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Abstract: The airworthiness standards of the transport category airplanes stipulate that the high
energy rotor equipment must be of the sufficient containment capacity. It is of great importance to
study the containment and weight reduction for the air turbine starter. In this paper, based on an
OSF design, Kriging response surface model and MOGA algorithm, a neck structure optimal design
method was proposed for the air turbine wheel. Using the optimal design method, the optimal
structural parameters were suggested as the design parameters, and verified by the over-speed burst
test. The maximum errors of the burst speeds between the experimental and design values are less
than 2%, and the neck structure turbine wheel breaks in the neck as expected, validating the accuracy
of the optimal design method. Then, the effects of turbine wheel burst modes on the containment
were investigated quantitatively, and verified by the containment tests. Based on the experimental
and simulation results, the containment design method was proposed for the neck structure turbine
wheel. The results show that compared with the trisection wheel burst, the rim burst dramatically
decrease the mass and initial kinetic energy of burst released fragments by 63.3% and 24.8%, thereby
greatly reducing the thickness and the mass of the containment ring by 29.5% and 29.1%.

Keywords: air turbine starter; wheel containment; containment ring; neck structure turbine wheel;
optimal design method; containment design method

1. Introduction

Due to the light weight and high power, the air turbine starter is the best choice used
to start an aero engine, and has been widely used in aircraft [1]. The working speed of
the air turbine starter is always above 60,000 rpm, which means that the turbine wheel
has a high kinetic energy [2]. Therefore, a serious aviation accident will occur once the
turbine wheel breaks [3]. In October 2007, the turbine wheel of the air turbine starter of
an A330-300 aircraft broke, and the broken wheel pieces damaged the integrated drive
generator [4]. In October 2013, the turbine wheel of the air turbine starter of an A330-302
aircraft broke, and the broken wheel pieces damaged the oil pipeline [5]. By 2007, for the
CFM International turbofan engines-CFM56 series, several in-service uncontained failures
of the air turbine starter had resulted in damage to the engine and fan cowl [6]. Therefore,
it is of great importance to realize the containment of the turbine wheel for an air turbine
starter.

The airworthiness standards of the United States (FAR 25.1461) [7] and China (CCAR
25.1461) [8] demand that high energy rotor equipment must be of sufficient containment
capacity. Therefore, several researchers have studied the containment design method of
the turbine wheel. Martino [9] experimentally researched the containment for bisection,
trisection and quarter wheel durst, and analysed the effect of the number of broken wheel
pieces on the containment. Mccallum [10] studied the containment for the trisection wheel
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durst by simulation and test, and found that shear failure occurred in the impact zone
of the containment ring. Collins [11] used the collision-imparted method (CIVM) to pre-
dict the containment process of the containment casing for a trisection wheel. Hagg [12]
experimentally investigated the containment of a steel cylindrical shell for missile-like
steel wheel pieces, and illustrated the containment process for the quarter wheel pieces.
Gerstle [13] proposed an analytical simulation technique based on large deflection theory
and finite difference numerical methods, and predicted the containment process of an
orthogonally woven fabric shield. In 1984, Giard [14] researched the relationship between
the number of the broken wheel pieces and the translational energy per piece. The research
result shows that the trisection wheel burst results in the maximum translational energy
per piece, therefore, the containment of a trisection wheel burst has been mostly studied
since then. For the T53-L-13L engine of the UH-1 Huey helicopter, Frankenberger [15]
conducted the containment test to demonstrate the containment capability of the contain-
ment ring for the trisection turbine wheel burst. Teng [16] numerically studied the failure
response of the 2219-T851 aluminium containment panel, which was obliquely impacted
by the titanium turbine wheel piece. Stamper [17] considered the effects of the material
model, mesh density and element formulation on the simulation results, and developed a
method by using ANSYS/LS-DYNA to predict the containment process. Then he simulated
the containment process to verify the accuracy and reliability of the developed method.
Carney [18] experimentally analysed a fan blade containment system with an alternate
geometry to reduce jet engine weight. Li [19] simulated the process of a trisection wheel
piece impacting on single and double-layered plates to determine the optimal structure of
the aero-engine casing. Xuan [20] studied the containment of the aero-engine casing for the
trisection wheel burst by the simulation and test, and illustrated the process of the wheel
pieces impacting on the aero-engine casing. Winter [21] used the explicit finite element
technique to research the containment process of the compressor housing for the trisection
wheel burst, and the simulation results were in conformity to the test results. However,
there are few studies on the containment of the air turbine starter.

Giard [8] investigated the containment of the air turbine starter, and proposed the
design method of the containment ring. The research result shows that the best combination
of ultimate tensile strength and elongation results in the best theoretical energy absorption
and lightest weight design. Bai [22] researched the containment of the U type containment
ring for the three-piece wheel burst by the simulation and test, and designed the groove
depth of the U type containment ring. However, the above research focuses on the design
method of the containment ring.

There are two methods to realize the containment of the turbine wheel for an air turbine
starter. One method is that the containment ring is designed to meet the containment
capacity. The other method is that the neck structure turbine wheel is designed to realize
the rim burst, and the impact energy of the burst pieces is reduced to meet the containment
capacity. However, there are few investigations for the design method of the neck structure
turbine wheel. Therefore, a neck structure optimal design of the turbine wheel for the
containment design of the air turbine starter was first proposed in this paper. The results of
this study can be used to optimize the containment of in-service air turbine starters and to
design the containment of new air turbine starters, which has great engineering application
value.

The neck structure turbine wheel of the air turbine starter is shown in Figure 1, and
the remainder of this paper can be summarized as follows. In Section 2, a neck structure
optimal design method was proposed for the turbine wheel, and the design parameters
of the neck structure turbine wheel were given. In Section 3, the rotor over-speed burst
tests were conducted to verify the optimal design method. In Section 4, the effect of turbine
wheel burst modes on the containment was investigated quantitatively by the simulation.
In Section 5, the containment tests were conducted for the trisection wheel burst and rim
burst to verify the simulation results of Section 4. Based on the experimental and simulation
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results, the containment design method was proposed for the neck structure turbine wheel.
In Section 6, some key conclusions of this work are summarized.
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Figure 1. Neck structure turbine wheel of the air turbine starter.

2. A Neck Structure Optimal Design Method for the Turbine Wheel

A neck structure optimal design method for the turbine wheel was proposed, as
shown in Figure 2. Step 1: first, the parametric model of the neck structure turbine wheel
is established, and six structural parameters are selected to be optimized. Step 2: FEM
simulation is conducted. Step 3: afterwards, three target parameters are selected, and the
optimization objective is set. Step 4: the uniform sample database is generated by the
optimal space-filling (OSF) design. Step 5: the Kriging response surface model is then
established to characterize the relationship between the target and structure parameters.
Step 6: the optimal solution is solved by the multi-objective genetic algorithm (MOGA),
and the optimized structural parameters are obtained. Step 7: FEM simulation is conducted
for the neck structure turbine wheel with the optimized structural parameters, and the
simulation results of the target parameters are obtained. Step 8: last, the simulation results
and optimization objectives are compared. If the simulation results meet the optimization
objectives, the optimization is finished; otherwise, the sample size is increased, and Steps 4
to 7 are repeated until the simulation results meet the optimization objectives.

2.1. Parametric and Finite Element Model

To improve optimization efficiency, the parametric model of the neck structure turbine
wheel is carried out. Twelve structure parameters (L1-L11 and θ1) at the neck for the turbine
wheel are shown in Figure 3. L1, L2, L3, L4 and L5 are the same length as L10, L9, L8, L7
and L6, respectively. L11 is the minimum distance at the neck, and θ1 is the angle between
L3 and L8. Therefore, six structure parameters (L1, L2, L4, L5, L11 and θ1) are selected to
be optimized as P1–P6, as shown in Figure 3.

To reduce the calculation cost, the finite element model of the neck structure turbine
wheel with two straight blades is established, as shown in Figure 4. The blade shape
has great effect on the aerodynamic performance, but has little effect on the containment
of turbine wheel. Therefore, the real blades are replaced by the straight blades, and the
rotational inertia of the wheel with the straight blades is same as that with the real blades.
The neck structure turbine wheel is meshed by the tetrahedral solid element. The mesh
sizes of the blades, the neck part and central part of the wheel are 0.5 mm, 0.5 mm and
1 mm, respectively. The end surface is constrained in displacement in the axial and radial
directions. The two radial sections are constrained in displacement in the circumferential
direction. Titanium alloy TC4 (in Chinese) is chosen for the turbine wheel, and the material
parameters are listed in Table 1. The bilinear elastic–plastic material model is adopted, and
the tangent modulus is 1886 MPa.
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Table 1. Material parameters of TC4.

Parameters Value

Density ρ (kg/m3) 4440
Elastic modulus (GPa) 110

Poisson’s ratio 0.33
Yield strength (MPa) 825

Tensile strength (MPa) 985
Elongation (%) 10

In the condition of the clutch connect failure, the air turbine starter may experience
operation at a turbine free run speed, in which the turbine wheel operates without a
resistive load on the output shaft, causing the turbine to accelerate to a high speed. To
ensure the turbine wheel does not burst at the turbine free run speed, the safety margin
is design as 1.15 by considering the material property dispersion, machining error and
operation temperature of the turbine wheel. For a certain type of air turbine starter, the
turbine free run speed is 78,000 r/min, and the burst speed is designed as 89,700 r/min
(1.15 times the turbine free run speed). Therefore, the rotating speed is set to 89,700 r/min
here for the burst speed calculation.

2.2. Optimization Objective

To break the turbine wheel at the neck, the maximum radial stress σr−max at the target
speed should reach the tensile strength σb, while the maximum circumferential stress σc−max
and maximum equivalent stress σMises−max are less than σb. Therefore, σr−max, σc−max and
σMises−max are selected as target parameters P7 to P9, and the optimization objective is set as:

σr−max = σb
σc−max < σb

σMises−max < σb

(1)

When the maximum radial stress reaches the tensile strength, the smaller the maximum
circumferential stress is, the easier it is to control the turbine wheel breaks at the neck
cylindrical section. Therefore, a scaling factor λ = σr−max/σc−max is introduced. Without
loss of generality, the value of λ starts from 1.1, and increases by 0.1 (i.e., 1.1, 1.2, 1.3, 1.4,
1.5, . . . . . . ) until the optimal solution cannot be solved.

2.3. Optimization Process

The optimization process flowchart is shown in Figure 5. First, the design variables
(P1–P6) and variation range that need to be optimized are defined, and the parametric
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modelling is carried out. Then, FEM simulation is conducted and the target parameters
(P7–P9) are selected. The sample database, which consists of P1 to P9, is generated by
using the OSF design method. Based on the sample database, the Kriging response surface
model is established to obtain the relationship between the target parameters (P7–P9) and
structure parameters (P1–P6). Then, the optimization objective and constraints are set. At
last, the optimal structural parameters are obtained by using the MOGA after 100 iterations.

Aerospace 2023, 10, x FOR PEER REVIEW 6 of 24 
 

 

2.3. Optimization Process 
The optimization process flowchart is shown in Figure 5. First, the design variables 

(P1–P6) and variation range that need to be optimized are defined, and the parametric 
modelling is carried out. Then, FEM simulation is conducted and the target parameters 
(P7–P9) are selected. The sample database, which consists of P1 to P9, is generated by 
using the OSF design method. Based on the sample database, the Kriging response surface 
model is established to obtain the relationship between the target parameters (P7–P9) and 
structure parameters (P1–P6). Then, the optimization objective and constraints are set. At 
last, the optimal structural parameters are obtained by using the MOGA after 100 itera-
tions. 

 
Figure 5. Optimization process flowchart. 

The initial value and variation range of the structural parameters are listed in Table 
2. The closer to the rim, the greater the centrifugal force. In addition, the structural param-
eters close to the wheel rim (P3, P4 and P5) have a greater effect on the target parameters 
than the structural parameters far from the wheel rim (P1). Therefore, the variation ranges 
of P3, P4 and P5 are set to 2 mm, while that of P1 is set as 1 mm. The larger variation 
ranges of P2 and P6 (4 mm and 12°) are set to ensure the optimal structure can be formed. 

Table 2. Initial value and variation range of the structural parameters. 

Parameters Initial Value Variation Range 
P1 (mm) 3 2.5–3.5 
P2 (mm) 10 8–12 
P3 (mm) 6 5–7 
P4 (mm) 3 2–4 
P5 (mm) 4 3–5 

P6 (°) 12 6–18 

Figure 5. Optimization process flowchart.

The initial value and variation range of the structural parameters are listed in Table 2.
The closer to the rim, the greater the centrifugal force. In addition, the structural parameters
close to the wheel rim (P3, P4 and P5) have a greater effect on the target parameters than
the structural parameters far from the wheel rim (P1). Therefore, the variation ranges of P3,
P4 and P5 are set to 2 mm, while that of P1 is set as 1 mm. The larger variation ranges of P2
and P6 (4 mm and 12◦) are set to ensure the optimal structure can be formed.

Table 2. Initial value and variation range of the structural parameters.

Parameters Initial Value Variation Range

P1 (mm) 3 2.5–3.5
P2 (mm) 10 8–12
P3 (mm) 6 5–7
P4 (mm) 3 2–4
P5 (mm) 4 3–5

P6 (◦) 12 6–18

The OSF design and Kriging response surface model have a high precision for multi-
dimensional integration problems [23,24]. Six structural parameters (P1–P6) need to be
optimized, therefore, the OSF design and Kriging response surface model are adopted.
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The Kriging approximate model is a model based on structural analysis and variogram
theory to perform unbiased optimal estimation of regionalized variables in a limited region,
and can be used to solve problems with a high degree of nonlinearity to obtain the ideal
fitting effect [24]. This method is suitable in the case of a small sample point disturbance,
and the calculation speed of this algorithm is faster than other methods. Compared
with other approximate models such as nonlinear regression, neural network and sparse
grid, the Kriging approximate model is used in fewer occasions and corresponds to the
corresponding sample point generation methods. Since the data points in the OSF sample
library need to be calculated by finite elements and evaluated by error, the results of the
sample library have a high accuracy. It means that compared with the fitting method, the
interpolation method is better, so the Kriging method is adopted to generate the response
surfaces.

To ensure the precision of the calculation, the fourth-order polynomial is adopted for
the Kriging response surface model. The minimum sample number of the fourth-order
model can be determined by [25]:

Kmin =
(N + 1)(N + 2)

2
+ 2N (2)

where the number of optimized parameters is N = 6.
The minimum sample number Kmin = 40, therefore, 45 samples are selected for the

Kriging response surface model. The sample number of OSF design depends on that
of the Kriging response surface model, therefore, 45 samples are selected for the OSF
design. According to Table 2, a uniform sample database with 45 samples is generated by
employing the OSF design, and every sample includes six structural parameters (P1–P6)
and three target parameters (P7–P9), as list in Table 3.

Table 3. Sample database generated by the OSF design.

No. P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) P6 (◦) P7 (MPa) P8 (MPa) P9 (MPa)

1 2.82 8.40 6.04 2.91 4.76 16.80 910 620 806
2 2.89 10.18 6.49 3.80 4.04 6.13 913 687 837
3 2.51 10.44 6.44 2.38 4.62 11.20 886 620 794
4 2.58 9.73 5.96 2.64 3.60 6.67 942 693 839
5 2.93 11.51 5.02 2.69 3.56 13.33 838 677 843
6 3.29 8.93 5.42 2.56 4.93 10.93 697 600 756
7 2.91 10.89 5.91 2.02 3.20 10.13 958 725 839
8 3.40 9.38 5.24 2.96 4.13 17.07 827 642 845
9 3.04 11.16 5.73 3.31 4.84 17.33 919 619 811

10 2.56 11.42 5.51 3.27 4.18 7.73 904 655 843
11 2.64 9.64 5.47 3.98 4.44 13.07 956 656 843
12 2.78 8.58 6.93 2.87 4.27 9.33 932 659 840
13 3.00 8.22 6.67 2.60 3.64 16.00 998 690 838
14 3.27 11.78 6.40 3.36 3.24 12.80 1030 776 862
15 2.76 10.27 6.58 2.73 3.02 15.47 1076 798 871
16 3.13 8.84 5.20 3.09 3.11 13.60 1024 740 841
17 3.24 10.62 5.16 3.67 4.67 10.67 865 636 830
18 3.31 10.00 5.87 2.42 3.33 17.60 968 691 837
19 2.87 11.60 6.98 2.78 3.69 9.87 973 689 837
20 2.53 11.07 5.60 3.00 3.78 15.73 942 669 839
21 3.42 9.02 6.62 2.82 4.49 8.00 929 642 828
22 3.38 11.24 6.09 3.40 3.96 6.40 973 672 839
23 3.47 10.80 6.76 2.29 3.82 12.00 972 660 840
24 2.80 8.76 5.78 3.13 4.89 8.27 861 622 788
25 2.62 9.29 6.89 3.76 3.87 14.13 888 708 837
26 2.73 8.67 6.00 3.62 3.07 11.73 1049 845 883
27 3.36 11.87 5.64 2.51 4.40 12.53 790 623 816
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Table 3. Cont.

No. P1 (mm) P2 (mm) P3 (mm) P4 (mm) P5 (mm) P6 (◦) P7 (MPa) P8 (MPa) P9 (MPa)

28 3.44 9.11 6.36 3.49 3.29 10.40 1015 787 861
29 2.67 8.13 5.07 3.04 3.91 12.27 823 661 842
30 2.69 11.33 6.22 3.84 3.38 11.47 994 774 856
31 3.49 10.09 5.38 2.47 3.47 8.53 889 697 842
32 3.22 8.49 5.82 3.89 4.31 14.93 948 659 843
33 3.11 10.71 5.33 3.93 3.51 15.20 1044 715 841
34 3.07 8.31 6.27 2.33 3.42 8.80 977 704 841
35 2.84 11.69 6.31 2.24 4.36 16.53 914 625 825
36 2.71 10.98 6.80 3.58 4.71 14.67 854 642 837
37 3.33 9.82 6.71 3.71 3.73 16.27 918 712 835
38 3.18 9.91 6.13 2.20 4.53 17.87 854 612 799
39 3.09 10.53 6.53 2.11 4.58 7.47 829 616 782
40 2.98 11.96 6.18 3.18 4.98 9.60 883 614 786
41 2.96 9.56 5.11 2.16 4.22 9.07 727 671 802
42 2.60 9.20 5.56 2.07 4.09 14.40 758 657 832
43 3.16 8.04 5.69 3.53 4.00 7.20 956 677 842
44 3.02 10.36 5.29 3.22 3.16 6.93 1013 782 854
45 3.20 9.47 6.84 3.44 4.80 13.87 851 636 830

The Kriging response surface model is established to characterize the relationship
between the target parameters and structure parameters, and can be expressed as:

f (x) = y(x) + z(x) (3)

where f (x) are the object functions (i.e., three target parameters P7–P9), y(x) are the fourth-
order polynomial functions correspondence with six structural parameters (P1–P6) and
z(x) is the deviation of the results between the Kriging response surface model and FEM
simulation.

MOGA [26] is a multi-objective iterative genetic algorithm, which sorts all individuals
in a population based on the basic principle of Pareto Optimality, and carries out selection
operations in the evolution process on the arranged order. This will make the first Pareto
best individuals have a greater probability of inheriting to the next generation. After many
algebraic cycles, the optimal Pareto solution of multi-objective optimization problem can
be finally obtained. This method is suitable for multi-objective optimization problems,
the optimal design of global search and the response surface model. Therefore, MOGA is
adopted in this paper.

Based on the Kriging response surface model, the optimal solution (the optimized
structural parameters) is solved by employing the MOGA algorithm to meet the optimiza-
tion objective. In addition, the optimized structural parameters (P1-P6) are obtained as
listed in Table 4. It should be noted that when λ > 1.5, the optimal solution cannot be solved,
which means that no turbine wheel structure can make λ greater than 1.5.

Table 4. Optimized structural parameters.

Parameters λ = 1.1 λ = 1.2 λ = 1.3 λ = 1.4 λ = 1.5 λ = 1.6

P1 (mm) 2.74 3.49 2.62 3.01 3.35 -
P2 (mm) 9.01 10.86 10.95 11.68 11.66 -
P3 (mm) 6.37 6.83 6.65 6.27 6.74 -
P4 (mm) 3.89 3.47 3.25 3.66 2.30 -
P5 (mm) 3.01 3.13 3.44 3.66 3.75 -

P6 (◦) 9.80 14.77 7.80 14.00 13.36 -
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2.4. Sensitivity Analysis

To study the effect of the structural parameters on the target parameters, a sensi-
tivity analysis between the target and structural parameters was conducted. The sensi-
tivities of six structural parameters on the maximum radial and circumferential stress
(σr−max and σc−max) are shown in the Figure 6. Figure 6 shows that the sensitivities of P5
on σr−max and σc−max (0.776 and 0.945) are the maximum, which means that the minimum
distance at the neck effects most on the target parameters. Figure 6 also shows that the
sensitivities of P3, P4 and P5 are larger than 0.1, whereas that of P1, P2 and P6 are less than
0.08. It means that the structural parameters close to the wheel rim have a greater effect on
the target parameters than the structural parameters far from the wheel rim. The results
verify the rationality of variation range of the structural parameters in Section 2.3.
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2.5. Simulation Verification

According to Equation (3), a deviation exists between the Kriging response surface
model and FEM simulation, therefore, the FEM simulation needs to be conducted to verify
the optimized structural parameters. According to the optimized structural parameters,
FEM simulation is conducted and the simulation results are shown in Tables 5 and 6. Table 5
is simulation result of the target parameters. Table 5 shows that P8 and P9 are less than
σb, and the errors of P7 are less than 1.5%. It means that the target parameters meet the
optimization objective (Equation (1)), which verifies the optimized structural parameters
in Table 4. Table 6 is the stress distribution of the turbine wheel. Table 6 is the stress
distribution of the turbine wheel. Table 6 shows that when λ = 1.1, the radial stress at
the neck is 986 MPa, which reaches the tensile strength σb. The circumferential stress and
equivalent stress at the neck are 905 MPa and 903 MPa, which are less than the radial stress.
It means that the turbine wheel with λ = 1.1 breaks in the neck along the circumferential
direction. The stress distributions for λ = 1.2, 1.3, 1.4 and 1.5 are similar to λ = 1.2. Table 6
also shows that the maximum radial stress, circumferential stress and equivalent stress
occur at the neck, which proves the correctness of the simulation results.
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Table 5. Simulation results of the target parameters.

Parameters λ = 1.1 λ = 1.2 λ = 1.3 λ = 1.4 λ = 1.5

P7 (MPa) 986 985 985 980 984
P8 (MPa) 905 824 758 705 665
P9 (MPa) 903 884 851 836 839

Table 6. Stress distribution of the turbine wheel.

Parameters Radial Stress Circumferential Stress Equivalent Stress

λ = 1.1
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It should be noted that the larger λ is, the more easily the turbine wheel breaks at the
neck. However, a turbine wheel structure with a large λ is hard to process. Considering the
processing cost, the optimized structural parameters for λ = 1.2, 1.3 and 1.4 can be adopted
as design parameters.

3. Experimental Verification of the Optimal Design Method

To verify the optimal design method, three neck structure turbine wheels (λ = 1.2, 1.3 and
1.4) were processed, and disk burst tests were conducted.
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3.1. Neck Structure Turbine Wheel

The practicality picture of the neck structure turbine wheel is shown in Figure 7. The
cross-section and structural parameters of three turbine wheels (λ = 1.2, 1.3 and 1.4) are
shown in Figure 3 and Table 4, respectively. The material parameters of the turbine wheel
are listed in Table 1.
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3.2. Rotor Over-Speed Burst Test

The disk burst tests are conducted on a high-speed spin tester, and the turbine wheel
burst process is captured by a high-speed camera, as shown in Figure 8. The neck structure
turbine wheel is driven by a spin shaft, which is powered by a drive shaft. The tester
cavity is vacuumed to 2Torr by the vacuum pumps in order to avoid the air friction. The
trigger wire is glued on the internal wall of the protective ring. As the wheel fragments cut
off the trigger wire, the trigger signal will be sent to the control system to shut down the
driver motor. Meanwhile, the high-speed camera is triggered to record data. The sample
frequency of 51 kfps is set for the high-speed camera to ensure that the burst process is
captured.
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3.3. Comparison with Experimental Results

Figure 9 is the burst process of the neck structure turbine wheel with λ = 1.2. Figure 9
shows that when t = 0 ms, there is no crack in the wheel. When t = 0.1 ms, a circular arc
crack appears in the neck of the wheel. The length and angle of the crack are one sixth of
the circumference and 60◦, respectively. When t = 0.2 ms, the crack expands along both the
circumferential and radial directions. In the circumferential direction, the length and angle
of the crack reach half of the circumference and 90◦, respectively. In the radial direction,
the crack splits the wheel rim in half. When t = 0.3 ms, the wheel rim is separated from
the wheel, and breaks into five pieces. The burst processes for λ = 1.3 and 1.4 are similar
to λ = 1.2, as shown in Figures 10 and 11. The experimental results illustrate that the neck
structure turbine wheel breaks in the neck, which indicates the effectiveness of the optimal
design method.
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Figure 10. Burst process of the neck structure turbine wheel with λ = 1.3. (a) t = 0 ms; (b) t = 0.1 ms; 
(c) t = 0.2 ms; (d) t = 0.3 ms. 
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Figure 11. Burst process of the neck structure turbine wheel with λ = 1.4. (a) t = 0 ms; (b) t = 0.1 ms; 
(c) t = 0.2 ms; (d) t = 0.3 ms. 

Figure 9. Burst process of the neck structure turbine wheel with λ = 1.2. (a) t = 0 ms; (b) t = 0.1 ms;
(c) t = 0.2 ms; (d) t = 0.3 ms.
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Figure 11. Burst process of the neck structure turbine wheel with λ = 1.4. (a) t = 0 ms; (b) t = 0.1 ms; 
(c) t = 0.2 ms; (d) t = 0.3 ms. 

Figure 10. Burst process of the neck structure turbine wheel with λ = 1.3. (a) t = 0 ms; (b) t = 0.1 ms;
(c) t = 0.2 ms; (d) t = 0.3 ms.
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(c) t = 0.2 ms; (d) t = 0.3 ms.
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Figures 9d, 10d and 11d show that the wheel rim breaks into five pieces for the three
neck structure turbine wheel, which means that the burst mode of the neck structure turbine
wheel is a five piece burst of wheel rim. Figure 12 is the comparison of the masses and
initial kinetic energies between the rim pieces and wheel. Figure 12a shows that compared
with the wheel, the masses of the rim pieces for λ = 1.2, 1.3 and 1.4 decrease by 65.7%,
66.8% and 68.2%, respectively. Figure 12b shows that compared with the wheel, the initial
kinetic energies of the rim pieces for λ = 1.2, 1.3 and 1.4 decrease by 22.0%, 23.4% and 24.7%,
respectively. It means that the neck structure turbine wheel can dramatically decrease the
mass and initial kinetic energy of the burst pieces from the wheel, thereby reducing the
thickness and mass of the containment ring.
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Figure 13 is the comparison of the burst speed between the design and experimental
values. Figure 13 shows that the errors of the burst speed for λ = 1.2, 1.3 and 1.4 are 1.2%,
1.0% and 0.68%, respectively. It indicates the accuracy of the optimal design method.
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4. Effect of Turbine Wheel Burst Modes on Containment

According to Section 3.3, the rim burst of the turbine wheel can greatly reduce the
requirement for the thickness of the containment ring. To quantitatively investigate the
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effect of turbine wheel burst modes on the containment, the containment tests for different
turbine wheel burst modes (the wheel burst and the rim burst) are simulated. The turbine
wheel burst modes are shown in Figure 14.
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Focusing on the wheel burst, the containment simulation for the trisection wheel burst
is conducted, because the impact energy is at a maximum when the wheel is broken in three
equal pieces [8]. Focusing on the rim burst, the containment simulations for the trisection,
quarter and quintile rim burst are conducted. A trisection rim burst is investigated because
the impact energy is at a maximum when the rim is broken in three equal pieces in the case
of the rim burst. The quintile rim burst is investigated because the experimental results of
the burst mode (as shown in Figures 9d, 10d and 11d) are a five piece burst of wheel rim. A
quarter rim burst is studied for comparison.

4.1. Material Model

The containment ring and turbine wheel adopted the nickel-based alloy GH4169 and
titanium alloy TC4, respectively. The Johnson–Cook (J-C) model [27,28] considers the effect
of the strain rate on the material, and is therefore adopted for the containment ring and
turbine wheel. The J-C model parameters of the two components are listed in Table 7. The
detail information for the values of J-C model parameters can be found in our previous
work [29].

Table 7. J-C model material parameters.

Material A (MPa) B (MPa) n C M D1 D2 D3 D4 D5

GH4169 1180 1140 0.545 0.0134 1.3 0.11 0.24 1.92 0.00002 0.65
TC4 1089 1083 0.93 0.014 1.1 −0.09 0.27 0.48 0.014 3.87

4.2. Finite Element Model and Boundry Conditions

The finite element models of the turbine wheel, wheel rim and containment ring
are shown in Figure 15. The geometric sizes of the neck structure for the turbine wheel
and wheel rim are shown in Figure 3. The critical thicknesses of the containment ring for
different turbine wheel burst modes are listed in Table 8.
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Table 8. Thicknesses of the containment ring for different turbine wheel burst modes.

Burst Modes Trisection Wheel Burst Trisection Rim Burst Quarter Rim Burst Quintile Rim Burst

Thickness Critical Comparison Critical Comparison Critical Comparison Critical Comparison
Value (mm) 7.8 7.6 5.5 5.3 5.0 4.8 4.0 3.8

T denotes the thickness of the containment ring. To obtain the critical thickness, T is
first estimated by the potential energy method [8] and then the containment simulation
is conducted with the estimated thickness. If the containment ring breaks, the thickness
is increased by 0.2 mm until the containment ring does not break; if the containment ring
does not break, the thickness is decreased by 0.2 mm until the containment ring breaks. To
verify the critical thickness of the containment ring, four thicknesses (0.2 mm less than the
critical thickness) of the containment ring are taken for comparison, as listed in Table 8.

The turbine wheel and wheel rim are meshed by the tetrahedral solid element and the
mesh size is 1 mm. The containment ring is meshed by the hexahedral solid element and
the mesh size is 1 mm. The free boundary is adopted for the containment ring, which is
consistent with the actual situation.

In the condition of the clutch disconnect failure, the air turbine starter is driven in
reverse by the aeroengine and the experience operation at a higher speed (larger than the
turbine free run speed). It leads to the failure of the support bearings, thus allowing axial
travel of the turbine wheel. The turbine rim cutter is located in the air turbine starter, and
the axial travel of the turbine wheel results in contact between the turbine wheel and the
turbine rim cutter. For the contact position of the turbine wheel, the temperature sharply
rises. It leads to the rapid reduction of the material property, thereby realizing the rim
burst. The burst speed is designed as 1.05 times the turbine free run speed by considering
the turbine bearing strength. For a certain type of the air turbine starter, the turbine free
run speed is 78,000 r/min, so the burst speed is designed as 81,900 r/min (1.05 times the
turbine free run speed).

4.3. Containment Simulation for the Wheel Burst

Figures 16 and 17 are the process of the turbine wheel pieces impacting the containment
ring with T = 7.8 mm and T = 7.6 mm, respectively. Figure 16 shows that when t = 0.09 ms,
the turbine wheel pieces first contact the containment ring, and the containment ring starts
to deform. When t = 0.30 ms, the containment ring deforms plastically to absorb the impact
energy, and its shape tends to be the triangular. When t = 0.50 ms, the turbine wheel pieces
stop impacting the containment ring, and the containment ring fully deforms to be the
triangle. Figure 17 shows that when t = 0.09 ms, the turbine wheel pieces first contact
the containment ring, and the containment ring starts to deform. When t = 0.15 ms, the
containment ring fully deforms plastically to be the triangle, but its absorbed energy is less
than the impact energy of the turbine wheel pieces, and thereby the containment ring starts
to break. When t = 0.50 ms, the containment ring breaks into three pieces. The simulation
results illustrate that T = 7.8 mm is the critical thickness of the containment ring for the
trisection wheel burst.
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Figure 17. Process of the turbine wheel pieces impacting the containment ring with T = 7.6 mm.
(a) t = 0 ms; (b) t = 0.09 ms; (c) t = 0.15 ms; (d) t = 0.27 ms.

4.4. Containment Similation for the Rim Burst

The impact processes of the trisection, quarter and quintile rim burst are similar with
that of the trisection wheel burst. Table 9 is the containment simulation for the three
rim burst modes. Table 9 shows that the containment rings fully deform plastically to be
the triangle, quadrangle and pentagon for the trisection, quarter and quintile rim burst,
respectively. The containment rings with comparative thicknesses break, because their
absorbed energy is less than the impact energy of the wheel rim pieces. The simulation
results illustrate that T = 5.5, 5 and 4 mm are the critical thicknesses of the containment
rings for the trisection, quarter and quintile rim burst.

Table 9. Containment simulation for three rim burst modes.

Burst Modes Trisection Rim Burst Quarter Rim Burst Quintile Rim Burst

Critical thickness
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4.5. Comparison between Different Burst Modes

The simulation results for different burst modes with the critical thicknesses are
compared. Figure 18 is the comparison of the initial kinetic energy of pieces for different
burst modes. Figure 18 shows that compared with the trisection wheel burst (60.2 kJ),
the initial kinetic energy of pieces for rim burst (45.3 kJ) decreases dramatically by 24.8%.
Figure 19 is the comparison of the critical thickness of the containment ring for different
burst modes. Figure 19 shows that compared with the trisection wheel burst (7.8 mm),
the critical thicknesses of the containment ring for the trisection, quarter and quintile rim
burst (5.5, 4.5 and 4.0 mm) decrease dramatically by 29.5%, 42.3% and 48.7%, respectively.
Figure 19 also shows that for the rim burst modes, the more pieces the wheel rim breaks,
the smaller the critical thickness of the containment ring is. The simulation results from
Figs. 18 and 19 mean that compared with the wheel burst, the rim burst can dramatically
decrease the initial kinetic energy of pieces and the critical thickness of the containment
ring, and thereby reduce the mass of the containment ring.
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rings are fully deformed. Figure 20 also shows that the change rates of the containment
ring diameter for the trisection, quarter and quintile rim burst are 13.1%, 14.0% and 14.9%,
respectively. It means that the change rate of the containment ring diameter increases with
the increase of the number of the wheel rim pieces.
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5. Experimental Verification of the Containment for Different Turbine Wheel Burst Modes

To verify the simulation results of Section 4, two and three containment tests were
conducted for the trisection wheel burst and rim burst, respectively. In the condition of
the clutch disconnect failure, the air turbine starter is driven in reverse by the aeroengine
and the experience operation at a higher speed (larger than the turbine free run speed). It
leads to the failure of the support bearings, thus allowing the axial travel of the turbine
wheel. The turbine rim cutter is located in the air turbine starter, and the axial travel of
the turbine wheel results in contact between the turbine wheel and the turbine rim cutter.
For the contact position of the turbine wheel, the temperature sharply rises. It leads to the
rapid reduction of the material property, thereby realizing the rim burst. Therefore, heating
the neck of the wheel is adopted for the rim burst containment test.

5.1. Turbine Wheel and Containment Ring

The practicality picture of the turbine wheel (λ = 1.4) and containment ring are shown
in Figure 21. To ensure the trisection wheel burst, there are three radial slots in the turbine
wheel as shown in Figure 21a. To ensure the rim burst at the target burst speed, the red
zone in Figure 21b is heated by the induction coil during the test.
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Five thicknesses of the containment ring are selected for containment tests as listed in
Table 10. T = 7.8 and 7.6 mm are selected to verify the critical thickness of the containment
ring for the trisection wheel burst. T = 5.5 and 4.0 mm are the critical thicknesses of the
containment ring for the trisection and quintile rim burst, respectively. The number of wheel
rim pieces is unknown before tests. To obtain the critical thickness of the containment ring
for the rim burst, T = 5.5 and 4.0 mm are selected. T = 3.8 mm is selected for comparison.

Table 10. Five thicknesses of the containment ring for containment tests.

Burst Modes Trisection Wheel Burst Rim Burst

T (mm) 7.8 7.6 5.5 4.0 3.8

5.2. Containment Test

The containment test and the rotor over-speed burst test adopted the same test bed, as
shown in Figure 8. For the containment test of the trisection wheel burst, the containment
ring is connected to the tester cavity cover through the mount base, as shown in Figure 22.
For the containment test of the rim burst, the installation of the wheel and containment
ring is similar to the containment test of the trisection wheel burst, and the induction coil is
installed on the salver under the turbine wheel.
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5.3. Comparison with Experimental Results

Figure 23 is the burst speed for five containment tests. It shows that the errors of all
burst speeds are less than 1%, which indicates the effectiveness of the experimental results.
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Figure 24 is the process of the containment tests of the trisection wheel burst. Figure 24a
shows that when t = 0.10 ms, the turbine wheel cracks into three pieces, which first contact
the containment ring, and the containment ring starts to deform. When t = 0.15 ms, the
containment ring deforms plastically to absorb the impact energy, and its shape tends to
be triangular. When t = 0.20 ms, the turbine wheel pieces stop impacting the containment
ring, and the containment ring fully deforms to be a triangle. Figure 24b shows that when
t = 0.10 ms, the turbine wheel cracks into three pieces, which first contact the containment
ring, and the containment ring starts to deform. When t = 0.15 ms, the containment ring
fully deforms plastically to be a triangle. When t = 0.20 ms, the containment ring breaks.
Figure 24 illustrates that T = 7.8 mm is the critical thickness of the containment ring for
the trisection wheel burst. The experimental results are consistent with the simulation,
verifying the accuracy of the simulation results.
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Figure 24. Process of the containment tests of the trisection wheel burst. (a) T = 7.8 mm; (b) T = 7.6 mm.

Figure 25 is the process of the containment tests of the rim burst. The containment test
process of the rim burst for T = 5.5 mm (Figure 25a) is similar to that of the trisection wheel
burst for T = 7.8 mm (Figure 24a). The containment test processes of the rim burst for T = 4.0
and 3.8 mm (Figure 25b,c) are similar with that of the trisection wheel burst for T = 7.6 mm
(Figure 24b).

It should be noted that the deformed shape of the containment ring is related to the
number of wheel rim pieces. Figure 25 shows that the deformed shapes of the containment
rings are a quadrangle and pentagon for four and five rim pieces, respectively. The more rim
pieces, the more fully the containment ring deforms, and the more energy the containment
ring absorbs. Figure 25a shows that the containment ring with T = 5.5 mm does not break.
The reason is that the rim breaks into five pieces, and T = 5.5 mm is the critical thickness for
the trisection rim burst. It means that the energy absorption capacity of the containment
ring with T = 5.5 mm is larger than the impact energy of the five rim pieces. Figure 25b
shows that the containment ring with T = 4.0 mm breaks. The reason is that the rim breaks
into four pieces, and T = 4.0 mm is the critical thickness for the quintile rim burst. It means
that the energy absorption capacity of the containment ring with T = 4.0 mm is less than
the impact energy of the four rim pieces. Figure 25c shows that the containment ring with
T = 3.8 mm breaks, because T = 3.8 mm is less than the critical thickness for the quintile rim
burst. The experimental results are consistent with the simulation, verifying the accuracy
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of the simulation results. T = 5.5 mm should be adopted as the thickness of the containment
ring for the rim burst, because the impact energy is at a maximum with the trisection rim
burst in the case of the rim burst.
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Based on the experimental and simulation results, the containment design method is
formed for the neck structure turbine wheel, and T = 5.5 mm is suggested as the design
thickness of the containment ring. Figure 26 is a comparison of the burst piece masses
and the containment ring masses between the trisection wheel burst (with T = 7.8) and
the rim burst (with T = 5.5 mm). Figure 26 shows that compared with the trisection wheel
piece, the masses of the rim pieces and the containment ring decrease by 63.3% and 29.1%,
respectively. It means that the containment design method can greatly reduce the burst
piece mass, and thereby reduce the containment ring mass.
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Figure 26. Comparison of the burst piece masses and the containment ring masses between the
trisection wheel burst (with T = 7.8) and the rim burst (with T = 5.5 mm).

6. Conclusions

Based on an OSF design, Kriging response surface model and MOGA algorithm, a
neck structure optimal design method was proposed for the turbine wheel, and verified
by the rotor over-speed burst test. Then, the effect of turbine wheel burst modes on
the containment was investigated quantitatively and verified by the containment tests of
different burst modes. Based on the experimental and simulation results, the containment
design method was proposed for the neck structure turbine wheel. Some key conclusions
of this work can be summarized as follows:

(1) Six structure parameters of the neck structure turbine wheel are optimized by the
optimal design method, and the optimal structural parameters with the scaling factor
λ = 1.2, 1.3 and 1.4 are obtained. The maximum errors of the burst speeds between
the over-speed burst experimental and design values are less than 2%, and the neck
structure turbine wheel breaks in the neck, validating the accuracy of the optimal
design method proposed in this paper.

(2) Compared with the trisection wheel burst (60.2 kJ), initial kinetic energy of pieces for
rim burst (45.3 kJ) decreases dramatically by 24.8%. Compared with the trisection
wheel burst (7.8 mm), the critical thicknesses of the containment ring for the trisection,
quarter and quintile rim burst (5.5, 4.5 and 4.0 mm) decrease dramatically by 29.5%,
42.3% and 48.7%, respectively.

(3) For the neck structure turbine wheel, the mass and initial kinetic energy of the rim pieces
are 257.9 g and 45.3 kJ, respectively. Compared with the trisection wheel pieces, the
mass and initial kinetic energy of the rim pieces decrease dramatically by 63.3% and
24.8%, respectively. As a result, the thickness and mass of the containment ring decrease
greatly by 29.5% and 29.1%, respectively. Therefore, the neck structure turbine wheel
can dramatically decrease the mass and initial kinetic energy of the burst pieces from the
wheel, thereby reducing the thickness and mass of the containment ring.

It is worth noting that the neck structure optimal design of the turbine wheel was
verified by the component containment test. The component containment test is only
composed of the turbine wheel and containment ring. However, the working condition of
the whole air turbine starter is more complicated than that of the component containment
test. In future research, the containment test of the whole air turbine starter will be
conducted to verify the optimal neck structure turbine wheel, and the experimental results
can guide the containment design of the in-service air turbine starter.
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To ensure the computational precision and efficiency, the neck structure optimal design
method employed the OSF design, Kriging response surface model and MOGA algorithm.
However, the YUKI algorithm [30] and Proper orthogonal Decomposition endorsed with
Radial Basic Function (POD-RBF) [31] were also proven to be effective computational-wise
and used in dynamic analysis. In the future research, the YUKI algorithm and POD-RBF
will be employed to optimize the neck structure turbine wheel, and the computational
precision and efficiency between different optimization methods will be compared.

Author Contributions: Conceptualization, L.C. and H.X.; methodology, H.X. and Y.Z.; software,
W.J. and Z.F.; validation, H.X. and W.J.; formal analysis, W.J.; investigation, J.L.; data curation, W.J.;
writing—original draft preparation, W.J., L.C., J.L. and Z.F.; writing—review and editing, H.X. and
Y.Z.; visualization, W.J.; supervision, H.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Science and Technology Major Project
(2017-IV-0006-0043).

Data Availability Statement: The data underlying the results presented in this paper are not publicly
available at this time.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, R.X.; Liu, Z.H.; Wei, Y. Remaining useful life prediction for the air turbine starter based on empirical mode decomposition

and relevance vector machine. Trans. Inst. Meas. Control. 2020, 42, 2578–2588. [CrossRef]
2. SAE Aerospace. Air Conditioning Systems for Subsonic Airplanes; SAE Aerospace-ARP-85F; Society of Automotive Engineers (SAE)

Aerospace: Warrendale, PA, USA, 2012; p. 27.
3. Moussa, N.A.; Whale, M.D.; Grozmann, D.E.; Zhang, X.J. The Potential for Fuel Tank Fire and Hydrodynamic Ram from Uncontained

Aircraft Engine Debris; Report No.DOT/FAA/AR-96/95; US Department of Transportation, Federal Aviation Administration:
Washington, DC, USA, 1997.

4. Australian Transport Safety Bureau. Uncontained Engine Starter Failure-General Electric CF6-80E1-A3–Darwin Aerodrome; Report No.
AO-2007-052; Australian Transport Safety Bureau: Canberra, Australia, 2007.

5. Australian Transport Safety Bureau. In-Flight Engine Shut down Involving Airbus A330-302 B-18358; Report No. AO-2013-172;
Australian Transport Safety Bureau: Canberra, Australia, 2013.

6. Civil Aviation Safety Authority. Airworthiness directive, Civil Aviation Safety Regulations Part39-106. In Schedule of Airworthiness
Directives; Civil Aviation Safety Authority: Canberra, Australia, 2007.

7. AA Federal Aviation Regulations. Airworthiness Standards: Aircraft Engines; Federal Aviation Administration: Washington, DC,
USA, 1984.

8. Civil Aviation Administration of China. CARR-25-R4 Airworthiness Standards for Transport Aircraft; Civil Aviation Administration
of China: Beijing, China, 2011.

9. Martino, A.A.; Mangano, G.J. Rotor Burst Protection Program Initial Test Results; NASA DPR R-105; Naval Air Propulsion Test
Center, Aeronautical Engine Department: Philadelphia, PA, USA, 1968.

10. Mccallum, R.B. Simplified analysis of a trifragment rotor disk interaction with a containment ring. J. Aircr. 1970, 7, 283–285.
[CrossRef]

11. Collins, T.P.; Witmer, E.A. Application of the Collision-Imparted Velocity Method for Analyzing the Responses of Containment and Deflector
Structures to Engine Rotor Fragment Impact; NASA CR-134494; Aeroelastic and Structure Research Laboratory, Department of
Aeronautics and Astronautics, Massachusetts Institute of Technology: Cambridge, MA, USA, 1973.

12. Hagg, A.C.; Sankey, G.O. The containment of disk burst fragments by cylindrical shells. J. Eng. Power 1974, 96, 114–123. [CrossRef]
13. Gerstle, J.H. Analysis of rotor fragment impact on ballistic fabric engine burst containment shields. J. Aircr. 1975, 12, 388–393.

[CrossRef]
14. Giard, J.R. Air Turbine Starter Turbine Wheel Containment. SAE Trans. 1984, 93, 459–463.
15. Frankenberger, C.E., III. FAA T53-L-13L Turbine Fragment Containment Test; Report No. DOT/FAA/AR-98/22; U.S. Department of

Transportation, Federal Aviation Administration: Washington, DC, USA, 1998.
16. Teng, X.; Wierzbicki, T. Gouging and fracture of engine containment structure under fragment impact. J. Aerosp. Eng. 2008, 21,

174–186. [CrossRef]
17. Stamper, E.; Hale, S. The use of LS-DYNA models to predict containment of disk burst fragments. In Proceedings of the 10th

International LS-DYNA User Conference, Dearborn, MI, USA, 1–9 January 2008.
18. Carney, K.S.; Pereira, J.M.; Revilock, D.M.; Matheny, P. Jet engine fan blade containment using an alternate geometry. Int. J. Impact

Eng. 2009, 36, 720–728. [CrossRef]

https://doi.org/10.1177/0142331220932651
https://doi.org/10.2514/3.44165
https://doi.org/10.1115/1.3445758
https://doi.org/10.2514/3.44461
https://doi.org/10.1061/(ASCE)0893-1321(2008)21:3(174)
https://doi.org/10.1016/j.ijimpeng.2008.10.002


Aerospace 2023, 10, 802 24 of 25

19. Li, J.J.; Xuan, H.J.; Liao, L.F.; Hong, W.R.; Wu, R.R. Penetration of disk fragments following impact on thin plate. J. Zhejiang Univ.
Sci. A 2009, 10, 677–684. [CrossRef]

20. Xuan, H.J.; Liu, L.L.; Feng, Y.M.; He, Q.; Li, J.J. Containment of high-speed rotating disk fragments. J. Zhejiang Univ. Sci. A 2012,
13, 665–673. [CrossRef]

21. Winter, T.; Hu, A.; Beck, H. Simulation of Containment-Tests of Fast-Spinning Rotors by Explicit FEM. Available online:
https://www.dynalook.com/conferences/european-conf-2007/simulation-of-containment-tests-of-fast-spinning.pdf (accessed
on 14 August 2023).

22. Bai, C.E.; Xuan, H.J.; Huang, X.N.; He, Z.; Hong, W. Containment ability and groove depth design of U type protection ring. Chin.
J. Aeronaut 2016, 29, 395–402. [CrossRef]

23. Wang, X.; Tsung, F.; Li, W.; Xiang, D.; Cheng, C. Optimal space-filling design for symmetrical global sensitivity analysis of
complex black-box models. Appl. Math. Model. 2021, 100, 303–319. [CrossRef]

24. Wang, Y.; Pan, H.; Shi, Y.; Wang, R.; Wang, P. A new active-learning estimation method for the failure probability of structural
reliability based on Kriging model and simple penalty function. Comput. Methods Appl. Mech. Eng. 2023, 410, 116035.

25. Haftka, R.T.; Villanueva, D.; Chaudhuri, A. Parallel surrogate assisted global optimization with expensive functions a survey.
Struct. Multidiscip. Optim. 2016, 54, 3–13. [CrossRef]

26. Srinivas, N.; Deb, K. Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. 1994,
2, 1301–1308. [CrossRef]

27. Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high rates and high temperatures.
In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983; pp. 541–557.

28. Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and
pressures. Eng. Fract. Mech. 1985, 21, 31–48. [CrossRef]

29. He, Z.; Xuan, H.; Bai, C.; Song, M.; Zhu, Z. Containment of soft wall casing wrapped with Kevlar fabric. Chin. J. Aeronaut 2019, 32,
954–966. [CrossRef]

30. Benaissa, B.; Hocine, N.A.; Khatir, S.; Riahi, M.K.; Mirjalili, S. YUKI Algorithm and POD-RBF for Elastostatic and dynamic crack
identification. J. Comput. Sci. 2021, 55, 101451. [CrossRef]

31. Buljak, V.; Maier, G. Proper orthogonal decomposition and radial basis functions in material characterization based on instru-
mented indentation. Eng. Struct. 2011, 33, 492–501. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1631/jzus.A0820746
https://doi.org/10.1631/jzus.A1200047
https://www.dynalook.com/conferences/european-conf-2007/simulation-of-containment-tests-of-fast-spinning.pdf
https://doi.org/10.1016/j.cja.2016.02.006
https://doi.org/10.1016/j.apm.2021.08.015
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1016/0013-7944(85)90052-9
https://doi.org/10.1016/j.cja.2019.01.008
https://doi.org/10.1016/j.jocs.2021.101451
https://doi.org/10.1016/j.engstruct.2010.11.006

	Introduction 
	A Neck Structure Optimal Design Method for the Turbine Wheel 
	Parametric and Finite Element Model 
	Optimization Objective 
	Optimization Process 
	Sensitivity Analysis 
	Simulation Verification 

	Experimental Verification of the Optimal Design Method 
	Neck Structure Turbine Wheel 
	Rotor Over-Speed Burst Test 
	Comparison with Experimental Results 

	Effect of Turbine Wheel Burst Modes on Containment 
	Material Model 
	Finite Element Model and Boundry Conditions 
	Containment Simulation for the Wheel Burst 
	Containment Similation for the Rim Burst 
	Comparison between Different Burst Modes 

	Experimental Verification of the Containment for Different Turbine Wheel Burst Modes 
	Turbine Wheel and Containment Ring 
	Containment Test 
	Comparison with Experimental Results 

	Conclusions 
	References

