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Abstract: The slow regression rate induced by the high pyrolysis difficulty has limited the applica-
tion and development of hydroxyl-terminated polybutadiene (HTPB)-based fuels in hybrid rocket
propulsion. Nickel oxide (NiO) shows the possibility of increasing the regression rate of HTPB-based
fuels by catalyzing the pyrolysis process of the polymer matrix in our previous investigation; hence,
this paper studies the NiO particles in the thermal decomposition and combustion of HTPB fuel
grains. The DSC/TG test shows that NiO can intensely decrease the thermal stability of HTPB, and
the catalytic effect of NiO is mainly reflected in the final decomposition stages of polybutadiene
components. 5 wt% NiO enhances the regression rate by 19.4% and 13.7% under an oxygen mass
flux of 50 kg/m2s and 150 kg/m2s, respectively. Further investigation shows that NiO particles will
also cause the reduction of combustion heat and the agglomeration at the regressing surface while
catalyzing the pyrolysis process, improving the thermal conductivity, and promoting the radiative
heat transfer of the HTPB-based fuels; thus, more NiO additive (5 wt% < [NiO] ≤ 10 wt%) does not
lead to a faster regression rate in HTPB-based fuels. This study demonstrates the catalytic effect of
NiO on the polymer matrix for HTPB-based fuels, showing the attractive application prospects of
this additive in HTPB-containing fuel grains.

Keywords: hybrid rocket propulsion; HTPB; combustion characteristics; regression rate; catalytic
pyrolysis; nickel oxide

1. Introduction

Hybrid rocket propulsion is wisely investigated for its safety, reliability, environment
friendliness, and low cost, hence regarded as a promising candidate in suborbital flight,
space tourism, and small satellite orbital injection [1–7]. Resulting from their superior
mechanical properties, the hydroxyl-terminated polybutadiene (HTPB)-based fuels are
extensively investigated polymer matrix in hybrid rocket propulsion [1,8–11]. Nevertheless,
the slow regression rate induced by the high pyrolysis difficulty has limited the application
and development of HTPB-based fuels [2,12]. The traditional methods of overcoming this
intrinsic limit, such as adding high calorific value metal powder, introducing energetic
materials or solid oxidizer, porous engine charge, using liquefied fuels such as paraffin, and
oxidizer vortex injection can effectively increase the regression rate of fuel grains, but also
lead to agglomeration, reduced safety, reduced charge, poor fuel mechanical properties,
and increased engine structural complexity [13–26].

Lots of scientific works found in the literature have proved that some transition metal
elements can catalyze thermal decomposition and even promote the burning process of the
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polymer. Varfolomeev et al. found that copper stearate can accelerate the oxidation process
of crude oil and shift both the low-temperature oxidation (LTO) and high-temperature
oxidation (HTO) to lower temperatures [27]; Moroi reported that manganese, cobalt, iron,
chromium, and copper metal ions decrease the thermal stability and promote the thermal
degradation of the polyesterurethane [28]; Pal et al. indicated that 10 wt% cerium oxide
reduces the activation energy of pure paraffin from 254 kJ/mol to 222 kJ/mol, hence
leading to a notable regression rate increase [29]. As for HTPB-based fuels, appropriate
catalysts can reduce the thermal decomposition temperature, accelerate the pyrolysis
process, and thereby increase the regression rate of the fuel grains. There are only a few
studies using acetylacetone complexes as the pyrolysis catalyst to improve the regression
rate that have been published. Cardoso et al. revealed that acetylacetone complexes
accelerate the pyrolysis of HTPB-based fuels at high temperatures, and 7.62 wt% copper
acetylacetone enhances the regression rate of a 40 paraffin particles/60 HTPB composite by
82.2% at oxygen mass flux (Gox) = 5 kg/m2s [30]; Yu et al. demonstrated that acetylacetone
complexes can decrease the thermal stability of the HTPB matrix, and the catalytic effect
of nickel acetylacetonate on HTPB is mainly induced by the Ni2+ at the early stage of
decomposition, and by the produced NiO in the final degradation stage, which corresponds
to the decomposition of the polybutadiene component [31,32].

Since NiO shows the ability to catalyze the decomposition of the polybutadiene com-
ponent, which dominates the burning process of HTPB fuel grains, in this paper, the NiO is
used to promote the regression rate of HTPB-based fuels by accelerating the pyrolysis of
the polymer matrix. The prepared pure HTPB and NiO-loaded fuels, coordinating with
several characterization methods including thermal test, combustion test, and morpholog-
ical characterization, were used to reveal the catalytic effect and mechanism of NiO on
HTPB-based fuels.

2. Experiment
2.1. Materials

The HTPB (CAS: 69102-90-5) pre-polymer with an average molecular weight of
2872 g/mol and -OH content of 0.7747 mmol/g was obtained from Zibo Qilong Chem-
ical Co., Ltd., Zibo, China; the isophorone diisocyanate (IPDI, CAS: 4098-71-9) curing
agent, dibutyltin diacetate (TIN, CAS: 77-58-7) curing catalyst, and dioctyl adipate (DOA,
CAS: 123-79-5) plasticizer were purchased from Shanghai Aladdin Biochemical Technology
Co., Ltd., Shanghai, China; the nickel oxide (NiO, CAS: 1313-99-1) was supplied by the
MeryerBiochemical Technology Co., Ltd., Shanghai, China.

2.2. Fuel Preparation

The pure HTPB and 1.25 wt%, 2.50 wt%, 5.00 wt%, 7.50 wt%, and 10.0 wt% NiO-
loaded fuels were prepared, where the pure HTPB was the baseline in this study. The
detailed composition of all fuels can be seen in Table 1, and the R value ([-NCO]/[-OH])
is set to 1.05. Figure 1 shows the fabrication process of pure HTPB and the NiO-loaded
formulations. A specific proportion of HTPB prepolymer, DOA, and TIN components were
added to a 500 mL stirring cup, and the ZKJ-3 type vacuum mixer was used to vacuumize
the stirring cup (<5 kPa) and mix the reactants at a constant speed of 270 rpm for 5 min.
Following this step, the NiO powder was added to the vacuum stirring cup and mixed
for 15 min. The IPDI curing agent was finally added to the slurry and treated in the same
condition for 10 min. The uniformly stirred slurry was cast into several 19 mm OD × 16 mm
ID × 30 mm length 304 steel pipe molds (equipped with a 4.5 mm OD PTFE center rod)
in the atmosphere and solidified at 36 ◦C in an oven for 24 h followed by a 72 h post-cure
bake at 60 ◦C.
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Table 1. The composition of pure HTPB and NiO-loaded formulations.

Formulation HTPB, wt% DOA, wt% IPDI, wt% TIN, wt% NiO, wt%

Pure HTPB 79.29 13.04 7.24 0.43 0
1.25% NiO 78.30 12.88 7.15 0.42 1.25
2.50% NiO 77.31 12.71 7.06 0.42 2.50
5.00% NiO 75.33 12.39 6.88 0.41 5.00
7.50% NiO 73.34 12.06 6.70 0.40 7.50
10.0% NiO 71.36 11.74 6.52 0.38 10.00
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2.3. Characterization Methods

The surface morphology of the used NiO particles and prepared HTPB-based fuels was
characterized by field emission scanning electron microscopy (SEM, Quanta 250FEG) under
10.0 kV accelerating voltage. The energy dispersive spectrometer (EDS mapping) equipped
in SEM was used to determine the element distribution of the fuel surface for prepared
composites. A laser particle size analyzer (Malvern Mastersizer 2000) was adopted to
investigate the particle size distribution of NiO particles. The simultaneous differential
scanning calorimetry/thermal gravimetric (DSC/TG, Netzsch STA449C) was performed
to clarify the thermal decomposition process of pure HTPB and NiO-loaded fuels under
a heating rate of 10 K·min−1 with a 40 mL·min−1 air atmosphere. A hot disk thermal
analyzer (Hot Disk TPS2500) equipped with a 6.40 mm radius Kapton sensor was used to
characterize the thermal conductivity of all prepared fuels at 298 K.

2.4. Hybrid Propulsion Combustion System

As shown in Figure 2, a 2D-radial hybrid burner, based on the original design by
the Space Propulsion Laboratory (SPLab) of Politecnico di Milano, was used to perform
combustion tests on HTPB-based fuels [33]. An actual picture of the facility is presented
in Figure S1 of the Supplementary Materials [31]. Gaseous oxygen, as the oxidizer in the
combustion test, was axially injected into the grain port at a mass flow rate of 3 g/s. The
oxidizer injector is designed to grant optical access to the tested specimen head-end, thus
providing the possibility to track the central port diameter during the combustion. A
feedback loop automatic system (based on PID algorithm) combined with solenoid valves
and pressure transducer controlled chamber pressure granting a quasi-steady value of
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1.0 MPa. B/KNO3/phenolic resin (40/60/0.5 wt%) primer charge, with 4.5 mm OD × 1 mm
thickness, was ignited by laser, providing a non-intrusive system for specimen ignition [34].
The burning process of the cross-section was recorded by a high-speed camera operating
at 500 fps and 432 × 432 resolution. A scheme of the injector implementation and optical
path for the visualization of the burning strand head-end is reported in Figure 2. Gaseous
nitrogen was used to terminate the combustion before the complete consumption of the fuel.
A time-resolved technique was used for the regression rate (rf) determination. This data
reduction procedure enables the identification of relevant ballistic parameters (including the
oxidizer mass flux). Full details on the method are reported in our previous papers [19,35].
The pure HTPB is taken as the baseline for comparison and relative scoring of the tested
formulations. Three to five combustion tests were performed for each formulation. Single
test data were collapsed in an ensemble average curve enabling the definition of error bars
based on standard deviation.
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Figure 2. The schematic description of the 2D-radial hybrid burner [31].

3. Results and Discussion

Figure 3 shows the surface morphology of the NiO particles and the homogeneity
of the cast fuel grains (the surface morphology of all NiO-loaded fuels is presented in
Figure S2 of the Supplementary Materials). Figure 3e shows that the NiO particles have
a uniform particle size distribution. The average particle size (D50) measured by a laser
particle size analyzer is 12.08 µm, while the SEM images show that NiO is equipped with
a submicron size. The above difference in the test results originates from the too-small
particle size of the NiO, which is prone to agglomerate and results in a larger particle size,
finally measured by the laser particle size analyzer. The agglomeration of NiO particles can
be confirmed by the SEM image of Figure 3e.

From the SEM images (in Figure 3) of the prepared HTPB-based fuels, the pure HTPB
shows its homogeneity without cracks or pores, demonstrating the feasibility of the fuel
preparation process (shown in Figure 1). The 1.25% NiO, 5.00% NiO, and 10.0% NiO
formulations were selected to exhibit the homogeneity of the NiO-loaded fuels. In the SEM
image with a scale of 250 µm, the NiO particles are evenly distributed in the HTPB-based
fuels. While the scale is enlarged to 10 µm, the NiO particles agglomerated in the NiO-
loaded fuels, and this phenomenon deteriorated with the increase in the NiO content. The
EDS mapping images of the NiO-loaded fuels clearly show the agglomeration of the NiO
particles in the HTPB matrix, which is consistent with the results in Figure 3e. Especially
for 10.0% NiO, even large NiO balls appear in the fuel grains.
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To reveal the effects of NiO particles on the pyrolysis process of the HTPB matrix,
Figure 4 shows the TG-DSC curves of the pure HTPB and NiO-loaded fuels. The exper-
imental results show that NiO mainly affects the thermal decomposition process of the
polybutadiene component, which dominates the pyrolysis and combustion process of the
HTPB-based fuels. NiO causes splitting and shifting of the exothermic peaks (T1 and
T2) of polybutadiene components, while these effects are slight from an overall point of
view. The above experimental results show that NiO particles have a weak effect on the
early- and mid-term thermal decomposition of polybutadiene components, and basically
no catalytic effect is shown. With the increase of NiO content, the end temperature (TEnd) of
NiO-loaded fuels significantly decreases from 615 ◦C (pure HTPB) to 573 ◦C (10.0% NiO).
Combined with the weak change of the peak temperature of the prepared fuels at T1 and
T2, the experimental results show that the catalytic effect of NiO on the polybutadiene
component is mainly reflected in the late-term thermal decomposition process, that is, the
end of the thermal decomposition process of the HTPB-based fuels. Figure 5 shows the end
temperature difference between pure HTPB and NiO-loaded fuels. When the NiO content
is lower than 5 wt%, the end temperature of the HTPB-based fuels decreased rapidly with
the increasing NiO. Starting from 5 wt% of NiO, the NiO-loaded fuels show a slow decrease
in the end temperature relative to the pure HTPB fuel. The experimental results indicate
that when the content of NiO particles is lower than (≤) 5 wt%, its catalytic pyrolysis
effect on HTPB-based fuels will be significantly enhanced with the increase of NiO content,
followed by (>5 wt%) the decrease of the benefit–cost ratio for the catalytic effect. The TG
test shows that the NiO particles also lead to a significant increase in residue content during
the pyrolysis process of the HTPB-based fuels.

To further investigate the effect of NiO particles on the combustion performance of
HTPB-based fuels, Figure 6 illustrates the thermal conductivity of the pure HTPB and
NiO-loaded fuels, and the specific values are shown in Table S1 of the Supplementary
Materials. NiO increases the thermal conductivity of HTPB-based fuels, while the NiO-
loaded fuels show a slow increase in the thermal conductivity once the NiO content exceeds
2.50 wt%. It should also be noted that NiO does not exhibit a significant increase in thermal
conductivity for HTPB-based fuels. Even for the 10.0% NiO which provides the highest
thermal conductivity, the thermal conductivity is only increased by 6.61% compared to the
pure HTPB fuel.
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Figure 7 shows the regression process of the pure HTPB and NiO-loaded fuels, where
ti represents the ignition time. Compared with the pure HTPB, the NiO-loaded fuels exhibit
higher flame brightness. Combining the experimental results in Figure 7 with the thermal
test results in Figure 4, the increased flame brightness in the NiO-loaded fuels originated
from the catalytic effect by the NiO particles, which accelerate the pyrolysis process of the
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HTPB-based fuels, hence promoting the burning process and resulting in a more intense
combustion for fuel grains. Furthermore, NiO also serves as the radiating particles and
improves the flame brightness of the HTPB-based fuels. The prepared fuels with a high
NiO content, such as 7.50% NiO and 10.0% NiO, show a substantial increase in flame
brightness relative to the pure HTPB, especially in the later stages of the burning process.
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Figure 8 shows the surface features of the pure HTPB and NiO-loaded fuels after
combustion termination. The 1.25% NiO, 5.00% NiO, and 10.0% NiO formulations were
selected to exhibit the burning surface morphology of the NiO-loaded fuels (the fuel surface
features of all NiO-loaded fuels are presented in Figure S3 of the Supplementary Materials).
Compared with the pure HTPB, which shows a smooth SEM image, the loaded formulations
feature an accumulation of NiO particles at the regressing surface. And this phenomenon
is more obvious with the increase in NiO content. Figure 8e compares the Ni content of
all formulations at the regressing surface before and after combustion, and the specific
values are obtained from the energy dispersive spectrometer (EDS mapping). A linear fit is
performed on the data points in Figure 8e. It is found that the slope of the fitted line for the
Ni content on the regressing surface of NiO-loaded fuels is 0.1844 before combustion, while
this value changed to 0.4068 after the combustion test. The above experimental results
indicate that the NiO particles will gradually accumulate on the regressing surface, hence
reducing the combustion surface area and inhibiting the burning process of the HTPB-based
fuels. For 7.50% NiO and 10.0% NiO formulations, the above results can also be used to
clarify the mechanism of the substantial increase in flame brightness when compared to
the pure HTPB, especially in the later stages of the burning process (shown in Figure 7).
Due to the high NiO content, the NiO residues will generate and accumulate in large
quantities at the regressing surface, thereby enhancing the radiation intensity during the
burning process of the fuel grains. In the later stages of the burning process, the increased
diameter of the fuel grains can lead to the low velocity of the oxygen flow, making it more
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difficult to blow the NiO residue away from the regressing surface, hence exacerbating the
accumulation and increasing the radiation of 7.50% NiO and 10.0% NiO. In addition, the
catalytic pyrolysis effects of many NiO particles on the HTPB matrix further promotes the
combustion process and enhances the flame brightness.
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Figure 9a shows the instantaneous regression rate vs. oxygen mass flux of pure HTPB
and NiO-loaded fuels, which is obtained from the combustion images (as shown in Figure 8)
and their corresponding burning surface recognition results. Each curve is the average of
3–5 runs measured under the same conditions, and the error bar represents the standard
deviation of all runs. Figure 8b shows the regression rate increase of the NiO-loaded fuels,
where the pure HTPB is the baseline. The detailed regression rate of all prepared fuels and
the power law approximation of rf vs. Gox (r f = ar · Gnr

ox) are presented in Table 2.
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Table 2. Regression rate and power law approximation of rf (Gox) curves for pure HTPB and NiO-
loaded fuels.

rf (mm/s) ∆rf (%) rf = ar Gnr
ox

R2
Gox (kg/m2s) 50 150 50 150 ar nr

HTPB 0.309 0.619 - - 0.027 ± 0.001 0.609 ± 0.001 0.985
1.25% NiO 0.353 0.601 14.2 −2.91 0.056 ± 0.001 0.465 ± 0.001 0.985
2.50% NiO 0.373 0.640 20.7 3.40 0.057 ± 0.001 0.472 ± 0.001 0.985
5.00% NiO 0.369 0.704 19.4 13.7 0.038 ± 0.001 0.568 ± 0.001 0.985
7.50% NiO 0.366 0.709 18.4 14.5 0.036 ± 0.001 0.580 ± 0.001 0.985
10.0% NiO 0.373 0.711 20.7 14.9 0.039 ± 0.001 0.567 ± 0.001 0.985

The error bars exhibited in Figure 9a are short, proving the reliability of the experimen-
tal results. Compared with pure HTPB, NiO-loaded fuels show an obvious improvement in
regression rate, demonstrating the catalytic effect of NiO particles on HTPB-based fuels in
the burning process. Especially in the low oxidizer mass flux, the NiO-loaded fuels exhibit
a more significant regression rate increase. This result corresponds to the reduction of the
nr in NiO-loaded fuels relative to the pure HTPB, indicating that NiO particles enhance
the radiative heat transfer of HTPB-based fuels on combustion [2]. When the content of
NiO is lower than (≤) 5 wt%, the regression rate of HTPB-based fuels increases as the NiO
content increases. Nevertheless, the regression rate of the prepared fuels remains basi-
cally unchanged with the continued increase of the NiO content (5 wt% < [NiO] ≤ 10 wt%).
Combining the characterization results in Figures 3–8, it can be deduced that the trend
of the regression rate is due to the accumulation of NiO particles on the regressing sur-
face while improving the thermal conductivity and catalyzing the pyrolysis process of
the HTPB-based fuels. Since NiO particles cannot be further oxidized to release heat, the
addition of NiO particles will also reduce the combustion heat of the HTPB-based fuels.

Originating from the catalysis by NiO particles on the polybutadiene component,
regression rate enhancement of NiO-loaded fuels shows an obvious dependence on the
additive content for NiO loads ≤ 5 wt%. The 5 wt% NiO particles enhance the regression
rate of HTPB-based fuels by 19.4% and 13.7% at Gox = 50 kg/m2s and 150 kg/m2s, respec-
tively. And the higher regression rate increase in the low oxidizer mass flux (50 kg/m2s)
originates from the improved radiative heat transfer by the NiO particles. However, the
NiO particles will also cause a reduction of combustion heat and agglomeration at the
regressing surface. In the burning process of the HTPB-based fuels, the above inhibitory
effects enhance linearly as the NiO content increases, while the improvement of catalytic
pyrolysis effect and thermal conductivity slows down at (>) 5 wt%. Starting from the 5 wt%
(5 wt% < [NiO] ≤ 10 wt%), more NiO particles cannot lead to a faster regression rate for
HTPB-based fuels.

Detailed information about the mass burning rate is shown in Figure 10 and Table 3.
Due to the high density of the NiO particles (6.84 g/cm3 (NiO) vs. 0.93 g/cm3 (pure
HTPB)), compared with the regression rate increase, the mass burning rate increase exhibits
the higher values for the NiO-loaded fuels. When the content of NiO is more than 5 wt%
(5 wt% < [NiO] ≤ 10 wt%), the mass burning rate of HTPB-based fuels increases as the NiO
content increases, which may result in a higher thrust for hybrid rocket engine. However,
too much NiO also leads to a decrease in the benefit–cost ratio for the catalytic effect.
At Gox = 50 kg/m2s, the 5 wt% NiO particles enhance the mass burning rate of HTPB-
based fuels by 18.6%, while 7.5 wt% and 10.0 wt% NiO particles only increase the mass
burning rate of HTPB-based fuels by 22.3% and 25.5 wt%, respectively. As mentioned in
the above results and discussions, more NiO can also lead to negative effects, a reduction
of combustion heat, and agglomeration at the regressing surface, worsening in a certain
proportion. Therefore, there exists an optimal content of NiO in HTPB-based fuels, 5 wt%.
Such a low content means that the NiO can be a suitable candidate for regression rate
performance enhancement, especially in the HTPB/paraffin blends or other multi-additive
HTPB composites in hybrid rocket propulsion. Small amounts of NiO particles can reduce
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the content of other components or further enhance the regression rate of multi-additive
HTPB composites. Furthermore, NiO contains a transition metal element, which can
combine with N and O atoms on the polymer chain, and hence may enhance Young’s
modulus and reduce the elongation at break for fuel grains.
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Table 3. Mass burning rate for pure HTPB and NiO-loaded fuels.

mf × 104 (mm/s) ∆mf (%)

Gox (kg/m2s) 50 150 50 150

HTPB 2.37 2.74 - -
1.25% NiO 2.74 2.69 15.6 −1.83
2.50% NiO 2.92 2.89 23.2 5.47
5.00% NiO 2.95 3.25 24.5 18.6
7.50% NiO 3.00 3.35 26.6 22.3
10.0% NiO 3.12 3.44 31.6 25.5

4. Conclusions

This paper investigates the effects of the NiO particles on HTPB-based fuels in hybrid
rocket propulsion. The presented experimental results show that NiO can intensely decrease
the thermal stability of the HTPB matrix, and this catalytic effect is mainly reflected in
the final pyrolysis stages of polybutadiene components. Further study indicates that
NiO particles will also cause the reduction of combustion heat and the agglomeration
at the regressing surface while catalyzing the pyrolysis process, improving the thermal
conductivity, and promoting the radiative heat transfer of the HTPB-based fuels. Several
factors lead to an optimal content of NiO in HTPB-based fuels, 5 wt%, corresponding
to the regression rate increase of 19.4% and 13.7% at Gox = 50 kg/m2s and 150 kg/m2s,
respectively. This study suggests that the NiO can be a suitable candidate for regression rate
performance enhancement, especially in the HTPB/paraffin blends or other multi-additive
HTPB composites in hybrid rocket propulsion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/aerospace10090800/s1, Figure S1: The physical picture of the 2D-
radial hybrid burner [31]; Figure S2: The surface morphology of the NiO loaded fuels; Figure S3: Fuel
surface features of the NiO loaded fuels after combustion termination; Table S1: Thermal conductivity
of the pure HTPB and NiO loaded fuels.
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