
extends from the trailing edge area to the leading edge area. When the wind speed is
7 m/s, the flow field structure near the blade root area is relatively complex, and the flow
around the hub is separated. When the wind speed is 10 m/s, the separation zone expands
along the radial direction, and separation occurs at a position exceeding 90% of the suction
surface, which affects the aerodynamic characteristics of the whole blade, and the blade
stalls. If the wind speed increases above 15 m/s, the blade will enter the deep stall state,
and the flow in the whole blade range will be separated. Flow separation seriously affects
the aerodynamic power output of blade, resulting in power loss of the wind turbine. For a
certain wind speed, stalling of the blade root is the most serious in the whole blade area,
and stalling of the blade tip occurs only at high wind speeds. Additionally, wake structure
after flow separation is very complex. Not only do vortices form in the separated wake and
develop downstream, forming a spiral flow structure, but they also flow along the radial
direction, forming a complex three-dimensional flow structure.
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3. Flow Control Method of Prepositive Elliptical Wing Configuration for
Separated Flow
3.1. Flow Control Mechanism of Prepositive Elliptical Wing Configuration

In this paper, the flow control mechanism of the prepositive elliptical wing configura-
tion can be explained from three aspects, as shown in Figure 7. First, the elliptical wing
placed around the leading edge of the airfoil or blade can be regarded as a special detached
vortex generator. Similar to the conventional vortex generator, the prepositive elliptical
wing can produce a high-energy wake vortex and mix with the downstream low-energy
boundary layer flow; then, it can play a role in flow control. Second, the gap between the
prepositive wings and the airfoil or blade has a similar effect to the leading-edge slat. It
can significantly improve the aerodynamic characteristics by better resisting the boundary
layer. Third, as a typical bluff body, the flow around the cylinder or elliptical cylinder has
been studied extensively [27–29]. The unsteady shedding vortex is generated when the
fluid flows through the elliptical wing, which is accelerated by the airflow on the suction
surface into the separation airflow to increase the energy of the airflow and to suppress
flow separation.
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3.2. Design of the Prepositive Wing–Main Wing Composite Flow Control Configuration Based on
the S809 Airfoil

According to blade element momentum theory, the wind turbine blade can be divided
into several independent blade element infinitesimals along the spanwise direction. The
force acting on each blade element is only determined by its airfoil lift–drag characteristics.
By integrating the moment and force on blade element, the moment and force which act on
the blade can be further derived. That is, the aerodynamic characteristics of the airfoil can
determine the performance of the blade to a certain extent.

In this paper, a prepositive elliptical wing with a new configuration is proposed. An
S809 airfoil is taken as the research object, and its chord length is c. A small elliptical wing
with a long axis size of 2%c and a short axis size of 1%c is set near the leading edge. The
horizontal distance between the center of elliptical wing and leading edge of the airfoil
is L1, and their vertical distance is L2. Two groups of small circles with diameters of 2%c
and 1%c are selected for comparison, and the positions are set to be the same as those of
the elliptic wing. The influence of their sizes and positions on the flow control effect are
studied. The calculation model and size are shown in Figure 8.
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To further explore the flow control mechanism of this new configuration and clarify the
influence of setting the position and size factors of the elliptical wing on the aerodynamic
performance of an S809 airfoil, nine position schemes of the prepositive small elliptical or
circular configuration are adopted to calculate, as shown in Table 3 and Figure 9.

Table 3. Position schemes of the prepositive wing configuration.

Original Airfoil S809 Scheme 5 L1 = 5%c, L2 = 0

Scheme 1 L1 = 0, L2 = 3%c Scheme 6 L1 = 7%c, L2 = 0

Scheme 2 L1 = 0, L2 = 5%c Scheme 7 L1 = 0, L2 = −3%c

Scheme 3 L1 = 0, L2 = 7%c Scheme 8 L1 = 0, L2 = −5%c

Scheme 4 L1 = 3%c, L2 = 0 Scheme 9 L1 = 0, L2 = −7%c
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3.3. Evaluation of the Flow Control Effect of the Two-Dimensional Configuration

The lift–drag ratios of the three configurations at different attack angles in nine position
schemes are compared with those of the single S809 airfoil. In general, to increase lift–drag
ratio of the airfoil and delay the stall attack angle, the most ideal control effect can be
reached when the small component is set at a position 5%c to 7%c directly above the
leading-edge point of S809 airfoil. The application range of the smaller component is larger,
especially when the setting position is less than 5%c from the airfoil, and the size of the
component must be reduced. When the small component is directly set in front of the
S809 airfoil’s leading-edge point, it should be at least 7%c from the leading-edge point, or
the component which has a very small size must be set within 3%c near the leading-edge
point. When small component is set directly below the S809 airfoil, leading-edge point,
compared to the original airfoil, and the lift–drag ratio increases or approaches, in most
cases. The control effect is highly dependent on the setting position, and the size change of
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the component within the acceptable range does not affect it. In addition, for a small angle
of attack, these small components inevitably reduce the lift–drag ratio of the S809 airfoil.

To further clarify the flow control mechanism of the prepositive microparts on the
airfoil, Figure 10 shows the velocity contours, pressure contours and streamlines of different
position scheme configurations at 20◦ attack angle. By comparison, the position selection of
Scheme 2 is optimal. When the ellipse and the circle with a diameter of 2%c are set, the flow
control effect of these configurations is obvious, and the separation bubble near the original
airfoil’s trailing edge completely disappears. When Schemes 1 and 3 are adopted, setting
the diameter of the 1%c circle can also move the separation point backward and make
the separation bubble shrink. Except for Schemes 1–3, the other position schemes have
no obvious inhibitory effect on the separation vortex generated by the airfoil. Comparing
the velocity contours, the inhibiting effect of these prepositive wing configurations on
flow separation is mainly that acceleration of the air flow through the upper surface of the
airfoil increases the attachment energy of the air flow in the boundary layer of the upper
surface, which delays the development of separation by better resisting the boundary layer
separation. When the component is too large for the set position, it will hinder the original
flow on the wing surface and deteriorate the S809 airfoil aerodynamic performance, such
as in Scheme 1.
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Figure 10. Velocity contours, pressure contours, and streamlines of different configuration schemes
at 20◦ attack angle.

Figure 11 shows the comparison of the pressure coefficients of several different position
configurations with the S809 airfoil at 20◦ attack angle. In general, compared with that of the
original S809 airfoil, the pressure coefficient of the effective prepositive wing configuration’s
suction surface is significantly reduced, while the pressure surface’s pressure coefficient is
slightly increased, which makes the airfoil surface pressure difference increase and then
increase airfoil lift. In contrast, the ineffective prepositive wing configuration increases
the suction surface pressure coefficient of the original airfoil and decreases the pressure
coefficient of the pressure surface, as shown in Figure 11c,f. The same is true in that the
prepositive wing has a more pronounced effect on the pressure coefficient of the airfoil
suction surface.
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4. Flow Control Scheme Design Based on Segmented Prepositive Elliptical
Wing–Main Blade Composite Configuration
4.1. Design of Segmented Prepositive Elliptical Wing–Main Blade Composite Configuration

For purpose of studying the application effect of the prepositive elliptic wing as a
passive flow control component on the blade, and to further clarify the influence of the
setting method on the wind turbine performance, according to the calculation results of
setting a prepositive elliptical wing with different sizes and positions in front of the S809
airfoil in Section 3.3, the position of Scheme 2 (L1 = 0, L2 = 5%c) should be adopted. The
segmented front ellipse is positioned just above the airfoil leading-edge point with the long
axis size of 2%c and short axis size of 1%c. Due to the blade section, the airfoil has different
chord lengths; the long axis size of the elliptical wing should not be greater than 2% of the
minimum section airfoil’s chord length. The horizontal distance L1 from the center to the
leading edge of the blade section of the airfoil is 0, and the vertical distance L2 is within
5%c~7%c.

The elliptical wing is arranged at the S809 airfoil from the cross section of the wind
turbine blade, that is, 25% of the entire blade. A segment is arranged every 15% length
in the direction of wing tip, and the elliptical wing blades are divided into 5 segments.
As shown in Figure 12a, the elliptical wing’s size is calculated from the minimum section
chord near the wing tip in each segment to ensure that the elliptical wing’s overall size
is sufficiently small. The position is calculated from the maximum section chord near the
blade root in each segment to ensure that the horizontal and vertical distance between
the center of elliptical wing and the leading-edge point of the blade section airfoil meet
the requirements. The elliptical wing’s twist angle is the same as the blade’s, on this
basis, as configuration 1. Then a new configuration is formed by successively reducing a
segment of the elliptical wing from the blade root to tip, which is reduced for four times
in total, and five composite configurations of the prepositive elliptical wing–main blade
are obtained. Some studies [23,24] have shown that the conventional vortex generator,
based on a two-dimensional airfoil design, has difficulty in achieving the desired effect
when applied to a three-dimensional blade because the vortex generator will be easily
submerged in the trailing edge separation bubble at the root of the blade or lead to an early
sudden stall of the blade. Therefore, when extending the two-dimensional results to three-
dimensional, it is necessary to compare the performance of different three-dimensional
segmented prepositive elliptical wing–main blade configurations. Figure 12b–d show the
composition of configuration 1, configuration 2, and configuration 5, respectively.
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4.2. Simulation Verification of Composite Configurations’ Flow Control Effect

The five composite configurations are calculated using the calculation conditions in
Table 1, and they use the same mesh conditions as Scheme 4 in Table 2. The results are
shown in Figure 13. At 7 m/s wind speed, all five configurations have a negative impact
on the blades, reducing the torque by approximately 5% on average. At 10 m/s wind
speed, except for configuration 5, the other four configurations all improve the torque of
the original blade. When the wind speed is greater than 13 m/s and less than 20 m/s, all
five configurations can increase the torque. Among them, configuration 1 can increase the
torque by more than 30%, which is the best effect, while the torque growth rate of the other
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configurations decreases successively. Configuration 5 has the worst control effect, as it only
increases the torque by approximately 6% when the wind speed is 15 m/s. However, when
the wind speed is greater than 20 m/s, configurations 4 and 5 have the least influence on the
original blade, and the blade torque is almost unchanged, while configurations 1, 2, and 3
slightly reduce the blade torque by 2% at high wind speeds. This shows that the prepositive
elliptical wing configuration can be applied to a three-dimensional blade, and the effect of
the full segment setting is the best. When the elliptical wing is set above 70% of the blade
span, the torque at a high wind speed is no longer affected, as in configurations 4 and 5. In
addition, consistent with the two-dimensional calculation results, the prepositive elliptical
wing configuration reduces the lift–drag ratio of the airfoil at a low attack angle, and
segmented prepositive elliptical wing–main blade composite configurations also reduce
the blade torque at a low wind speed of 7 m/s.
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4.3. Analysis of Flow Field Improvement Mechanism of a Three-Dimensional Blade with a
Composite Configuration

By comparing the limiting streamline of the wind turbine blade suction surface, the
influence of the segmented prepositive elliptical wing–main blade composite configuration
with different heights on flow separation of blade is studied. Since the calculated aerody-
namic performance parameters of the five configurations are basically reduced with the
number of configurations, only configurations 1, 3, and 5 are selected for analysis. Figure 14
shows the comparison of limiting streamlines on the suction surface of the original blade
and three composite configurations. At 7 m/s wind speed, configuration 1 hardly changes
the flow state of the attached flow on the original blade, and limiting streamlines at the
blade root trailing edge under 47% of the blade span position of configurations 3 and
5 squeeze slightly upward. At wind speeds of 10~15 m/s, configurations 1 and 3 have
obvious effects on flow control. Part of the flow separation on the suction surface of the
original blade is suppressed due to the attached flow from the blade tip. Part of the flow
separation on the suction surface of original blade is suppressed from tip to the attached
flow. The separation point is close to the blade root, and spanwise separation flow is
reduced, which improves the torque of the blade. Configuration 5 also has an obvious
inhibitory effect on flow separation at wind speeds of 13~15 m/s, and it increases the range
of attached flow starting from the blade tip. At wind speeds of 20~25 m/s, flow separation
covers the suction surface of configurations 1, 3, and 5, and the blade enters the deep stall
state. At this time, the configuration cannot exert the flow control effect.
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separation of the blade, taking 13 m/s wind speed as an example, the streamlines at 95%,
80%, 63%, and 47% of the blade span positions of the original blade and configurations
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1, 3, and 5 are shown in Figure 15. At 95% of the blade span section, configurations 1, 3,
and 5 all have flow control effects, and the small separation vortex at the trailing edge of
the original blade is suppressed to laminar flow. At 80% and 63% in the section location,
the original model blade exhibits serious flow separation, and a large separation vortex
is generated on the blade surface. At this time, configurations 1 and 3 can still play a
role, and the inhibition effect on flow separation is significant. Thus, the separation vortex
disappears completely. However, configuration 5 does not exert a control effect, and the
vortex structure on the surface of blade is similar to that of the original blade. At 47% of the
blade span, separation on the blade is intensified, and none of the three configurations are
effective. Since configuration 5 only inhibits flow separation at the 95% blade span position,
the torque of configuration 5 is only 0.85% higher than the original blade, while torques
of configuration 1 and configuration 3 are increased by 35.5% and 33.8%, respectively.
Moreover, the segmented prepositive elliptical wing–main blade configuration does not
cause the blade to suddenly stall early and does not further expand the separation vortex,
even if the flow control effect is not achieved.
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Figures 16 and 17 show the pressure contours on the suction and pressure surface
of original blade and configurations 1, 3, and 5. The comparison shows that the three
configurations have the same pressure distribution characteristics as the original blade. At
7 m/s wind speed, the pressure at the trailing edge of the suction surface of configurations
1 and 3 increases slightly. Meanwhile, the pressure surface is basically unchanged, the
pressure difference on the blade surface decreases, and the torque also decreases. The
pressure distribution contours of configuration 5 are very similar to the original blade, and
the torque is only reduced by 3.4%. At wind speeds of 10~15 m/s, the pressure at the blade
tip leading edge of the suction surface of configurations 1 and 3 obviously decreases, while
the pressure at trailing edge of pressure surface increases. It increases the torque of the
blade by increasing the pressure difference on the blade surface, therefore increasing the
output power of the wind turbine. For configuration 5, pressure on the tip of the suction
surface decreases, and pressure on the pressure surface increases only at wind speeds of
13 m/s and 15 m/s. Furthermore, at wind speeds of 20~25 m/s, the pressure distribution
on blade suction surface is relatively complex, and the pressure of the three configurations
on the pressure surface are almost the same as those of the original blade.
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Figure 18 shows the pressure coefficients of the original blade and three configurations
with five sections at the wind speed of 20 m/s. Compared with the original blade, configu-
rations 1, 3, and 5 mainly reduce the pressure difference at 80% of the blade span position.
The pressure difference in configuration 5 at the 80% blade span section is greater than that
of the original blade. According to the comparison of pressure difference, the aerodynamic
performance of configurations 1 and 3 is slightly worse than that of the original blade
at high wind speed, while configuration 5 is similar to the original blade. This result is
the same as the calculation result of the torque. This also indicates that the segmented
prepositive elliptical wing–main blade configuration can affect the performance of the wind
turbine by changing the pressure distribution on blade surface.
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5. Conclusions

A passive flow control method is innovatively proposed for a segmented prepositive
elliptical wing–main blade composite configuration applied to a horizontal axis wind
turbine in this paper. The flow separation is suppressed by setting the segmented small
elliptical wing near the leading edge of the blade, thereby improving the wind turbine
performance. The main conclusions are as follows:

1. Properly setting the small elliptical wing in front of the S809 airfoil can effectively
delay the stall attack angle and increase the lift–drag ratio of airfoil. The most ideal
control effect can be achieved when the elliptical wing is set 5%c–7%c above the
leading-edge point, and a smaller component has a larger application range.

2. The prepositive elliptical wing configuration can be applied to a three-dimensional
rotating blade through two-dimensional design. It does not suffer from the problem
where it is submerged in the separation bubble and causes the blade to stall suddenly
in the early stage when the conventional vortex generator is set at the downstream
blade root. The performance of the wind turbine is the best when the prepositive
elliptical wing is a full segment set.

3. At wind speeds of 10~20 m/s, the composite configuration can achieve a good flow
control effect and increase the blade torque by approximately 35% at most. When
the wind speed is greater than 20 m/s, the blade enters the deep stall state, and the
composite configuration cannot suppress separation. The elliptical wing set in the
whole section reduces the torque of the blade by 2%, while the elliptical wing set
above 70% of the blade span has no effect on the torque of the original blade.

4. Through the analysis and comparison of flow field characteristics of the composite
configurations and the original blade, the segmented prepositive elliptical wing–
main blade configurations mainly improve the performance of the wind turbine by
inhibiting flow separation on the blade and increasing the pressure difference between
the suction and pressure surface. The most obvious change occurs at the leading edge
of blade tip.

5. In real application situations, the optimal configuration of the proposed combination
configuration is to add a detachable elliptical wing, which is parallel to the leading
edge of the blade, at the position about 6%c from the leading edge of the blade, and
the chord length of the elliptical wing refers to 1% of the blade tip chord length. This
configuration can greatly improve the aerodynamic performance at medium wind
speeds of 10~20 m/s, which is commonly used in wind turbines. In other small and
large wind speeds, the elliptical wing can be removed, and the turbine only retains
the original blade.
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