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Abstract: The bending deformation can affect the lateral force of spinning projectiles with large aspect
ratios, thus interfering with their flight stability. Based on the established spin–deformation coupling
motion model, the unsteady Reynolds averaged Navier–Stokes (URANS) equations are solved to
simulate the flow over a large−aspect−ratio projectile undergoing spin and spin−deformation
coupling motion by using the dual−time stepping method and dynamic mesh technique, obtaining
the lateral force. Furtherly, the flow mechanism is analyzed for the changed lateral force induced by
the bending deformation. The results indicate that the variation of transient lateral force for the head
of a projectile is consistent with that of the deformation−induced additional sideslip angle; affected
by the deformation−induced compression wave and expansion wave, the time−averaged lateral
force for the middle of a projectile will be increased at small angles of attack, but changed little at
large angles of attack; at small angles of attack, the change trend of transient lateral force for the tail
of a projectile is similar to that of additional angle of attack caused by the deformation; at large angles
of attack, the characteristic of phase lag is presented between the transient lateral force for the tail of
a projectile and the additional sideslip angle.

Keywords: spinning projectiles; deformation; lateral force; spin−deformation coupling

1. Introduction

The shape of a large aspect ratio with a light structure is usually adopted by supersonic
projectiles to increase their flight distance and payload, which consequently leads to the
obvious structural deformation. The coupling of spinning, structural deformation and
coning motion occurs in the flight process of spinning projectiles with a large aspect
ratio, which brings uncertain effects on their maneuverability and stability. With the
improvement of control precision and the decrease of stability margin, the influence of
the bending deformation on aerodynamic characteristics has been widely considered [1–3].
Therefore, it is necessary to investigate the aerodynamic characteristics of a projectile
undergoing the spin−deformation coupling motion.

Due to the Magnus effect, lateral force is generated for a spinning projectile with angles
of attack [4,5]. Although the lateral force is usually 1/100 to 1/10 of the normal force, the
corresponding yaw moment always deviates the projectile from the plane of angle of attack,
which interferes with its flight stability [6,7]. In 1955, Martin [8] began to theoretically
explore the Magnus effect of rotating cylinders. Later, Iversen et al. [9,10] conducted a
theoretical analysis of the Magnus effect on the body of revolution. Generally, theoretical
research is usually suitable for spinning projectiles with simple shapes. However, the shape
of projectiles is often complex practically, which makes it difficult to obtain the aerodynamic
characteristics caused by the spinning motion using the theoretical method. With the devel-
opment of computer technology and numerical methods, the numerical simulation based
on computational fluid dynamics (CFD) has been widely used in investigations on the aero-
dynamic characteristics of spinning projectiles [11–18]. For example, Simon et al. [11] used
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the Spalart–Allmaras (S–A) turbulence model to numerically simulate the flow field for the
body of revolution. The results indicated that the Magnus effect can be effectively reduced
with the appropriate location of the contra−spinning surface. Klatt et al. [12] researched
the flow field for the body of revolution with an aspect ratio of 6.37 based on the k− ω
turbulence model, and pointed out that the emergence of secondary vortices was a reason
for the change in the locally lateral force. Yin et al. [13,14] considered the projectile AFF as
the research object to analyze the influence of aerodynamic interference among canards,
the body and fins on Magnus effect. Unfortunately, the present studies rarely involve
the lateral force for the large−aspect−ratio projectile undergoing the spin−deformation
coupling motion.

The complex aerodynamic effects will be induced by the spin−deformation coupling
motion. Motivated to analyze the flight stability of the spinning projectile with deformation,
the effective angle of attack is usually employed to represent the deformation. As a result,
the aerodynamic coefficient of the deformed projectile is obtained through multiplying the
effective angle of attack by the aerodynamic derivative [19–22]. However, for this method,
the effect of deformation on the flow field of the spinning projectile is ignored, while
the nonlinear aerodynamic force caused by the deformation cannot be determined [23].
Wu et al. [24] studied the aerodynamic characteristics of the body of revolution with a
deformed head, and the results showed that the deformation of head affected the normal
and lateral forces. Youn et al. [25] and Paul et al. [26] regarded the projectile as a rigid
body with several hinges, and then analyzed the influence of the bending of the projectile
at the hinged position on the aerodynamic characteristics. All these results demonstrate
that it is necessary to research the effect of deformation on the aerodynamic characteristics
of spinning projectiles. Unfortunately, the previous works are quite limited. On the one
hand, the research object is mainly the body of revolution with a small aspect ratio. On
the other hand, the deformation form of the projectile is too simplified to fully study the
influence of the deformation on the aerodynamic characteristics. Therefore, it is urgent to
systematically research the effect of deformation on the lateral force of spinning projectiles
with large aspect ratios.

In order to investigate the influence of deformation on the lateral force of spinning
projectiles with large aspect ratios, the spin−deformation coupling motion model is es-
tablished in this paper. The Apache, a spinning projectile with a large aspect ratio, is
chosen as the research object. Based on the unsteady numerical simulation method and
dynamic mesh technology, the flow over the large−aspect−ratio projectile undergoing the
spin−deformation coupling motion is simulated. Furtherly, the variation of lateral force is
obtained, and the flow mechanism is analyzed. The conclusions provide effective guidance
for the analysis of the aerodynamic characteristics and flight performance of the deformed
spinning projectile with a large aspect ratio.

2. Computational Model and Grid

As a typical spinning projectile with a large aspect ratio, the Apache is used to explore
the lateral force of the deformed projectile. Its model dimension is shown in Figure 1. The
projectile diameter d is chosen as a standard caliber. The Apache comprises a 3d ogive nose,
a 21.88d cylindrical body and four fins with an installation angle (η = 2

◦
).

The origin O of the inertial coordinate system, Oxyz, coincides with the initial position
of head vertex. The axis Ox is consistent with the longitudinal axis of the projectile, and
its positive direction is from the nose to the tail. The axis Oy is located in the vertical
plane containing the axis Ox, which is perpendicular to the axis Ox. Its positive direction
is upward. The axis Oz and the other two axes form the right−hand coordinate system.
Figure 2 shows the spin direction, the fins and the roll angle. The spin is counterclockwise.
The leeward fin at the initial time is defined as fin1. The others are defined as fin2, fin3
and fin4 in turn along the spin direction. The angle between the fin1 and the axis Oy is
determined as the rolling angle γ.



Aerospace 2023, 10, 810 3 of 24

Aerospace 2023, 10, x FOR PEER REVIEW 3 of 25 
 

 

and fin4 in turn along the spin direction. The angle between the fin1 and the axis Oy is 
determined as the rolling angle 𝛾. 

 
Figure 1. Model dimension of the Apache. 

 
Figure 2. Definitions of spin direction, fins and roll angle. 
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Figure 2. Definitions of spin direction, fins and roll angle.

Figure 3 shows the mesh for the flow calculation. The outer domain and the inner
domain constitute the whole computational domain, which are connected by the inter-
face. Numerical interpolation is employed at the interface to ensure the flux conservation
between the two domains. The dynamic mesh technique is used to adjust the mesh of
the inner domain to adapt to the spin and deformation of the projectile, while the mesh
of the outer domain remains unchanged. The boundary conditions in the forward and
circumferential direction are freestream condition. The boundary in the projectile base
direction is set to pressure−outlet. The projectile surface is set to no−slip and adiabatic
wall condition.
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3. Spin−Deformation Coupling Motion

The structural deformation of projectiles includes the bending and the twisting of
the body and fins, which is extremely complicated. In this paper, only the deformation of
the body is considered, and that of the fins is ignored. In Figure 4, the spin−deformation
coupling motion can be, respectively, decomposed into the spin and deformation. The local
coordinate system Oxbybzb is a moving coordinate system whose origin O coincides with
the center of the cross section. The direction of the axis Oxb is consistent with that of the
axis Ox. And, the axis Oyb is located in the longitudinal symmetry plane of projectiles,
which is perpendicular to the axis Oxb. Then, the axis Ozb and the other two axes form the
right−hand coordinate system. The position of point P(x0, y0, z0) at the time t is, respec-
tively, defined as P′(x′, y′, z′) and P′

(
x′b, y′b, z′b

)
in the Oxyz and Oxbybzb. The relationship

between P′
(

x′b, y′b, z′b
)

and P(x0, y0, z0) can be expressed as
x′b = x0
y′b = y0 + ∆d(t)
z′b = z0

(1)

where ∆d(t) represents the deformation of the projectile and is described as

∆d(t) =
∫ t

0

∂ψ(x, t)
∂t

dt (2)

where Ψ(x, t) denotes the deformation law of the projectile. By the coordinate transforma-
tion, it is obtained as x′

y′

z′

 =

0 1 1
1 cos γ − sin γ
1 sin γ cos γ

x′b
y′b
z′b

 (3)
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Equations (1)–(3) are the mathematical description for the spin−deformation
coupling motion.
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Generally, the bending shape of the projectile is mainly manifested as its first order
mode shape [21]. Thus, the separation variable method can be exploited to obtain the
deformation law of the projectile as

ψ(x, t) = H(t)Θ(x) (4)

where H(t) is the variation of deformation with time; and Θ(x) denotes the first order
mode shape. To simplify the calculations, the H(t) is written as

H(t) = A sin(2π f t + ∆θ) (5)

where A is the deformation amplitude. ∆θ represents the initial phase, ∆θ ∈
[
0, 90

◦]
. F

denotes the frequency, which is equal to the spinning frequency of the projectile. Hence,
the deformation law of the projectile is expressed as

ψ(x, t) = A sin(2π f t + ∆θ)Θ(x) (6)

The first order mode shape of the Apache obtained by modal analysis is plotted in
Figure 5. Here, δhead denotes the deformation of the head vertex. Once Equation (6) is
determined, Equations (1)−(3) can be solved using the numerical method.

Aerospace 2023, 10, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 4. Diagram of the spin−deformation coupling motion. 

Generally, the bending shape of the projectile is mainly manifested as its first order 
mode shape [21]. Thus, the separation variable method can be exploited to obtain the de-
formation law of the projectile as 

( ) ( ) ( ),x t H t xψ Θ=  (4)

where 𝛨(𝑡) is the variation of deformation with time; and 𝛩(𝑥) denotes the first order 
mode shape. To simplify the calculations, the 𝛨(𝑡) is written as 

( ) ( )sin 2H t A f tπ Δθ= +  (5)

where A is the deformation amplitude. 𝛥𝜃 represents the initial phase, 𝛥𝜃 ∈ [0, 90°]. F 
denotes the frequency, which is equal to the spinning frequency of the projectile. Hence, 
the deformation law of the projectile is expressed as 

( ) ( ) ( ), sin 2x t A f t xψ π Δθ Θ= +  (6)

The first order mode shape of the Apache obtained by modal analysis is plotted in 
Figure 5. Here, 𝛿୦ୣୟୢ denotes the deformation of the head vertex. Once Equation (6) is 
determined, Equations (1)−(3) can be solved using the numerical method. 

 
Figure 5. First order mode shape of the Apache. 

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

x/L

δ 
/δ

he
ad

Figure 5. First order mode shape of the Apache.

The spin−deformation coupling motion trajectories are showed in Figure 6. In the
figure, the δy and δz are the longitudinal and lateral components of the spin−deformation
coupling motion, respectively. It is seen that the motion trajectory is an ellipse when
∆θ = 0

◦
, while the trajectory is the heart shape for ∆θ = 90

◦
. When ∆θ ∈

(
0, 90

◦)
, the

trajectory gradually changes from an ellipse to a heart shape. For convenience, the motion
trajectory is defined as Ω∆θ(∆θ ∈

[
0, 90

◦]
). For example, Ω0 represents the elliptical motion

trajectory, while Ω90 is the heart−shaped motion trajectory. Moreover, when the projectile
does not deform (i.e., A = 0), the trajectory is defined as Ω. Remarkably, since Ω0 is
axisymmetric about the y axis, the time−averaged value of Ω0 along the y axis is zero,
and the induced time−averaged additional angle of attack is also zero. Similarly, Ω90 is
axisymmetric about the z axis, so the induced time−averaged additional sideslip angle is
also zero.
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4. Numerical Method

For flow simulation, both large eddy simulation (LES) and URANS are available meth-
ods. The fundamental idea of LES is to directly simulate larger eddies that significantly
contribute to the overall flow behavior, while modeling or filtering out smaller eddies that
are dissipative and have less impact on the overall flow characteristics [27]. LES can capture
fine−scale flow features, thus enhancing its predictive precision for turbulence characteris-
tics. Nonetheless, LES often demands fine grid resolutions, leading to a substantial increase
in computational costs and the demand for computing resources.

In contrast, URANS significantly reduces the computational cost by computing
time−averaged solutions of the Navier–Stokes equations to predict the mean behavior of
fluid flow [27]. Moreover, URANS typically necessitates specific grid density near the wall,
while maintaining a relatively looser grid in other regions. Although it may not accurately
capture fine−scale turbulent features, URANS can yield reasonable and reliable results in
practical engineering applications. In fact, URANS is widely used in aerospace engineering
to simulate the flow around aircraft, projectiles and other aerodynamic bodies due to its
ability to provide a reasonable compromise between computational cost and accuracy
for predicting lift, drag and other aerodynamic coefficients [28,29]. Therefore, URANS is
adopted in this study.

4.1. Governing Equations and Turbulence Model

In order to precisely simulate the unsteady flow generated by the spinning projectile
with deformation and to assess alterations in the lateral force, the integral form of the
three−dimensional URANS equations is adopted as the governing equation, as follows:

∂

∂t

y

Ω

WdV +
x

∂Ω

(F−G)•ndS =
x

Ω

HdV (7)

where Ω is the control volume. ∂Ω and n represent the boundary and the outer normal
direction of the control volume. t is the physical time. H is the source terms, which
maintains zero in this study. W, F and G, respectively, denote the conserved variables, the
convective terms, and the viscous terms, which are expressed as

W =

 ρ
ρu
ρE

, F =

 ρ
(
u− ug

)
ρu
(
u− ug

)
+ pI

ρE
(
u− ug

)
+ pu

, G =

 0
σT

σT•u + q


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where the stress tensor σT is expressed as

σT = µ

(
∇u + (∇u)T − 2

3
(∇•u)I

)
where u denotes the fluid velocity vector. ug denotes the velocity of mesh induced by the
spinning motion and bending deformation, which is determined by the dynamic mesh
technology. q is the heat flux. ρ, p, µ and E are, respectively, the density, the pressure, the
dynamic viscosity and the total energy per unit mass.

The shear−stress transport (SST) k−ω turbulence model proposed by Menter [30] is
employed to calculate the flow of the deformed spinning projectiles. Besides the free flow
independence of the k− ε model in the far field, it effectively utilizes the robustness and
accuracy of the k−ω model in the near−wall field [3]. Moreover, the turbulent viscosity
in the SST k − ω model is modified to involve the transport of turbulent shear stress.
Consequently, the SST k−ω model is competent to simulate the flow around a deformed
spinning projectile.

4.2. Dynamic Mesh Method

In this paper, the spinning motion and bending deformation are involved for the
simulation. Therefore, the dynamic mesh method is exploited to adjust the mesh in the
fluid domain. The rigid−motion mesh method is employed to treat the mesh motion
caused by the rigid motion, while the RBF mesh deformation method is used to solve the
morphed boundary due to the bending deformation.

4.2.1. Rigid−Motion Mesh Method

For the rigid−motion mesh method, the mesh is updated based on the translation and
rotation of the rigid body. It can ensure the topological structure and the quality of the
mesh with great computational efficiency.

Defining r0 = [x0, y0, z0]
T as the initial position of mesh node P, and the position

rm = [xm, ym, zm]
T of mesh node P′ determined by the rigid motion at any time can be

described as
rm = r0 + ∆rtran + ∆rrot (8)

where ∆rtran is the displacement caused by the translation, which is consistent with that of
the centroid; ∆rrot represents the displacement caused by the rotation, and its expression is

∆rrot = T(r0 − rcg)− (r0 − rcg) (9)

where rcg is the centroid position. T represents the transformation matrix, which can be
written as

T =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos φ

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 (10)

where γ, θ and ϕ, respectively, denote the rolling angle, pitching angle and yawing angle.

4.2.2. RBF Mesh Deformation Method

By employing the RBF mesh deformation method proposed by de Boer et al. [31], the
boundary deformation will be diffused to the interior mesh nodes in the fluid domain.
Generally, the matrix equations whose dimensions are equal to the number of mesh nodes
in the boundary are needed to solve for the RBF mesh deformation method. Hence, the
computational cost is very high for a large number of mesh nodes in the boundary. In
order to improve the computational efficiency, the RBF mesh deformation method based
on dynamic control points in Ref. [32] is adopted to reduce computational cost with a
strong robust.
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4.3. Discretization Methods

The dual−time stepping method [33] not only guarantees precise computational
outcomes but also significantly enhances the computational efficiency. Accordingly, the
present study adopts the dual−time stepping method to address the unsteady flow. An
unsteady preconditioning [34] is usable when applying the dual−time stepping method.
This approach aims to boost the accuracy of the solution by refining the scaling of artificial
dissipation. Additionally, it seeks to optimize computational efficiency by optimizing
the number of sub−iterations needed during each time step. Here, a preconditioned
pseudo−time−derivative term is introduced into Equation (7), as follows:

Γ
∂

∂τ

y

Ω

QdV +
∂

∂t

y

Ω

WdV +
x

∂Ω

(F−G)•ndS =
x

Ω

HdV (11)

where τ denotes the pseudo−time employed in the time−marching procedure. Γ and Q,
respectively, denote the preconditioning matrix and the primitive variables [35].

The spatial discretization employs the second−order upwind scheme. Within this
scheme, the face value ξ f is determined through the following expression:

ξ f = ξ + ∆ξ•→r (12)

where ξ and ∆ξ, respectively, represent the value at the cell center and its gradient in the
upstream cell.

→
r signifies the displacement vector from the upstream cell centroid to the

face centroid.
The time discretization uses the second−order time integration scheme. The specific

formula for this scheme is expressed as:

3χn+1 − 4χn + χn−1

2∆t
= L(χ) (13)

where χ represents a scalar quantity. ∆t is the time step. The function L encompasses the
spatial discretization.

5. Validation of Numerical Method
5.1. Grid Independence

The grid independence research is carried out by utilizing the two types of grid with
different amounts. The specific grid parameters are shown in Table 1. The topologies
of the two type grid are the same, but their amounts are, respectively, 6.47 million and
12.82 million. The incoming Mach number is Ma = 3.0, the angle of attack is α = 12

◦
and

the Reynolds number is ReL = 1.54× 107. The spin parameter ω(ω = ωxd/2V∞) is 0.11,
and the time step is chosen as ∆T = 1× 10−5s. Moreover, the spin−deformation coupling
motion trajectory is Ω0, shown in Figure 6.

Table 1. Grid parameters.

Apache Coarse Fine

Axial 345 505
Spanwise 71 91

Circumferential 140 180
Total (Mil.) 6.47 12.82

Table 2 displays the relative difference of time−averaged aerodynamic coefficients
obtained by the two type grid. The values of the time−averaged normal force coefficient Cn
and the pitching moment coefficient Cmz at different grids are similar, with the relative dif-
ference being less than 0.2%. Moreover, the relative difference between the time−averaged
lateral force coefficient Cz and the time−averaged yaw moment coefficient Cmy under dif-
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ferent grids is within 8%. Obviously, the calculation results using the two types of different
grids are almost the same, which satisfies the grid independence. Therefore, the coarse
mesh is determined to simulate the flow for the large−aspect−ratio projectile undergoing
spin−deformation coupling motion due to its high computational efficiency.

Table 2. Relative difference of aerodynamic coefficients.

Apache Cn Cz Cmz Cmy

Coarse–Fine −0.08 −2.62 −0.16 7.51

5.2. Time Step Independence

The coarse mesh is used for the validation of time step independence. Three time steps
are set to ∆T1 = 5× 10−5 s, ∆T2 = 1× 10−5 s and ∆T3 = 5× 10−6 s. The other calculation
conditions are consistent with those in Section 5.1. Figure 7 indicates the aerodynamic
coefficients obtained within a spin cycle at different time steps. It can be observed that the
difference between the results calculated at ∆T2 and ∆T3 is small, while the results obtained
at ∆T1 are significantly different from those calculated at ∆T2 and ∆T3. Therefore, the time
step for the numerical calculation is chosen as ∆T2.
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Figure 7. Aerodynamic coefficients within a spin cycle at different time steps. (a) Cn and Cz; (b) Cmz

and Cmy.

5.3. Comparison Validation

The experiment data in Ref. [36] is exploited to validate the numerical method. The
number of grids is approximately 6.5 million. The computational conditions are Ma = 3.0,
ω = 0.11 and ReL = 1.54× 107. Figure 8 shows the comparison between the CFD−based
numerical results and the experimental ones. It can be seen that the time−averaged lateral
force coefficient Cz and yaw moment coefficient Cmy, obtained by numerical calculation,
are in good agreement with the experimental data. Therefore, the numerical method can be
employed to simulate the flow for spinning projectiles with large aspect ratios.

In order to further verify the accuracy, the numerical method proposed in this paper
is used to compute the aerodynamic characteristics of a spinning projectile with elastic
deformation as outlined in Ref. [3]. This computation adheres to the original author’s
specified conditions, encompassing Ma = 3.0, α = 15

◦
, ReL = 5.8× 107 and ω = 0.283.

Figure 9 gives the comparison between the numerical result obtained in this paper and
that obtained in Ref. [3]. This comparison reveals a strong agreement between the two,
providing additional confirmation of the accuracy of the numerical method presented in
this paper.
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Figure 8. Comparison of experimental data and CFD results. (a) Cz; (b) Cmy.
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6. Effect of Deformation on Lateral Force

The reference length is the length of the Apache. The relative position Xcg of the
centroid and the head vertex before the engine working is 0.54 [36]. However, after the
engine work is completed, the centroid is moved forward by 10% relative to the initial
position. Thus, Xcg is determined as 0.44 in this paper. The other computational conditions
are determined as shown in Table 3, unless otherwise specified. On this basis, the flow
is simulated when the projectile undergoes spin (Ω) and the spin−deformation coupling
motion (Ω∆θ , ∆θ ∈

[
0, 90

◦]
). The specific trajectory shape of Ω∆θ is shown in Figure 6.

Table 3. Computational conditions.

ReL Ma ¯
ω

¯
Xcg α A

1.54 × 107 3.0 0.011 0.44 0◦~12◦ 0~0.2d

6.1. The Variation with Trajectory

Figure 10 exhibits the variation of the time−averaged lateral force coefficient Cm
z for

the projectile with the trajectory Ω∆θ . As shown in Figure 10, the value of Cm
z decreases

continuously with the trajectory changing from Ω0 to Ω90 at the different angles of attack
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α. That is, the value of Cm
z is the largest when the trajectory is Ω0, while it is the smallest

for the Ω90.

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 9. Comparison of numerical results obtained in this paper and that obtained in Ref. [3]. 

6. Effect of Deformation on Lateral Force 
The reference length is the length of the Apache. The relative position 𝑋ത௖௚ of the cen-

troid and the head vertex before the engine working is 0.54 [36]. However, after the engine 
work is completed, the centroid is moved forward by 10% relative to the initial position. 
Thus, 𝑋ത௖௚ is determined as 0.44 in this paper. The other computational conditions are de-
termined as shown in Table 3, unless otherwise specified. On this basis, the flow is simulated 
when the projectile undergoes spin (𝛺) and the spin−deformation coupling motion (𝛺୼ఏ, 𝛥𝜃 ∈ [0, 90°]). The specific trajectory shape of 𝛺୼ఏ is shown in Figure 6. 

Table 3. Computational conditions. 𝐑𝐞𝑳 Ma 𝝎ഥ  𝑿ഥ𝒄𝒈 𝜶 A 
1.54 × 107 3.0 0.011 0.44 0°~12° 0~0.2d 

6.1. The Variation with Trajectory 
Figure 10 exhibits the variation of the time−averaged lateral force coefficient 𝐶௭௠ for 

the projectile with the trajectory 𝛺୼ఏ. As shown in Figure 10, the value of 𝐶௭௠ decreases 
continuously with the trajectory changing from 𝛺଴ to 𝛺ଽ଴ at the different angles of at-
tack 𝛼. That is, the value of 𝐶௭௠ is the largest when the trajectory is 𝛺଴, while it is the 
smallest for the 𝛺ଽ଴. 

 
Figure 10. Variation of the time−averaged lateral force coefficient for the projectile with the trajectory 𝛺୼ఏ. 

1.1 1.2 1.3 1.4 1.5
-0.3

-0.2

-0.1

0.0

C
z

Cn

 Results
 Yin et al. 2016 

-0.12

-0.09

-0.06

-0.03

0.00

Ω 0 Ω 90Ω 60

C
 m z

 α =4°
 α =12°

Ω 30

Figure 10. Variation of the time−averaged lateral force coefficient for the projectile with the
trajectory Ω∆θ .

Figure 11 shows the variation of the time−averaged lateral force coefficient Cb
z for the

projectile body with the trajectory Ω∆θ . It is found that as the trajectory changes from Ω0
to Ω90, the variations of Cb

z and Cm
z are similar at α = 4

◦
, while their trends are opposite at

α = 12
◦
. However, it is worth noting that the extreme values of Cb

z and Cm
z are all obtained

when the trajectory is Ω0 or Ω90. Therefore, the following will focus on the analysis of the
lateral force when the trajectory is Ω0 or Ω90.
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Figure 11. Variation of time−averaged lateral force coefficient for the projectile body with Ω∆θ .

6.2. The Variation with Angles of Attack

Figure 12 exhibits the variation of the time−averaged lateral force coefficient Cm
z for

the projectile with angles of attack α at different trajectories. As shown in Figure 12, the
variation of Cm

z is similar at different trajectories, which increases first and then decreases
with α. When the trajectory is Ω0, the value of Cm

z is maximum. Although the induced
time−averaged additional sideslip angle is zero for the Ω90, the Cm

z is still changed by the
deformation, especially at large α.
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Figure 12. Variation of time−averaged lateral force coefficient for the projectile with α.

Figure 13 shows the variation of the time−averaged lateral force coefficient Cb
z for the

projectile body with α at different trajectories. It is found that the difference between Cb
z

and Cm
z is small at the same α when the trajectory is Ω or Ω90. Moreover, although the

Cm
z is larger than the Cb

z at same the α when the trajectory is Ω0, the variation of the two
is consistent. Thus, the body determines the variation of the time−averaged lateral force
coefficient of the projectile with α at different trajectories.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 25 
 

 

two is consistent. Thus, the body determines the variation of the time−averaged lateral 
force coefficient of the projectile with 𝛼 at different trajectories. 

 
Figure 13. Variation of time−averaged lateral force coefficient for the projectile body with 𝛼. 

Figure 14 depicts the variation of the time−averaged lateral force coefficient 𝐶௭௙ for 
the fins with 𝛼 at different trajectories. It is seen that the variation of the 𝐶௭௙ for all fins 
with 𝛼 is consistent when the trajectory is 𝛺଴, while the values of fin2 and fin4 are the 
largest. When the trajectory is 𝛺ଽ଴, the 𝐶௭௙ of all tails change little around the zero at dif-
ferent 𝛼. 

  
(a) (b) 

Figure 14. Variation of time−averaged lateral force coefficient for the fins with 𝛼. (a) 𝛺଴; (b) 𝛺ଽ଴. 

6.3. The Variation with Deformation Amplitude 
Figure 15 shows the variation of the time−averaged lateral force coefficient 𝐶௭௠ for 

the projectile with the deformation amplitude A. Obviously, the value of the 𝐶௭௠ increases 
linearly with the increase of the A for the 𝛺଴. When the trajectory is 𝛺ଽ଴, the 𝐶௭௠ changes 
nonlinearly with the A, and the trends are different at different 𝛼. Specifically, the value 
of 𝐶௭௠  decreases with the increase of the A when 𝛼 = 4° , but the value increases at 𝛼 = 12°. 

0 4 8 12
-0.10

-0.05

0.00

0.05

 Ω
 Ω 0

 Ω 90

C
 b z

α/ °

0 4 8 12
-0.06

-0.03

0.00

0.03

α/ °

C f z  fin1
 fin2
 fin3
 fin4

0 4 8 12
-0.06

-0.03

0.00

0.03

α/ °

C f z

 fin1
 fin2
 fin3
 fin4

Figure 13. Variation of time−averaged lateral force coefficient for the projectile body with α.

Figure 14 depicts the variation of the time−averaged lateral force coefficient C f
z for

the fins with α at different trajectories. It is seen that the variation of the C f
z for all fins with

α is consistent when the trajectory is Ω0, while the values of fin2 and fin4 are the largest.
When the trajectory is Ω90, the C f

z of all tails change little around the zero at different α.
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6.3. The Variation with Deformation Amplitude

Figure 15 shows the variation of the time−averaged lateral force coefficient Cm
z for

the projectile with the deformation amplitude A. Obviously, the value of the Cm
z increases

linearly with the increase of the A for the Ω0. When the trajectory is Ω90, the Cm
z changes

nonlinearly with the A, and the trends are different at different α. Specifically, the value of
Cm

z decreases with the increase of the A when α = 4
◦
, but the value increases at α = 12

◦
.
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Figure 16 shows the variation of the time−averaged lateral force coefficient Cb
z for the

projectile body with A. It is observed that for the Ω0, the value of the Cb
z increases linearly

with the A at α = 4
◦
, while it changes from negative to positive and increases continuously

with the A when α = 12
◦
. When the trajectory is Ω90, the variations of the Cb

z are consistent
with that of the Cm

z in Figure 15b, which are nonlinearly correlated with the A.
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tion amplitude A. (a) Ω0; (b) Ω90.

7. Mechanism on the Lateral Force Induced by Deformation

As mentioned in Section 6, the lateral force of spinning projectiles with large aspect
ratios is significantly changed due to the bending deformation. In this section, the flow is
analyzed for the projectile experiencing the spin−deformation coupling motion, which is
exploited to reveal the mechanism for the change of the lateral force. The trajectories and
characteristic moment shown in Figure 17 are employed to explore the flow. In Figure 17a,
for the Ω0, the roll angles at the moments P and Q are, respectively, γ and 180

◦ − γ. At the
moment S, the additional angle of attack is zero. In Figure 17b, when the trajectory is Ω90,
the roll angles at the moments P and R are, respectively, γ and −γ. At the moment T, the
additional sideslip angle is zero.
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Figure 17. Characteristic moment for the trajectory (a) Ω0 and (b) Ω90.

7.1. Compression and Expansion of the Fluid

When the projectile deforms, the compression and expansion waves are produced
in the axial flow, which affects the aerodynamic characteristics. Figure 18 shows the
compression wave and expansion wave induced by the deformation. It is seen that for the
projectile with deformation, the high pressure gas after the shock wave continues to expand
and accelerate in the head. When it reaches the middle or tail of the body, the compression
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wave is generated on the concave side of the body, which leads to the decrease of velocity
and the increase of pressure for the local airflow. Whereas, the expansion wave is produced
on the convex side of the body, which causes the increase of velocity and the decrease of
pressure for the local airflow.
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Figure 18. Compression wave and expansion wave induced by the deformation. V and P, respectively,
represent velocity and pressure.

Figure 19 shows the effects of the compression wave and expansion wave on the
aerodynamic characteristics of the fins. In Figure 19a, affected by the compression wave and
expansion wave, a pair of forces F2 and F4 with the same direction are generated for the fin2
and fin4 at the characteristic moment P (the roll angle is γ). As shown in Figure 19b, when
the trajectory is Ω0, there exists the moment Q (the roll angle is 180

◦ − γ) where the lateral
force only appeared after the superposition of F2 and F′2, F4 and F′4. As shown in Figure 19c,
when the trajectory is Ω90, there exists the moment R (the roll angle is−γ) where the normal
force only appeared by superimposing F2 and F′2, F4 and F′4. Moreover, the interference
of the compression wave and expansion wave on the aerodynamic characteristics of the
fins causes the lateral and normal pressure center to move backward, which induces the
increase of the pitching moment and yaw moment of the projectile.

7.2. Change of Vortex and Pressure Distribution

In this section, the effect of the spin−deformation coupling motion on the vortex and
pressure distribution is researched to explain the reason for the deformation−induced
variation in the lateral force further. For convenience, the circumferential angle χ is defined
as shown in Figure 20. The point P is the origin of χ (i.e., χ = 0

◦
), and χ increases gradually

along the counterclockwise direction. The value of χ is defined as

χ =

{
χ 0◦ ≤ χ ≤ 180◦

χ− 360◦ 180◦ ≤ χ ≤ 360◦
(14)

7.2.1. Effect of the Trajectory Ω0

Figure 21 shows the distribution of the time−averaged lateral force coefficient Cz(x/L)
for the Ω and Ω0. It is observed that for the Ω0, the distribution curves at different α are
presented as parabolas when x/L ≤ 0.85. Affected by the fins, the variation of Cz(x/L)
for the Ω and Ω0 is similar when x/L > 0.85, which increases first and then decreases.
Notably, the Cz(x/L) for the head of the projectile body is consistent at different α when
the trajectory is Ω0, which indicates it is only related to the deformation. However, the
Cz(x/L) for the middle or tail is inconsistent, which declares it Is related to the deformation
and the flow structures.
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Figure 21. Distribution of time−averaged lateral force coefficient Cz(x/L) for the Ω and Ω0 at
different angles of attack α. (a) α = 4

◦
; (b) α = 12

◦
.

Firstly, the mechanism for the lateral force of the head is analyzed. Figure 22 exhibits
the variation of the lateral force coefficient C0.1

z at the cross section x/L = 0.1 when the
trajectory is Ω0. Meanwhile, the additional sideslip angle ∆β0 is also shown in Figure 22.
Notably, the physical quantities involved are normalized in the figure, namely

Πn(t) =
Π(t)
Πmax

(15)

where Π(t) represents the original physical quantity, and Πn(t) is its normalized result.
Πmax denotes the maximum value of Π(t). As shown in Figure 22, the variation of C0.1

z is
completely consistent with that of ∆β0 at different α, which indicates the lateral force for
the head mainly depends on the additional slip angle caused by the bending deformation.
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Figure 22. Lateral force coefficient C0.1
z and additional slip angle ∆β0 at the cross section x/L = 0.1 for

the Ω0.

Secondly, the mechanism for the lateral force of the middle is explored. Figure 23
shows the variation of the lateral force coefficient C0.5

z at the cross section x/L = 0.5 when
the trajectory is Ω0. Meanwhile, the lateral component δ0

z of Ω0 is also shown in Figure 23.
As shown in Figure 23, the variation of C0.5

z at α = 4
◦

is consistent with that of δ0
z , while

the variation of the two is different at α = 12
◦
. This manifests that the lateral force of

the middle is mainly related to the deformation at small α when the projectile deforms,
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but the influence of deformation is weakened with the increase of α. In fact, as shown in
Figure 18, the compression wave and expansion wave induced by the deformation increase
the pressure on the concave side of the middle, while the pressure on the convex side
is decreased. This asymmetry of the pressure distribution results in the negative lateral
force of the middle at small α induced by the deformation. However, it can be seen from
Figure 21 that the value of the lateral force of the middle changes little at large α, which
indicates that the increase of α will weaken the asymmetry of the pressure distribution.
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Figure 23. Lateral force coefficient C0.5
z and lateral component δ0

z at the cross section x/L = 0.5 for
the Ω0.

Finally, the mechanism for the lateral force of the tail is discussed. Figure 24 shows the
variation of the lateral force coefficient C0.8

z at the cross section x/L = 0.8 when the trajectory
is Ω0. Meanwhile, the additional sideslip angle ∆β0 and angle of attack ∆α0 are also shown
in Figure 24. It is seen that the change trend of the C0.8

z at α = 4
◦

is similar to that of ∆α0,
which indicates that even if the time−average value of ∆α0 is zero, it will also affect the
generation of the lateral force at small α. The variation of the C0.8

z at α = 12
◦

is similar to
that of ∆β0, but there exists the characteristic of phase lag between them. The specific flow
field is analyzed to further illustrate the mechanism for the lateral force of the tail induced
by the deformation in the following.
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Figure 24. Lateral force coefficient C0.8
z , additional sideslip angle ∆β0 and angle of attack ∆α0 at the

cross section x/L = 0.8 for the Ω0.

Figures 25 and 26, respectively, show the pressure contour, streamlines and the pres-
sure difference between the left and right sides of the cross section x/L = 0.8 when α is 4

◦
or



Aerospace 2023, 10, 810 19 of 24

12
◦
. As shown in Figure 25, the change of pressure difference within χ ∈

(
0
◦
, 40

◦)
is very

small, which indicates that the change of the separated vortex induced by the deformation
has little contribution to the lateral force at small α. When the trajectory changes from
Ω to Ω0, the pressure difference within χ ∈

(
40
◦
, 82

◦)
is positive due to the offset of the

low−pressure region on the left and right sides. However, the negative pressure difference
within χ > 82

◦
is induced by the offset of the high−pressure region on the windward side,

which plays a leading role in the generation of the lateral force. Therefore, the change of
the high−pressure region on the windward side induced by the additional sideslip angle
will lead to the negative lateral force of the tail.
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Combined with the analysis of Figures 24 and 25, it can be seen that the coupling of
the additional angle of attack and spinning motion determines the variation of the transient
lateral force of the tail at small angles of attack, while the additional sideslip angle will
increase its time−averaged value.
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Comparing Figure 25 with Figure 26, the variation of the pressure and vortex system
at the cross section x/L = 0.8 under α = 12

◦
is similar to that under α = 4

◦
when the

projectile deforms. However, the separation vortex is stronger when α = 12
◦
. Thus, the

decreased distance between the left separation vortex and the projectile surface leads to
a significant decrease in the pressure for the upper−left of the cross section, while the
increased distance between the right separation vortex and the projectile surface results in
a noticeable increase for the upper−right. Those lead to the positive pressure difference
within χ ∈

(
0
◦
, 75

◦)
. Moreover, besides the offset of the low−pressure region on the left

and right sides, the obvious decrease of pressure for the low−pressure region on the left
side also causes the pressure difference within χ ∈

(
75
◦
, 110

◦)
to be continuously positive

due to the interference of the separation vortex. Although the offset of the high−pressure
region on the windward side leads to the negative pressure difference within χ > 110

◦
, it

does not take up a leading role in the generation of the lateral force. Hence, the change of
the separation vortex is the main cause of the positive lateral force of the tail induced by
the deformation at large angles of attack. Moreover, according to the analysis of Figure 24,
the change of the separation vortex induced by the deformation can also lead to the phase
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lag between the transient lateral force and the additional sideslip angle for the tail at large
angles of attack.

7.2.2. Effect of the Trajectory Ω90

Figure 27 shows the distribution of the time−averaged lateral force coefficient Cz(x/L)
for the Ω and Ω90. It is seen that the variations of the Cz at different α are similar when
x/L ≤ 0.85 for the Ω and Ω90, which increase with x/L. Due to the larger value of the
Cz(x/L) of the tail at same α, the additional angle of attack greatly affects the lateral force
of the tail. That causes the obvious change of the Cz(x/L) of the tail for the Ω90. More
specifically, its value decreases under α = 4

◦
, but it increases when α = 12

◦
.
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Figure 27. Distribution of time−averaged lateral force coefficient Cz(x/L) for the Ω and Ω90 at
different angles of attack α. (a) α = 4

◦
; (b) α = 12

◦
.

Figure 28 shows the distribution of the additional angle of attack ∆α induced by the
Ω90. In Figure 28, the distribution curve of the ∆α is approximately central symmetry
about the point (0.53, 0). The ∆α decreases from ∆α1 to zero when x/L ∈ [0, 0.53], while it
decreases from zero to −∆α2 for x/L ∈ (0.53, 1]. As mentioned above, the lateral force of
the tail is more sensitive to the change of the angle of attack. Hence, the negative ∆α within
x/L ∈ (0.53, 1] has a greater influence on the lateral force of the projectile body. Form the
variation of the lateral force with α in Figure 12, the lateral force will decrease when α = 4

◦

due to the negative ∆α, while it will increase at α = 12
◦
.
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Figure 29 shows the lateral force coefficient C0.8
z for the cross section x/L = 0.8 under

different α when the trajectory is Ω90. The additional sideslip angle ∆β90 and angle of
attack ∆α90 are also shown in Figure 29. In Figure 29a, the variation of C0.8

z is extremely
similar to that of ∆α90 when α = 4

◦
, which indicates that the additional angle of attack is

the main reason for the change of the transient lateral force of the tail at small angles of
attack. As shown in Figure 29b, the variation of the C0.8

z is similar to that of the ∆β90 at
α = 12

◦
, and there exists the characteristic of phase lag between them. This is consistent

with the relationship between the lateral force of the tail and the additional attack angle or
the additional sideslip angle shown in Figure 23.
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8. Conclusions

The spin−deformation coupling motion model is established, and its specific trajectory
is analyzed by the numerical method. On this basis, the URANS equations are solved to
simulate the flow over a large−aspect−ratio projectile experiencing spin−deformation
coupling motion using the unsteady numerical simulation method and the dynamic mesh
technology, and the lateral force is obtained. Furtherly, the flow mechanism for the changed
lateral force induced by the bending deformation is analyzed. The conclusions are drawn
as follows:

1. The variation of the transient lateral force for the head of the projectile is consistent
with that of the additional sideslip angle induced by the bending deformation, and it
is almost independent of the angle of attack.

2. The compression wave and expansion wave will increase the time−averaged lateral
force for the middle of projectile at small angles of attack, while they have little effect
on its value at large angles of attack.

3. At small angles of attack, the coupling of the additional angle of attack and spinning
motion is the main reason for the change of the transient lateral force for the tail of
the projectile, while the additional sideslip angle will increase its time−averaged
lateral force.

4. At large angles of attack, the separation vortex will lead to a phase lag between the
transient lateral force for the tail of the projectile and the additional sideslip angle,
which will increase the time−averaged lateral force for the tail.
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