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Abstract: The method of characteristics is a classical method for gaining understanding in the solution
of a partial differential equation. It has recently been applied to the adjoint equations of the 2D
steady-state Euler equations and the first goal of this paper is to present a linear algebra analysis that
greatly simplifies the discussion of the number of independent characteristic equations satisfied along
a family of characteristic curves. This method may be applied for both the direct and the adjoint
problem. Our second goal is to directly derive in conservative variables the characteristic equations
of 2D compressible inviscid flows. Finally, the theoretical results are assessed for a nozzle flow with a
classical scheme and its dual consistent discrete adjoint.

Keywords: continuous adjoint; inviscid flow; compressible flow; method of characteristics; characteristic
equation; characteristic curve

1. Introduction

The method of characteristics is a well-known method for studying partial differential
equations (PDEs). It aims to exhibit specific hypersurfaces in the input domain where the
solution of the PDE of interest satisfies an ordinary differential equation (ODE). When
applied to 2D steady-state inviscid compressible flows, it is known to provide a full
resolution of a supersonic area based only on the knowledge of the inflow (whereas it
provides partial information for a subsonic flow) [1–4]. Both a theoretical understanding
and practical calculations of a variety of flows (in nozzles, along steps, along curved walls)
are enabled by this technique.

In addition, discrete and continuous adjoint are now well-established methods for
shape optimization [5–9] and goal-oriented mesh adaptation [10–12]. Because of these
important applications, regular efforts have been devoted to the fast and safe writing
of adjoint modules [13–16] and to the efficient solving of the adjoint equations [17,18].
Adjoint methods are also useful for flow control [19,20], meta-modeling [21,22], receptivity–
sensitivity–stability analyses [23,24], and data assimilation [25,26].

Moving from direct to adjoint Euler equations, the classical flux Jacobians are replaced
in the PDE by the opposite of their transpose. This allows the simple adaptation in 2D
and 3D of the characteristic equations in the specific sense of the quasi-one-dimensional
scalar propagation equations satisfied in the direction normal to a boundary [27]. From the
earliest works on the continuous adjoint method, it has been proved that for the adjoint
problem (a) information travels along characteristics in the opposite direction to the flow,
and (b) the right eigenvectors of the local Jacobian replace the left eigenvectors in the
equation definition [5,28,29]. In addition, in a recent paper, the characteristic equations
(CEs), in the sense of nonlinear ODEs satisfied along curves to be defined, have been
derived for the adjoint 2D steady-state Euler equations [30].
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The classical direct characteristic equations (DCEs) for 2D inviscid compressible flows
and the recently presented corresponding adjoint characteristic equations (ACEs) appear
to be linked; in particular, the characteristic curves are the same for both problems [30].
The analogies between ACEs and DCEs are further studied in Section 2, where several
properties of a generic system of equations embedding ACEs and DCEs are demonstrated.
In particular, this formal linear algebra approach greatly simplifies the determination of the
number of independent CEs satisfied along two families of characteristic curves.

Whereas the ACEs need to be derived from the complete 8 × 8 linear system for
the Cauchy problem, the DCEs have been derived with various mechanical assumptions
and also various sets of variables [3,4,31,32]. For the sake of a full understanding, the
direct characteristic problem is solved in conservative variables from the complete Cauchy
problem and the resulting differential forms are discussed in Section 3.

Finally, an inviscid supersonic nozzle flow is considered in Section 4, where both the
DCEs and the ACEs are numerically assessed. We conclude by discussing the interest in
the ACEs for code verification [33] of the continuous and discrete adjoint modules.

2. Common Properties of Linear Systems for the Cauchy Direct and Adjoint Problems
2.1. Notation, Steady-State Euler Equations

We denote by W = (ρ, ρu, ρv, ρE) the conservative variables, with ρ being the density,
(u, v) the components of the velocity U, e the internal energy, and E the total energy. A
thermally and calorically perfect gas law is considered. The static pressure p, total enthalpy
H, and entropy S are

p = (γ− 1)ρe = (γ− 1)(ρE− 0.5ρ||U||2) ,

H = E +
p
ρ

, S = cvln(
p

ργ
) ,

with a constant γ = 1.4 and a constant heat capacity at constant volume cv. A subscript
i is used to denote the classical stagnation quantities (ρi, pi, Ti). The steady-state Euler
equations read

∂F
∂x

+
∂G
∂y

= 0 (1)

with F and G the fluxes along x and y,

F =


ρu

p + ρu2

ρuv
ρuH

 G =


ρv

ρuv
p + ρv2

ρvH

, (2)

or equivalently,

A(W)
∂W
∂x

+ B(W)
∂W
∂y

= 0. (3)

The Euler flux Jacobian matrices in the x- and y-directions, A and B, are equal to

A =


0 1 0 0

γ1Ec − u2 (3− γ)u −γ1v γ1
−uv v u 0

(γ1Ec − H)u H − γ1u2 −γ1uv γu

 B =


0 0 1 0
−uv v u 0

γ1Ec − v2 −γ1u (3− γ)v γ1
(γ1Ec − H)v −γ1uv H − γ1v2 γv


with γ1 = γ − 1. The columns of the Jacobians are denoted by A1 to A4 and B1 to B4
such that A = [A1|A2|A3|A4], B = [B1|B2|B3|B4]. Finally, the discrete adjoint vector of the
functional output of interest is denoted as ψ = (ψ1, ψ2, ψ3, ψ4).
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2.2. Generic Cauchy Problem Embedding ACE and DCE Base Equations

Given a and b, two neighboring points in the fluid domain, we denote by (dx, dy) =
−→
ab

and then t = dy/dx and κ = ut− v. The increment in the conservative variables between
the two points is denoted as (dρ, dρu, dρv, dρE) = (ρb− ρa, ρub− ρua, ρvb− ρva, ρEb− ρEa)
and the increment in the adjoint vector components as (dψ1, dψ2, dψ3, dψ4) = (ψb

1−ψa
1, ψb

2−
ψa

2, ψb
3−ψa

3, ψb
4−ψa

4). The Cauchy problem for the conservative variables aims at calculating
their derivatives at point a with first order in space, and the singularities of this problem are
at the core of the search of the CEs. The corresponding 8 × 8 linear system associates first-
order Taylor expansions and the 2D steady-state Euler equations. The complete system is

dx 0 0 0 dy 0 0 0
0 dx 0 0 0 dy 0 0
0 0 dx 0 0 0 dy 0
0 0 0 dx 0 0 0 dy

A B





(∂ρ/∂x)
(∂ρu/∂x)
(∂ρv/∂x)
(∂ρE/∂x)
(∂ρ/∂y)
(∂ρu/∂y)
(∂ρv/∂y)
(∂ρE/∂y)


=



dρ
dρu
dρv
dρE

0
0
0
0


. (4)

The corresponding linear system for the derivatives of the adjoint vector reads

dx 0 0 0 dy 0 0 0
0 dx 0 0 0 dy 0 0
0 0 dx 0 0 0 dy 0
0 0 0 dx 0 0 0 dy

− AT − BT





(∂ψ1/∂x)
(∂ψ2/∂x)
(∂ψ3/∂x)
(∂ψ4/∂x)
(∂ψ1/∂y)
(∂ψ2/∂y)
(∂ψ3/∂y)
(∂ψ4/∂y)


=



dψ1
dψ2
dψ3
dψ4

0
0
0
0


, (5)

where −AT and −BT are the opposite and transposed Jacobians of the Euler fluxes. The
straightforward counterpart for the derivatives of the discrete flow field W, appears in
Equation (4). Several results regarding the minors of the matrices in (4) and (5), and also
the number of independent CEs when (dx,dy) makes the 8 × 8 matrices singular, may be
demonstrated by considering a generic matrix K and a generic linear system

K



(∂ζζζ1/∂x)
(∂ζζζ2/∂x)
(∂ζζζ3/∂x)
(∂ζζζ4/∂x)
(∂ζζζ1/∂y)
(∂ζζζ2/∂y)
(∂ζζζ3/∂y)
(∂ζζζ4/∂y)


=



dx 0 0 0 dy 0 0 0
0 dx 0 0 0 dy 0 0
0 0 dx 0 0 0 dy 0
0 0 0 dx 0 0 0 dy

A B





(∂ζζζ1/∂x)
(∂ζζζ2/∂x)
(∂ζζζ3/∂x)
(∂ζζζ4/∂x)
(∂ζζζ1/∂y)
(∂ζζζ2/∂y)
(∂ζζζ3/∂y)
(∂ζζζ4/∂y)


=



dζζζ1
dζζζ2
dζζζ3
dζζζ4
0
0
0
0


,

where (A, B) stands either for (−AT ,−BT) or for (A, B). The corresponding generic no-
tation for ψ or W is ζζζ. The columns of A and B are denoted as {A1, A2, A3, A4} and
{B1, B2, B3, B4}, respectively. We stress that the bold characters are, therefore, associated
with the generic problem and not with a higher tensor order.
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2.3. Coefficients of ACE and DCE as 4× 4 Determinants

It has already been observed that the direct and adjoint problems share the same
determinant, computed using linear combinations of columns, as

|K| = | − dxB + dyA| = (−v dx + u dy)2(−v dx + u dy + c dl)(−v dx + u dy− c dl),

with

c =
√

γp
ρ

, dl =
√

dx2 + dy2,

using the known eigenvalues of the Euler flux Jacobian in an arbitrary direction [30]. If
|K| 6= 0, the Cauchy problem is well posed, and the solution is expressed using the minors
of K. These minors are denoted as Ki

jx and Ki
jy with indices referring to the considered

variable and the direction of differentiation. For example, (∂ζζζ1/∂x) is

(
∂ζζζ1

∂x
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dζζζ1 0 0 0 dy 0 0 0
dζζζ2 dx 0 0 0 dy 0 0
dζζζ3 0 dx 0 0 0 dy 0
dζζζ4 0 0 dx 0 0 0 dy
| | | | | | | |
0 A2 A3 A4 B1 B2 B3 B4
| | | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|K| (6)

(
∂ζζζ1

∂x
) =

K1
1xdζζζ1 −K2

1xdζζζ2 + K3
1xdζζζ3 −K4

1xdζζζ4

|K| (7)

Conversely, the generic Cauchy problem is ill posed if and only if |K| = 0, that is, along the
S, C+, and C− curves:

−v dx + u dy = 0 S streamtraces (all Mach numbers) (8)

−v dx + u dy + c dl = 0 C− characteristics (supersonic flow only) (9)

−v dx + u dy− c dl = 0 C+ characteristics (supersonic flow only) (10)

In such cases, the boundedness of (∂ζζζ j/∂x) (∂ζζζ j/∂y) along the characteristic curves and
their expression outside these curves yields the CE. Typically, Equation (7), that is valid
outside the characteristic curves, yields the following CE:

K1
1xdζζζ1 −K2

1xdζζζ2 + K3
1xdζζζ3 −K4

1xdζζζ4 = 0

along the characteristic curves. Of course, seven other CEs are derived from the bounded-
ness of (∂ζζζ2/∂x)... (∂ζζζ4/∂y) and we need to determine a minimal set of independent CEs
for each type of characteristic curve.

To that end, the Ki
jx and Ki

jy minors are expressed as determinants of 4× 4 matrices.
From Equations (6) and (7),

K1
1x =

∣∣∣∣∣∣∣∣∣∣∣∣

dx 0 0 0 dy 0 0
0 dx 0 0 0 dy 0
0 0 dx 0 0 0 dy
| | | | | | |

A2 A3 A4 B1 B2 B3 B4
| | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣
is the basic formula for K1

1x. In all 32 corresponding expressions, the dy terms of the first
three lines are eliminated by linear combinations of columns and the determinants are
then expanded along these lines. We assume that dx 6= 0 using t = dy/dx and will further
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consider this hypothesis in the following. For the sake of brevity, we shall not discuss the
simple specific case where dx = 0.

The minors arising in the CE derived from the existence of (∂ζζζ1/∂x) then read

K1
1x = dx3 |B1 (B2 − tA2) (B3 − tA3) (B4 − tA4) |

K2
1x = −dx2dy |A2 B2 (B3 − tA3) (B4 − tA4) |

K3
1x = −dx2dy |A3 (B2 − tA2) B3 (B4 − tA4) |

K4
1x = −dx2dy |A4 (B2 − tA2) (B3 − tA3) B4 |

and the corresponding expressions for (∂ζζζ1/∂y) are

K1
1y = −dx3 |A1 (B2 − tA2) (B3 − tA3) (B4 − tA4)|

K2
1y = dx3 |A2 B2 (B3 − tA3) (B4 − tA4)|

K3
1y = dx3 |A3 (B2 − tA2) B3 (B4 − tA4)|

K4
1y = dx3 |A4 (B2 − tA2) (B3 − tA3) B4 |

It is clear that
K2

1x = −tK2
1y K3

1x = −tK3
1y K4

1x = −tK4
1y. (11)

In addition, expanding |K| along the first line of the matrix results in

|K| = dxK1
1x + dyK1

1y,

so that along a characteristic curve K1
1x = −tK1

1y. Corresponding equations are found

for the other variables ζζζ j j ≥ 2: Ki
jx = −tKi

jy if i 6= j whatever the value of |K| and

Kj
jx = −tKj

jy if |K| = 0. If the minors are not all null, this proves that the four CEs derived
from the boundedness of (∂ζζζk/∂x) and their counterparts derived from the boundedness
of (∂ζζζk/∂y) are proportional, so that only one set has to be studied. At this point, the case
of the S curves and the one of the C+ and C− curves shall be discussed separately.

2.4. Number of independent CEs along the C+ and C−

The abstract linear algebra point of view allows us to calculate the number of indepen-
dent CEs in the specific case of the C+ and C− curves. For dx 6= 0, K is easily found to be
equivalent to

dxI 0

A B− tA


and then to



dxI 0

0 B− tA


. (12)

When the value t is the one corresponding to a C+ or a C−, for both the adjoint and the
direct problem, the rank of B − tA is known to be three from the eigenanalysis of the
Euler equations’ flux Jacobians. Using classical theorems for the ranks of block diagonal
matrices and the ranks of equivalent matrices, the rank of K is easily proved to be seven,
one less than its size. In this case, the adjugate matrix is known to have rank one. This
means that all CEs (whose coefficients appear in the rows of the adjugate matrix) are
proportional and reduced to only one independent equation. This result is very valuable as



Aerospace 2023, 10, 797 6 of 21

the corresponding explicit calculations from the algebraic expressions of the minors are
very tedious. It has been used in Section 3.4.

2.5. Nullity of All Minors along the S Curves

The 4× 4 determinant involved in the expression of K1
1x is

|B1 (B2 − tA2) (B3 − tA3) (B4 − tA4)|. (13)

Along a streamtrace t = dy/dx = v/u and (B− tA) is a matrix of rank two. As all its
minors of rank three are null, the determinant (13), calculated by expansion along the
first column, appears to be zero. To obtain the same property for K2

1x, K3
1x, and K4

1x a
straightforward rewriting is needed. For example, the determinant in K2

1x reads

|A2 B2 (B3 − tA3) (B4 − tA4)| or possibly |A2 (B2 − tA2) (B3 − tA3) (B4 − tA4)|.

Under this latter form, it is clearly null when the rank of (B− tA) is two. Using the exact
same arguments, it is possible to prove that all Ki

jx and Ki
ix are null when t = v/u.

In addition, we may change our point of view and consider (13) as a function of t
for fixed W. This function is obviously a polynomial of maximum degree three and v/u
is one of its roots. We, therefore, expect (t− v/u) to be a factor of all Ki

jx, Ki
jy algebraic

expressions. The explicit expressions of the coefficients for the ACEs (see [30]) and DCEs
(see Appendix A) confirm this property.

Along the S curves, K is found to have rank six thanks to the technique used in the
previous subsection. As already stated, all Ki

jx and Ki
jy are zero and the adjugate matrix of

K is the null matrix. The derivation of the explicit CE along the trajectories then involves the
multiplicity two of (−vdx + udy) and simplified K̄i

jx, K̄i
jy coefficients derived by removing

(−vdx + udy) in the expressions of the corresponding Ki
jx, Ki

jy. The proportionality of the
explicit CEs derived from the boundedness of (∂ζζζk/∂x) and (∂ζζζk/∂y) is verified but is
more easily presented based on the actual formulas of the CEs—see Section 3 for the DCEs
and in Section 2 of [30] for the ACEs.

3. Derivation of Characteristic Equations for 2D Inviscid Compressible Flows Using
Conservative Variables
3.1. Flow Properties, Sets of Variables, Resulting Equations for the Usual Derivation of the
Characteristic Equations

The classical derivations of the DCEs use a set of Taylor expansions and mechanical
equations for the variations of a set of primitive variables. These resulting equations are
linear in the unknown derivatives of the primitive variables with nonlinear functions of
the state variables as coefficients. The variations are generally expressed in an orthonormal
frame of reference (

−→
ξ ,−→η ). This frame is defined by its angle with respect to the one

induced by the local flow motion that we denote as (
−→
t ,−→n ), with φ the angle of

−→
t with

respect to the x-axis. This approach leads to simpler expressions for the mechanical
equations. Some orientations of the vector ~ξ make the set of equations ill posed:

−→
ξ =

−→
t

for all flow regimes and angle(
−→
ξ ,
−→
t ) = ε arcsin(1/M) ε = ±1, if the flow is locally

supersonic. The curves where at each point the tangent vector has one of these specific
orientations with respect to the velocity are, respectively, the aforementioned streamtraces
S , C+ (for ε = 1) and C− (for ε = −1). Along these curves, equations with only

−→
ξ

derivatives are satisfied. These ODEs are the classical DCEs.
For a 2D flow of an ideal gas (Section 2.1), without any assumptions of constant

stagnation enthalpy, or constant entropy or null vorticity, (a) the stagnation enthalpy and
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entropy are found to be constant along streamtraces; and (b) one DCE is found along the
C+C−[3]. This DCE, expressed in terms of variations in φ, ||U||, S, and H, reads

εdφ−
√

M2 − 1
d||U||
||U||

−
√

M2 − 1
TdS− dH
||U||2

= 0, (14)

where the Crocco equation can be used to rewrite the last term. If H is constant over the
whole fluid domain, the DCE also reads

εdφ−
√

M2 − 1

1 + γ−1
2 M2

dM
M
−
√

M2 − 1
γrM2 dS = 0. (15)

If S is also constant, the flow is irrotational according to Crocco’s theorem and the DCE reads

εdφ−
√

M2 − 1

1 + γ−1
2 M2

dM
M

= 0. (16)

This equation can be integrated using the Prandtl–Meyer function,

ν(M) =

√
γ + 1
γ− 1

tan−1

(√
γ− 1
γ + 1

(M2 − 1)

)
− tan−1(

√
M2 − 1),

and the final algebraic equations resulting from the integration of (16) are

k− = φ + ν(M) is constant along a C− k+ = φ− ν(M) is constant along a C+. (17)

Other sets of primitive variables may be used to derive (14) and the resulting simplified
equations [4,31]. Also possible is the demonstration of these equations in a mapping of the
plane rather than in the aforementioned frame of reference [31].

In case the flow is assumed to be irrotational from the beginning, a very fast demon-
stration is possible involving the velocity potential—see [32] or [2,34,35]. The governing
nonlinear equation for a two-dimensional potential flow is:

(1− u2

c2 )
∂u
∂x
− 2uv

c2
∂u
∂y

+ (1− v2

c2 )
∂v
∂y

= 0 (18)

and of course
du =

∂u
∂x

dx +
∂u
∂y

dy dv =
∂v
∂x

dx +
∂v
∂y

dy.

This results in a simple 3× 3 linear system for (∂u/∂x), (∂v/∂y), and (∂u/∂y) (that is equal
to (∂v/∂x) for the potential flow) from which (16) and (17) are easily derived.

3.2. Derivation of the Characteristic Equations in Conservative Variables

The Cauchy problem aims at computing the derivatives (∂W/∂x) and (∂W/∂y) from
the values of W at two neighboring points a and b. The relevant linear system has been
posed in Section 2.2 in Equation (4). Its determinant is easily calculated as

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxI dyI

A B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dxI 0

A B− (dy/dx)A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= dx4|B− (dy/dx)A| (19)
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Of course, D = |dxB − dyA| = | − dxB + dyA| and the problem is ill posed along the
S, C+, and C− curves, as recalled in Section 2.3. The fact that the Cauchy problem is ill
posed along these specific curves, whereas (∂W/∂x) and (∂W/∂y) are actually defined
and bounded, implies that not only the denominator in the Cramer formula applied to (4)
is equal to zero, but also the eight numerators corresponding to the unknowns (∂ρ/∂x),
(∂ρu/∂x), (∂ρv/∂x), (∂ρE/∂x) (∂ρ/∂y), (∂ρu/∂y), (∂ρv/∂y), and (∂ρE/∂y) must be equal
to zero. This is precisely the principle of the method of characteristics that allows ODEs to
be derived along the characteristic curves.

The principle of the calculation of the ODE satisfied along the S, C+, and C− curves is
recalled for variable (∂ρ/∂x), the boundedness of which requires that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dρ 0 0 0 dy 0 0 0
dρu dx 0 0 0 dy 0 0
dρv 0 dx 0 0 0 dy 0
dρE 0 0 dx 0 0 0 dy
| | | | | | | |
0 A2 A3 A4 B1 B2 B3 B4
| | | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (20)

The determinant is expanded along the first column with the notation of the next equation:

K1
1xdρ− K2

1xdρu + K3
1xdρv− K4

1xdρE = 0. (21)

In this equation, for example

K4
1x =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 dy 0 0 0
dx 0 0 0 dy 0 0
0 dx 0 0 0 dy 0
| | | | | | |

A2 A3 A4 B1 B2 B3 B4
| | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 dy 0 0 0
dx 0 0 0 0 0 0
0 dx 0 0 0 0 0
| | | | | | |

A2 A3 A4 B1 B2 − tA2 B3 − tA3 B4
| | | | | | |

∣∣∣∣∣∣∣∣∣∣∣∣
(22)

Finally,

K4
1x = dx2dy | A4 (B2 − tA2) (B3 − tA3) (B4) | = dx2dy κ γ1 (u + tv) (23)

At this step, there is no assumption on the value of t with respect to the velocity vector
(u, v). The other terms of the differential form are equal to

K1
1x = −dx3 κ (κ2 v− γ1 v (1 + t2) H + γ1 (tu + v) Ec + 2 γ1 t2 v Ec) (24)

K2
1x = −dx2 dy κ (γ u(u + tv)− 2Ec) (25)

K3
1x = dx2 dy κ (γ v (u + t v)− 2 t Ec) (26)

The characteristic Equation (21) can, thus, be rewritten as

− dx3 κ (κ2 v− γ1 v (1 + t2)H + γ1 (tu + v) Ec + 2 γ1 t2 v Ec) dρ

+ dx2 dy κ (γ u(u + tv)− 2Ec) dρu + dx2 dy κ (γ v (u + t v)− 2 t Ec) dρv

− dx2dy κ γ1 (u + tv) dρE = 0 (27)

If dx 6= 0 and κ 6= 0, this equation may be further simplified:

− (κ2 v− γ1 v (1 + t2)H + γ1 (tu + v)Ec + 2 γ1 t2 v Ec) dρ

+ t (γ u(u + tv)− 2Ec) dρu + t (γ v (u + t v)− 2 t Ec) dρv

− t γ1 (u + tv) dρE = 0 (28)
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Of course, along the S curves, κ is null and Equation (28) seems to be only valid for
the C+ and C− curves. Actually, as (−vdx + udy = κdx) has a multiplicity of two in
the determinant D, (28) is also needed for the existence of (∂ρ/∂x) along the S curves
(see Section 3.3).

For the other seven partial derivatives, the expressions of the coefficients of the CEs
are presented in Appendix A. In addition, it has been proved in Section 2 that, Wl being
one of the four conservative variables, the equations for the boundedness of (∂Wl/∂x) and
(∂Wl/∂y) along the characteristics are proportional by a factor of −t . Therefore, only the
counterparts of Equation (28) for the existence of (∂ρu/∂x), (∂ρv/∂x), and (∂ρE/∂x) are
presented hereafter:

− γ1 t Ec(−γ1 H + (γ + 1) Ec) dρ

+ (γ1(γtu + κ)Ec + v2 κ + γ1 (v− γ1 t u)H) dρu

− t (u2κ + γ1(κ − γv)Ec + γ1(γ1v− ut)H) dρv

+ t γ1(γ1H − (γ + 1)Ec) dρE = 0 (29)

+ γ1 Ec t2(γ1 H − (γ + 1) Ec) dρ

− t(−v2κ − γ1κEc − γγ1tuEc + γ1(γ1tu− v)H) dρu

+ (−v3 + 3tuv2 − 2t2u2v + γ1((2− γ)t2v− κ)H + γ1(γt2v + κ)Ec) dρv

− t2γ1(−γ1 H + (γ + 1)Ec) dρE = 0 (30)

− γ1t(u + tv)Ec(γ1Ec + (2− γ)H) dρ

+ t(γ1u2 + vκ + γ1tuv)(γ1Ec + (2− γ)H) dρu

− t(uκ − γ1tv2 − γ1uv)(γ1Ec + (2− γ)H) dρv

+ (−vκ2 − γ1((1 + γt2)v + γ1tu)Ec + γ2
1t(u + tv)H − γ1κH) dρE = 0 (31)

3.3. Ordinary Differential Equations along the Streamtraces S

Along the trajectories, udy− vdx = 0 is a zero of the denominator of Cramer’s formulas
with a multiplicity of two. The term κdx = udy− vdx appears to be a factor of all Kl

mx and
the expressions obtained by removing this term from Kl

mx are denoted by K̄l
mx. Obviously

wherever the Cauchy problem is well defined

∂ρ

∂x
=

K̄1
1xdρ− K̄2

1xdρu + K̄3
1xdρv− K̄4

1xdρE
(−v dx + u dy)(−v dx + u dy + c dl)(−v dx + u dy− c dl)

. (32)

If the point a is fixed and the neighboring point b is moved closer and closer to Sa, (−v dx +
u dy) → 0 and the boundedness of (∂ρ/∂x) requires the numerator of (32) to be equal
to zero:

K̄1
1xdρ− K̄2

1xdρu + K̄3
1xdρv− K̄4

1xdρE = 0. (33)

The expressions for the K̄ coefficients are much simpler than those of the K coefficients
thanks to the nullity of κ. It can be verified by hand or by formal calculation that the
CEs expressing the boundedness of (∂Wl/∂x) and their counterparts for (∂Wl/∂y) are
proportional by a factor of −t. It is also possible to check that K̄l

lx = −tK̄l
ly and then

use the continuity of the K̄ coefficients as functions of (W, dx, dy, γ) and the validity of
K̄l

mx = −tK̄l
my l <> m outside the variety udy− vdx = 0. We denote (γ1Ec + (2− γ)H)

as G; the fully simplified differential forms then read

(2Ec − H) dρ− u dρu− v dρv + dρE = 0 (34)

((γ + 1)Ec − γ1H) (Ecdρ + dρE)− (γEc + (2− γ)H) (udρu + vdρv) = 0 (35)

−EcG dρ + uG dρu + vG dρv + (γ1H − γEc) dρE = 0, (36)
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where Equation (35) is obtained twice, from the existence of the derivatives of both mo-
mentum components. The rank of the matrix was first calculated with the Maple software
2020.0 (Supplementary Materials) and, as expected, is two. It can also be verified by hand
calculation that Ec× (34) minus (35) is exactly Equation (36) and then, finally, that the dρ
and dρE columns in {(34),(35)} are not linked.

Along the streamtraces, the derivative of the total enthalpy, H, and the entropy, S,
are expected to be null [27,32]. Before verifying that these properties are ensured by the
CE found just before, the differential of p/ργ times ργ and the differential of H times ρ
are calculated:

ργd(p/ργ) = (2Ec − H) dρ− u dρu− v dρv + dρE (37)

ρdH = (−γE + 2(γ− 1)Ec)dρ− γ1udρu− γ1vdρv + γdρE. (38)

Equation (34) is exactly the same as ργd(p/ργ) = 0. This yields d(p/ργ) = 0 and obviously
the derived CEs contain the property of constant entropy along the streamtraces. In
addition, G× (34) plus (36) yields, after simplification by a common factor,−Gdρ+ dρE = 0.
Finally, adding this equation to γ1 times Equation (34), precisely yields ρdH = 0, so that the
second expected property for Euler flows along the trajectories is contained in the derived
CEs. Of course, the conservation of the stagnation enthalpy and the entropy along the
trajectories of a steady-state inviscid flow is also verified in 3D [27,32].

3.4. Ordinary Differential Equations along the C+C−

The proportionality of all eight differential forms along the C+ and C− has been
proved in Section 2.4 and Equation (28) may be retained as the relevant DCE. The factor
of dρ is quite complex in (28) but it admits a simpler form derived from the degree two
equations satisfied by t+ and t−: these curve slopes are defined as

t± = tan(φ + β) with tan φ =
v
u

sin β = ± 1
M

, (39)

or alternatively by their explicit expressions [30]:

t± =
uv± c

√
u2 + v2 − c2

u2 − c2 . (40)

They are the two roots of the following degree two equation [30]

γ1 (1 + t2) H = γ1 (1 + t2) Ec + (tu− v)2, (41)

which allows the expression of (28) to be simplified along a C+ or a C−. The final DCE
reads

γ1(u + tv)Ecdρ− (γu(u + tv)− 2Ec)dρu− (γv(u + tv)− 2tEc)dρv + γ1(u + tv)dρE = 0 (42)

with t = t+ for a C+ and by t = t− for a C−.
It has been first checked that this C+ (resp. C−) differential form is linked with

{dk+, dH, dS} (resp. {dk−, dH, dS}) consistently with Equation (14). It is proved in Appendix B
that these CEs, expressed with different variables, are the same.

4. Assessment of the Direct and Adjoint Characteristic Equations for a Nozzle Flow
4.1. Supersonic Nozzle Configuration

The test case for the assessment of the DCEs and ACEs is a supersonic nozzle designed
for an aircraft flying at Mach 1.6. The geometry was defined in the framework of the
SENECA EU project [36]. The nozzle is a classical convergent–divergent duct. At the
subsonic injection plane, the stagnation conditions are fixed as well as the direction of
the velocity (aligned with the x-axis). The ratios of the far-field flow total pressure (resp.
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temperature) to the total pressure (resp. total temperature) at the inlet are piinl /pi∞ = 1.605
and Tiinl /Ti∞ = 1.606. As an inviscid flow is calculated, these two conditions and the
far-field Mach number fully define the flow. Figure 1 shows a structural diagram of the
case object and the fluid domain.

Figure 1. SENECA nozzle: fluid domain and boundary conditions diagram.

The original geometry was designed for a circular axisymmetric engine and the
nozzle contour in the symmetry plane was simply extracted to define the 2D geometry.
Consequently, the mass flow rates are different. Due the different laws of areas along
the x-coordinate (the inlet and main flow direction), the flows are also different along the
midline of the nozzle. Nevertheless, the Mach number distribution along this line is similar,
with M = 1 at the throat and M ' 1.9 at the exit.

The functional output of interest is the thrust Th,

Th =
∫

Γw
(p− p∞)dsx +

∫
Γinl

(ρu2 + p)dsx, (43)

where Γw is the internal wall of the nozzle, Γinl the injection section—see Figure 2—, and sx
the x-component of the surface vector (oriented towards the outside of the fluid domain).

Figure 2. SENECA nozzle. Green curve: C+ passing by the trailing edge of the nozzle. Dark gray
zone: zone of the flow influencing the thrust Th.

4.2. Flow Calculation, Flow Analysis

A structured eight-block mesh with 370,538 cells discretizes the fluid domain. The
flow simulations are run with the elsA code [37] using the Jameson–Schmidt–Turkel (JST)
scheme [38].

elsA is a finite-volume cell-centered code that generally requires specific state variable
calculations at the boundary faces. The exception is the symmetry line, where the centered
and artificial dissipation fluxes are calculated with current-face formulas involving ghost
cells across the symmetry line. At the subsonic inlet and at the non-reflecting boundaries,
no artificial dissipation flux is added. The physical inviscid flux is evaluated there for
state variables that are most often derived from the classical theory of characteristics—
see chapter 3 and chapter 11 in [27]. At the non-reflecting boundaries, its equations are
applied using switches based on the sign of the eigenvalues of the normal Jacobian. At
the subsonic inlet boundary, one characteristic equation corresponds to convection from
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the fluid domain towards the boundary and two numerical approaches are possible with
elsA: (a) the first one, based on characteristics, calculates the static pressure pb and the
velocity ub at the inlet boundary by equalizing (p− ρ̄c̄u) between the boundary and the
fluid domain. In addition, pb and ub are linked by a second equation derived from the fixed

stagnation state—pb = pi(1− u2
b/(2cpTi))

γ
γ−1 — which results in a nonlinear equation in ub

that is solved using a Newton method; (b) the second one extrapolates the normal velocity
from the fluid domain to the inlet boundary and forces a value in the interval of subsonic
velocities compatible with the fixed total enthalpy. All other variables at the inlet boundary
are then derived from the stagnation state. The latter approach is more robust for nozzle
flows and is the one selected for the current calculation.

The accuracy of the discrete flow is estimated through an L1 relative error calculation
for the total enthalpy, for which exact theoretical constant values are known for both the jet
plume and the external flow. This error is found to be 2.3 × 10−3 for the jet and 2.5 × 10−3

for the external flow.
For detailed flow analysis, Figure 3 shows the Mach number versus static pressure

isolines in the computational and mirrored domain, with C+ and C− emanating from the
nozzle trailing edges and also the highest Mach number isolines in a specific color (the full
length of the domain in x appears in Figures 4 and 5; the full length of the domain in y is
mentioned in Figure 1).

A slip line emanating from the trailing edge of the nozzle (which corresponds to an
S) allows the jet plume shape to be clearly defined—see Figure 4. For this inviscid flow,
there is no significant shear layer growth as the fluid goes downstream of the nozzle and
the numerical shear layer becomes thinner and thinner as the mesh is refined. It is then
possible to post-process any flow data inside or outside the jet plume, such as the mass
flow rate, the entropy losses, the thrust accounting, or any data relying on the integration
of values inside the jet.

Outside the nozzle, a shock attached to the nozzle trailing edge follows a C+ on the
top side (and a C− on the opposite side). That shock compresses the flow and increases
the static pressure to approximately 14,000 Pa in the vicinity of the nozzle’s trailing edge.
Then, the flow extends again, and a second outside shock, much weaker, is located at
x ' 2.7 m. This is due to the interaction between the two expansion fans inside the nozzle
that intersect at x ' 2.0 m, generating a shock in the inner flow (clearly visible in the static
pressure figure). That shock crosses the jet plume. Finally, the flow accelerates again in the
expansion fan up to the far-field static pressure, around 9700 Pa.

Inside the nozzle, when exiting at x ' 1.2 m, the jet is supersonic and over-pressurized,
so it extends into a lower pressure with a diverging shape. Being divergent and supersonic,
the jet Mach number increases, up to the point at x ' 2.7 m where the aforementioned
shock compresses the jet. Then, the expansion fan from the nozzle trailing edge expands the
flow once again, up to a pressure close to the far-field static pressure. The Mach number of
the jet is then nearly constant, close to M = 1.9. Some isolines with a dense scale are plotted
in white in Figure 3 in order to further highlight the weak interactions for x > 2.7 m. Four
diamonds are limited by C+ and C−. In these zones, the flow is slightly perturbed (also
visible in the static pressure figure). Therefore, the theory of the characteristic equations is
suitable to analyze this Euler supersonic flow.

Figure 3. SENECA nozzle. Isolines of Mach number (with Mach numbers in [1.9, 2.0] in white) vs.
isolines of static pressure. Including selected C+ in green and C− in purple for detailed flow analysis.
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4.3. Thrust-Adjoint Calculation: Extraction of C− and C+ Curves

The adjoint calculation for the thrust is run with the discrete adjoint module of the elsA
code [39], which is used for both research [12,40] and application purposes. In [40], it was
proved that the discrete adjoint of the JST scheme on a structured mesh is dual consistent for
Euler flows, but in the cells next to those adjacent to a boundary. This adjoint consistency
property inside the fluid domain is very valuable to numerically assess continuous adjoint
properties. The change in the Jacobian to obtain the dual consistency in the vicinity of the
physical boundaries is complex to implement in an industrial code. In this study, it is not
used and slight oscillations in the adjoint field are observed near the boundaries. For the
sake of simplicity, considering the mesh density, the points inside the first two cells in the
vicinity of a boundary are removed from the extracted characteristic curves. These curves
were extracted from a shared point and the field of tangent vectors defined by (1, t)—more
precisely, (1, v/u) for the S, (1, t+) for the C+, and (1, t−) for the C−. The common point is
located in (615,130), in the middle of the x-range of the divergent duct and half of the height
of the upper half of the channel at the abscissa—see Figure 4. Sufficiently large numbers
of points have been extracted along the characteristic curves to obtain a converged error
analysis, presented in Sections 4.4 and 4.5.

The first component of the adjoint field is presented in Figure 5. The exact adjoint
of the thrust is expected to be zero downstream of the backward C+ characteristic (and
corresponding to C− in the symmetric non-plotted domain) emanating from the rear of the
nozzle, as no perturbation downstream of these lines can affect the flow on the support of T
(we recall that the velocity is supersonic in the divergent part of the nozzle). This property
is well satisfied by the discrete adjoint.

Figure 4. SENECA nozzle. Isolines of Mach number. Selected S (in black), C+ (in green), and C− (in
purple) for the validation of the DCEs and ACEs. The thicker S (in dark gray) delimits the internal
and the external flow.

Figure 5. SENECA nozzle. Isolines of the discrete adjoint of the thrust, component ψ1 (dual of the
mass-flow residual).

4.4. Relation between the Adjoint Components of Density Equation and Total Energy Equation

One of the few known properties of the Euler exact adjoint fields—denoted here as
λ—is that along a trajectory

dλ1

ds
− H

dλ4

ds
= 0. (44)

This equation can very simply be derived from the two streamtraces of the ACEs,

dλ1

ds
+ u

dλ2

ds
+ v

dλ3

ds
+ Ec

dλ4

ds
= 0 Ec

dλ1

ds
+ H(u

dλ2

ds
+ v

dλ3

ds
) + H2 dλ4

ds
= 0 (45)

or can be directly proved by more complex calculations from the Euler adjoint continuous
equations [30]. As the stagnation enthalpy H is constant along a trajectory, Equation (44)
yields λ1 = Hλ4 + λ∗ with, a priori, a constant λ∗ depending on the streamtrace. However,
Giles and Pierce proved, using a physical term source approach, that the simpler formula

λ1 = Hλ4 (46)
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holds in the common case where the function of interest depends only on the static
pressure [41]. For our nozzle application, all trajectories, when traveled in the adjoint
information propagation direction (that is, backwards) start in a zone where the adjoint
vector is zero, so that (46) is true over the whole fluid domain, although the nozzle thrust
does not exclusively depend on the static pressure. We expect the corresponding equation
at the discrete level, ψ1 = Hψ4, to be well satisfied; this is indeed the case—see Figure 6.

A series of recent publications have studied the properties the Euler lift- and drag-
adjoint fields, in particular in the vicinity of walls [40,42–45]. How accurately Equation (46) is
satisfied at a discrete level is discussed in [40] and, more generally, the empirical point of
view on code verification as put forward in [33] §3.2.1 seems very relevant to us, and we
see Equations (45) and (46) as both theoretical results and useful tools for code verification.

Figure 6. SENECA nozzle. Isolines of ψ1 (left) and H×ψ4 (right) with same levels.

4.5. Assessment of the DCEs

The numerical assessment method consists in integrating the DCEs along the charac-
teristic curves for the aforementioned fine-mesh flow. More precisely, for the C+ and C−,
the following integrals are calculated using (42)

ΞC+ =
∫
C+

(
γ1(u + t+v)Ec

dρ

ds
− (γu(u + t+v)− 2Ec)

dρu
ds
− (γv(u + t+v)− 2t+Ec)

dρv
ds

+ γ1(u + t+v)
dρE
ds

)
ds

ΞC− =
∫
C−

(
γ1(u + t−v)Ec

dρ

ds
− (γu(u + t−v)− 2Ec)

dρu
ds
− (γv(u + t−v)− 2t−Ec)

dρv
ds

+ γ1(u + t−v)
dρE
ds

)
ds,

with s the curvilinear abscissa along the characteristic curve. The subparts of ΞC+ and
ΞC− are also calculated to avoid any error in scale when discussing close to zero numerical
values. For ΞC+, for example,

ΞC+
1 =

∫
C+

(
γ1Ec(u + vt+)

dρ

ds

)
ds ΞC+

2 = −
∫
C+

(
(γu(u + vt+)− 2Ec)

dρu
ds

)
ds

ΞC+
3 = −

∫
C+

(
(γv(u + vt+)− 2Ect+)

dρv
ds

)
ds ΞC+

4 =
∫
C+

(
γ1(u + vt+)

dρE
ds

)
ds.

Of course, the ΞC+ = ΞC+
1 + ΞC+

2 + ΞC+
3 + ΞC+

4 (resp. ΞC− = ΞC−1 + ΞC−2 + ΞC−3 +
ΞC−4 ) sum is expected to be much smaller than its subparts. The integration is performed in
the information propagation direction (increasing x) along the selected C+ and the selected
C− presented in Figure 4. Almost null values of ΞC+ and ΞC− are indeed observed—see
Figure 7.

Figure 7. Numerical assessment of DCE (42). ΞC+ (left), ΞC− (right) and their subparts integrated
along the selected C+C−. Method of verification: the black curve should ideally coincide with the
x-axis.
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An error per series of curves has been calculated by computing the max of |ΞC+|
(resp. |ΞC−|) divided by the max of the absolute value of all four corresponding subparts
|ΞC+

l |l∈{1,2,3,4} (resp. |ΞC−l |l∈{1,2,3,4} ). The errors are 9.0× 10−8 for ΞC+ and 4.2× 10−8 for
ΞC−. Equivalent successful verifications have been performed to assess the validity of (34)
and (35). They are not presented here for the sake of brevity. These two streamtrace DCEs
are equivalent to dS = 0 and dH = 0, as discussed in Section 3.3. As a complementary
verification, the relative variation in H (over the whole streamtrace) and S (up to the first
shockwave) are calculated. Relative errors of 2.3 × 10−6 and 1.4 × 10−6 are found.

4.6. Assessment of the ACEs for the Thrust Adjoint
For the thrust adjoint, the assessment method is the same except that the ACEs are

integrated in the forward sense for the adjoint, that is, from the support of the functional
output backwards with respect to the direction of the flow information propagation. The
integrals to evaluate (as well as their subparts) from the discrete flow and thrust-adjoint
fields are [30]:

ΞadjS1 =
∫
S

(
Ec

dψ1

ds
+ H(u

dψ2

ds
+ v

dψ3

ds
) + H2 dψ4

ds

)
ds (47)

ΞadjS2 =
∫
S

(
dψ1

ds
+ u

dψ2

ds
+ v

dψ3

ds
+ Ec

dψ4

ds

)
ds (48)

ΞadjC+ =
∫
C+

(
(u + vt+)

dψ1

ds
+ (u2 + v2)(

dψ2

ds
+ t+

dψ3

ds
) + H(u + vt+)

dψ4

ds

)
ds (49)

ΞadjC− =
∫
C−

(
(u + vt−)

dψ1

ds
+ (u2 + v2)(

dψ2

ds
+ t−

dψ3

ds
) + H(u + vt−)

dψ4

ds

)
ds. (50)

As in Section 4.3, the CEs are numerically assessed by checking that ΞadjS1, ΞadjS2,
ΞadjC+ and ΞadjC− are much smaller than their subterms all along the characteristic curves.
This property is actually well satisfied, as can be seen in Figure 8. The error per series of
curves, as defined in the previous subsection, has been calculated: 1.8 × 10−6 for ΞadjS1,
2.6 × 10−6 for ΞadjS2, 2.0 × 10−6 for ΞadjC+, and 9.5 × 10−9 for ΞadjC− .

Figure 8. Numerical assessment of the ACEs [30]. ΞadjS1 (upper left), ΞadjS2 (upper right), ΞadjC+

(bottom left), ΞadjC− (bottom right) and their subparts integrated along the selected S, C+, and C−.
Method of verification: the black curve should ideally coincide with the x-axis.
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As mentioned in [30], a lower accuracy would be observed for more upwind C+ and
C−. Our understanding of this stiffness is the sensitivity of the c

√
u2 + v2 − c2 = c2

√
M2 − 1

term in the slope of Equation (40) close to the boundary of the supersonic zone, M = 1+.

5. Conclusions

The well-known equations satisfied in 2D inviscid flows along trajectories and in
supersonic zones along C+ and C−, are very helpful for the understanding of Mach waves,
shockwaves, rarefaction waves, and nozzle flows. In this paper it has been shown that these
equations can be derived using the conservative variables in a Cartesian frame of reference.
This is in contrast to the canonical demonstrations in which the primitive variables are used
in a frame of reference relative to the axis of motion.

In this work the study of the characteristic equations of the adjoint Euler equations has
been continued, in particular using linear algebra arguments that simplify the discussion
of the number of independent equations satisfied along the C+ and C−, also deriving
consequences of the characteristic equations relative to the adjoint components of the
density and total energy equations. Of course, most of the efforts in CFD are devoted today
to RANS, LES, and DNS flows. However, exact equations for Euler adjoint fields satisfied
along trajectories along C+ and C− in supersonic zones or throughout the fluid domain
are very valuable for code verification. In the case of a continuous adjoint scheme or dual
consistent discrete adjoint, they may directly serve for code verification and even validation
of an adjoint code module. In the case of a general discrete adjoint code, the assessment of
numerical solutions with respect to exact continuous equations is also linked to the difficult
question of adjoint consistency, about which little has been proved today.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
aerospace10090797/s1, three Python files checking the formulas of Kl

mx , Kl
my, K̄l

mx, K̄l
my. Two Maple

files checking the rank of the differential forms along the S and C+ curves.
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Appendix A

• The Kl
2x coefficients are expressed below

K1
2x = −dx3 κ γ1 t Ec (γ1 H − (γ + 1)Ec)

K2
2x = dx3κ(γ2

1tuEc + γ1Ecκ + v2κ + γ1Hv− γ2
1 Htu + γ1tuEc)

K3
2x = −dx3 κ t (−u2 κ + γ1 ((γ + 1) v− t u) Ec + γ1 H (t u− γ1 v))

K4
2x = −dx3 κ γ1 t (−γ1 H + (γ + 1)Ec)

https://www.mdpi.com/article/10.3390/aerospace10090797/s1
https://www.mdpi.com/article/10.3390/aerospace10090797/s1
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• The Kl
3x coefficients are expressed below

K1
3x = −dx3 κ γ1 t2 Ec (−γ1 H + (γ + 1)Ec)

K2
3x = −dx3 κ t (γ1 ((γ + 1) t u− v) Ec + v2 κ + γ1 H (v− γ1 t u))

K3
3x = dx3 κ (−v3 + 3 t u v2 − γ1 H κ − 2 t2 u2 v + γ2

1 t2 v Ec + γ1 H t2 v

− γ2
1 H t2 v + γ1 t2 v Ec + γ1 Ec κ)

K4
3x = −dx3 κ γ1 t2 (γ1 H − (γ + 1) Ec)

• The Kl
4x coefficients are expressed below

K1
4x = dx3 κ γ1 t Ec (u + t v) (γ1 Ec + (2− γ) H)

K2
4x = dx3 κ t (2 γ1 Ec + γ κ v) (γ1 Ec + (2− γ)H)

K3
4x = −dx3 κ t (−u κ + γ1 t v2 + γ1 u v) (γ1 Ec + (2− γ)H)

K4
4x = dx3 κ(−γ1Hκ − γ1vEc − vκ2 − γ2

1tuEc − γ1t2vEc

− γ2
1t2vEc + γ2

1 Htu + γ2
1 Ht2v)

• The Kl
1y coefficients are expressed below

K1
1y = dx3 κ (u κ2 + 2γ1 u Ec + γ1 t v Ec + γ1 t2 u Ec − γ1 H (1 + t2) u)

K2
1y = dx3 κ (γ u(u + tv)− 2 Ec)

K3
1y = −dx3 κ (γv(u + tv)− 2tEc)

K4
1y = −dx3 κ γ1 (t v + u)

• The Kl
2y coefficients are expressed below

K1
2y = dx3 κ γ1 Ec (γ1 H − (γ + 1) Ec)

K2
2y = dx3 κ(γ1 Ec (tκ − γ u) + t2 u3 + 2uv2 − 3 t u2 v + γ1 H ((γ− 2)u− tκ))

K3
2y = dx3 κ (−u2 κ + γ1 ((γ + 1) v− t u) Ec + γ1 H (t u− γ1 v))

K4
2y = dx3 κ γ1 (−γ1 H + (γ + 1) Ec)

• The Kl
3y coefficients are expressed below

K1
3y = dx3κ γ1 Ec t (−γ1 H + (γ + 1) Ec)

K2
3y = dx3 κ (γ1 ((γ + 1) t u− v) Ec + v2 κ + γ1 H (v− γ1 t u))

K3
3y = dx3 κ t (γ1 H (γ1 v− t u)− 2 γ1 v Ec − γ2

1 v Ec + u2 κ + γ1 t u Ec)

K4
3y = dx3κ γ1 t (γ1 H − (γ + 1) Ec)

• The Kl
4y coefficients are expressed below

K1
4y = −dx3 κ γ1 Ec (u + t v) (γ1 Ec + (2− γ) H)

K2
4y = −dx3 κ (2 γ1 Ec + γ κ v) (γ1 Ec + (2− γ) H)

K3
4y = dx3 κ (−u κ + γ1 t v2 + γ1 u v) (γ1 Ec + (2− γ) H)

K4
4y = dx3 κ (u κ2 + γ γ1 u Ec + γ1 t2 u Ec + γ2

1 t v Ec − γ2
1 H u− γ2

1 H t v

− γ1 H t2 u + γ1 H t v)
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Appendix B

Let us prove the equivalence between (14) and (42) in the case of a C+. Equation (14)
reading

dφ−
√

M2 − 1
d||U||
||U||

−
√

M2 − 1
TdS− dH
||U||2

= 0,

with

φ = arctan(
ρv
ρu

) and T =
p
ρr

so that TdS =
p

ργ1
d(ln(

p
ργ

)) =
p

ργ1
(

dp
p
− γ

dρ

ρ
).

A series of simplifications leads to the shorter expression

u dρv− v dρu +
√

M2 − 1 dp = 0.

Expressing p in primitive variables yields

γ1Ec
√

M2 − 1 dρ− (v + γ1u
√

M2 − 1) dρu + (u− γ1v
√

M2 − 1) dρv + γ1

√
M2 − 1 dρE = 0. (A1)

In addition, Equation (42) reads

γ1Ec(u + t+v) dρ− (γu(u + t+v)− 2Ec) dρu− (γv(u + t+v)− 2Ect+) dρv + γ1(u + t+v) dρE = 0 (A2)

It appears that the coefficients of Equations (A1) and (A2) are proportional:

γ1Ec(u + t+v)
γ1Ec
√

M2 − 1
=
−(γu(u + t+v)− 2Ec)

−(v + γ1u
√

M2 − 1)
=
−(γv(u + t+v)− 2Ect+)

(u− γ1v
√

M2 − 1)
=

γ1(u + t+v)
γ1
√

M2 − 1
= (u + t+v) tan β. (A3)

Appendix C. Assessment of the Thrust Adjoint via a Shape Optimization

The discrete adjoint of the thrust is assessed via a shape optimization. In order to
improve the thrust of the nozzle, six shape parameters are defined as factors of the following
functions that drive changes in the y-coordinates:

Dl
y(x, y) =

4(x− xl−1)
2(xl+1 − x)2(yH − (ywall(x)− y))2

+

(xl+1 − xl−1)4 y2
H

for x ∈ [xl−1, xl+1]

Dl
y(x, y) = 0 if x /∈ [xl−1, xl+1],

l ∈ {1, 6}. The seven points defining the x-range of the six bumps are linearly distributed
between the abscissa of the inlet (x0) and the abscissa of the rear of the nozzle (x7). yH is
equal to half of the height between the inside wall at the throat and the symmetry line.These
Dl

y functions allow the y-coordinates of the deformed meshes to be calculated from the
design parameters α and the coordinates x0 y0 in the original mesh. The formula

y(α1...α6) = y0 + α1D1
y(x0, y0) + α2D2

y(x0, y0) + α3D3
y(x0, y0) + α2D4

y(x0, y0) (A4)

+ α5D5
y(x0, y0) + α6D6

y(x0, y0), (A5)

is applied point-wise and the x-coordinates in the deformed mesh are the same as in the
original mesh.

In order to optimize the thrust, a steepest descent has been performed with a maximum
allowed wall displacement of 5% of the throat height at each step. The norm of the first
adjoint gradient is ||∇Th|| = 12.5 e3 with strong negative α3 and α4 components (this
negative sign is because the thrust is negative when computed along the x-axis). The
1D-descent step is bounded by the geometric constraint. The resulting deformation is a
significant enlargement of the throat—see Figures A1 and A3. This first optimization step
increases the thrust by 3.1%.
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Figure A1. SENECA nozzle. Isolines of the Mach number for the deformed geometry at step 1.

A second optimization step is performed. The norm of the thrust gradient is ||∇Th|| =
12.3 e3 The displacement at this step is fixed by the 1D search of an optimum in the
direction of the adjoint gradient. The nozzle is slightly enlarged in the inlet part—see
Figures A2 and A3. The thrust is increased by 0.7%.

Figure A2. SENECA nozzle. Isolines of the Mach number for the deformed geometry at step 2.

Figure A3. SENECA nozzle. Inside wall shapes at the different steps: red, initial geometry; blue, after
the first optimization step; black, after the second optimization step.

Finally, we check the consistency of our results with the classical formulas for a
quasi-1D convergent–divergent “de Laval” nozzle. The thrust for such a configuration is
expressed as

Th1d = ṁ1dUexit = ṁ1d Mexit
√

γrTexit

Th1d = ṁ1d Mexit

√
γrTiinl

1 + 0.5γ1M2
exit

= ṁ1d

√
γrTiinl

1/M2
exit + 0.5γ1

,

where ṁ1d is the mass flow. With a fixed stagnation state at the inlet and a value of Mexit
significantly higher than 1, we expect the thrust to be optimized only via an increase of the
mass flow.

In addition, the quasi-1D nozzle flows are calculated from the well-known equa-
tion expressing the mass flow as a function of the local section Υ and the corresponding
Mach number:

ṁ1d =
piinl√
Tiinl

√
γ

r
M
(

1 + 0.5γ1M2
)− γ+1

2(γ−1) Υ . (A6)
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For the series of flows we consider, with M = 1 at the throat and a fixed stagnation state at
the inlet, a consequence of Equation (A6) is that the only way to increase the mass flow is
to increase the throat section. This was achieved by the performed optimization, which
increased the nozzle throat and the mass flow and, as a consequence, the thrust (more
precisely, the mass flow was increased by 4.19% with respect to its nominal value at the
first optimization step and then by an additional 0.78% at the second step).
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