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Abstract: In this paper, a novel 3D (three-dimensional) soft-landing dynamic theoretical model of
a legged lander is developed in detail as well as its numerical solution process. The six degrees of
freedom motion (6-DOF) of the base model of the lander with mass center offset setting is considered
in the model as well as the spatial motion (3-DOF) of each landing gear. The characteristics of
the buffering force, the footpad–ground contact, and the inter-structure friction are also taken into
account during the motion of each landing gear. The direct constraint violation correction is used to
control the constraint stabilization of the nonlinear dynamic equation. Comparative studies between
the results from the proposed model and the simulated model (built in MSC Adams) under four
classical load cases show the validity of the model. Additionally, the influences of different types of
contact force models, friction force models, and a friction correction model used in the soft-landing
dynamic model are further investigated as a step toward understanding the soft-landing dynamic
performance and the feasibility of the dynamic model method of a legged lander. The results indicate
that a precise lateral force model of the footpad–ground contact is necessary to obtain the soft-landing
performance of one lander during soft landing.

Keywords: legged lander; soft landing; dynamic modeling; dynamic analysis; contact and friction
model

1. Introduction

The overall goal of China’s lunar program is to achieve China’s first manned landing
on the moon by 2030 and carry out lunar scientific exploration and related technological
experiments [1]. Different types of exploration equipment will be landing in the lunar
polar region, which has complex lunar surface morphology and discrete lunar soil-bearing
capacity characteristics [2]. Many types of modular landers with different masses, vol-
umes, configurations, and sizes will be needed in the new-generation extraterrestrial
exploration, such as landers with orientation capability [3], multifunctional landers with
soft landing and locomotion [4–6], etc. The soft-landing dynamic theoretical model is an
important method to evaluate the soft-landing performance of landers and optimize the
design and arrangement of structures [7,8]. In comparison with other models (MBD (Multi-
Rigid/flexible-Body Dynamic model), the FEM model, and physical test), the theoretical
model has several advantages: (1) a better understanding of the load–deformation mech-
anism among each component, such as the footpad/ground bearing load–deformation
relation; (2) easier implementation of modular designs to realize the quick design of a lan-
der; (3) integration of multiple theoretical models to meet various design and analysis
requirements; (4) reduces dependence on the commercial software such as MSC Adams
or Abaqus. Therefore, it is necessary to develop a theoretical model that will satisfy the
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requirements of the new-generation extraterrestrial exploration and enable the easy and
quick design and analysis of the next-generation lander.

In the process of soft-landing theoretical dynamic modeling, two issues require special
attention: the dynamic model of the lander and the interaction force model between the
footpad and the landing surface. Typically, the dynamic model of the lander comprises
the main body of the lander and four landing gears (one landing gear consists of one
primary and two secondary struts, an energy absorber in each strut, and one footpad)
and is frequently modeled using the Newton–Euler equation method. Early works on the
soft-landing dynamic theoretical model were predominantly carried out by the United
States during lunar landing projects such as the Apollo mission, leading to the development
of diverse theoretical models [9–11]. Despite the development of various theoretical models
for soft-landing dynamics, many of these models were simplified, such as the simplified 3D
model and two-dimensional model. As a result, the accuracy of these models may be limited
in predicting the behavior of the lander during the landing process. Lavender [9] simplified
the lander into a two-dimensional rigid body model with a hinged leg including elastic,
damping, and crushing effects, while Alderson and Wells [10] developed a theoretical model
for the Surveyor lunar lander that treated the spacecraft as a rigid body with compressible
leg sets. The leg sets were treated as a plane linkage with a rigid lower link hinged to
the spacecraft and a compressible, energy absorber upper link to the footpad. Zupp and
Doiron [11] discussed the shortcomings of NASA’s previous soft-landing dynamics model
and established a 3D dynamic simulation model. Its predictor-corrector method was
the backward difference formula that maintains a specified accuracy in the integration.
Takao etc. [12], based on a two-dimensional simplified landing model of a lander, proposed
an improved footpad/soil-resistant theory to minimize the risk of tipping during landing.
China is the third country to achieve a lunar landing, and some Chinese scholars in the field
of lunar research also have conducted a large number of studies on the analytical model.
Wan [13] established a 3D soft-landing model with the software MATLAB/SIMULINK and
did not give the detailed calculation program flow. Yue etc. [14] built a soft-landing model
of the launch vehicle using the Quasi-three-dimensional landing model and researched
seven extreme landing conditions. Ke etc. [15] designed an innovative six-legged mobile
lander with repetitive landing capacity and built a simplified 3D dynamic model and
assessment criteria. Lin etc. [16] built a two-dimensional soft-landing theoretical model of
a lunar lander, using a 7-DOF soft-landing dynamic model, and discussed the impact on
soft-landing dynamic characteristics by different initial horizontal velocities, pitch angles,
and inclinations of the lunar slope, etc. Yin [17] developed a planar dynamic model of
a three-legged lander considering the asymmetric characteristic and the leg–leg coupling
to understand the landing process of the asteroid probe with the three-legged cushioning
mechanism. Yang [18] established a 3D dynamics model of China’s Mars lander considering
plastic deformation parts and nonlinear contact forces. The equation of the model is too
complex to be widely used in other landers. In summary, the majority of ongoing research
on soft-landing dynamics were predominantly reliant on two-dimensional models, which
are limited in their usage and only analyze some classical load cases. Although a few 3D
models have been developed, the scalability and usability of these modeling methods are
slightly insufficient, making them unable to better support future research.

The interactive model between the footpad and the lunar soil is of paramount impor-
tance, as it directly impacts the successful soft landing of the lander and its corresponding
research work after soft landing. The dynamic response of the lunar soil during landings,
such as the penetration depth of the footpad and the soil’s vertical and horizontal load-
bearing capacity, are critical parameters in determining the stable position and angle of the
lander after landing. There are three kinds of contact force models that have been derived:
(1) the added mass model [19]; (2) the load model based on the Bekker theory [20], which
defines contact force F as a function of the indentation depth δ: F = K × δn, where K repre-
sents the stiffness parameter, and the exponent n depends on the topological properties
of the contacting surfaces; (3) the simplified dynamic bearing model in the form of the
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function on the force versus depth and velocity [18]. Moreover, many studies of fixed-shape
(non-locomoting) objects impacting and penetrating dry granular media have revealed
reaction forces that can be described by

F = Fp(z) + αv2 (1)

where v and z are the velocity and depth of one object. Fp(z) is a depth-dependent force. α is
the inertial drag coefficient [19]. However, during the impact, several different mechanical
phenomena can occur. Tension and shear failure, localized deformation, effects of adiabatic
shear, and crack propagation are only some of the important phenomena that may occur
individually or simultaneously. Then, there is no uniform view on the footpad–ground
bearing model when the bearing model considers other items such as penetration speed
(linear and nonlinear relation), the shape of the footpad, contact type, loading weight, etc.

To meet the future design requirements and the soft-landing performance analysis
of the legged lander, a 3D soft-landing dynamic theoretical model of a legged lander and
its numerical solution process is developed, validated, and analyzed. In Section 2, the 3D
soft-landing model of a legged lander is introduced, and the equations of kinematics and
dynamics for the base model, landing gear, and footpad–ground bearing model are derived.
In Section 3, the simulation program for the soft-landing model of the legged lander is
developed based on the proposed method using the software MATLAB and validated
by MSC Adams prototype under four classical load cases. In Section 4, different types of
contact models and friction models in the footpad–ground bearing model are discussed.
Furthermore, the inter-structure friction of the primary strut is also discussed.

2. Soft-Landing Model
2.1. Model Definition

A soft-landing dynamic model of the lander is shown in Figure 1. The lander consists
of four landing gears, the simplified base model, and other components. Each landing gear
consists of a primary strut, a footpad, and two secondary struts. Each strut is composed
of outer and inner tubes connected by the sliding hinge. Moreover, the connection joints
located at the points ai, bi, and ci in the No. i landing gear are the universal hinge, while the
joints located at the points di, ei and fi are the ball hinge.
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Figure 1. A soft-landing dynamic model of a legged lander. (a) A simplified soft-landing dynamic 
model; (b) No. i landing gear (L.G.) sketch description. Red arrows are for coordinate system. Blue 
arrows are for labelling.  
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To express the velocity and coordinates of the landing gear conveniently, the rela-
tions of the defined coordinate systems used in the soft-landing dynamic model are de-
fined, which is shown in Figure 2. For example, the transformation matrix Tைಽಽ೒೔ைಽ  from the 
lander coordinate system to the No. i landing gear coordinate system can be obtained ac-
cording to the rotation matrix 𝑅ைಽைಽಽ೒೔ and the translation matrix 𝑃௅௚௜. The calculation 
equation of the rotation and translation matrix can be found in Nomenclature. 

 

Figure 1. A soft-landing dynamic model of a legged lander. (a) A simplified soft-landing dynamic
model; (b) No. i landing gear (L.G.) sketch description. Red arrows are for coordinate system. Blue
arrows are for labelling.

Moreover, there are five key coordinate systems in this model: (1) the global coordinate
system and local lunar coordinate system, Og-xgygzg and Osi-xsiysizsi, are used to define
the base reference coordinate system and the position and angle of the local lunar surface,
respectively; (2) the lander coordination system, OL-xLyLzL, is used to define the structural
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distribution and motion state of the lander, where OL is the geometry center of the lander;
(3) the No. I landing gear coordinate system, OL-xilgyilgzilg, is used to define the motion and
load of the No. i landing gear; (4) the No. i primary strut coordinate system with origin
point ai, ai-xilgyilgzilg, is used to define the position and velocity of the primary strut.

Based on the theory of spatial descriptions and transformations [21,22], the relative
motion of the body or joint rotations is frequently expressed using the transition matrix in
the Euler angles format. The transformation matrix i−1

i T consists of a translation matrix Pi
and a rotation matrix Ri−1,i represented by Z-Y-X rotations, which are as follows.

i−1
iT =

( i
i−1T

)−1
=

[
Ri−1,i 0

0 1

][
I Pi
0 1

]
=

[
I Pi−1
0 1

][
Ri−1,i 0

0 1

]
;

0
i T = 0

1T1
2T · · · i−1

i T
(2)

To express the velocity and coordinates of the landing gear conveniently, the relations
of the defined coordinate systems used in the soft-landing dynamic model are defined,
which is shown in Figure 2. For example, the transformation matrix OL

OLLgi
T from the lander

coordinate system to the No. i landing gear coordinate system can be obtained according
to the rotation matrix ROLOLLgi and the translation matrix PLgi. The calculation equation of
the rotation and translation matrix can be found in Nomenclature.
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Figure 2. The translation relations of the coordinate systems used in the soft-landing dynamic model.

To express the soft-landing dynamic model clearly, the relation of each component
in the soft-landing dynamic model is shown in Figure 3. Section 2.2 aims to calculate the
position and velocity of the key point of the lander, such as the mass center of the lander ML
to use in Section 2.3, the touchdown point di in the No. i landing gear to use in Section 2.5,
and the origin point OLgi of the No. i landing gear to use in Section 2.4. Moreover,
Section 2.3 is used to calculate the landing gear’s velocity and length in the No. i landing
gear coordinate system under the buffer and friction effect described in Sections 2.6 and 2.7.
Section 2.5 aims to calculate the binding force of the ground on the footpad, which is passed
to the main body of the lander after being buffered by the landing gear.
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2.2. Position and Velocity Definition of the Lander

According to the geometric relations defined in Figure 2, the coordinates of the points
ML, OL, ai under the global coordinate system, Og-xgygzg, can be denoted as follows using

the calculation equations of the translation matrix in Equation (2).

l
Og
M =

xm
ym
zm

; l
Og
OL

=

xOL
yOL
zOL

; l
Og
ai =

xai
yai
zai

; l
Og
di

=

xdi
ydi
zdi

; (3)

where

Og
OL

T =

[
ROgOL

l
Og
OL

0 1

]
=

[
I l

Og
M

0 1

][
ROgOL

0
0 1

][
I lML

OL
0 1

]
;

Og
ai T =

[
ROgaLgi

l
Og
ai

0 1

]
=

Og
OL

T

[
ROLaiLgi

l
OLLgi
aiLgi

0 1

]
;

Og
di

T =
Og

ai T

[
RaiLgdilg

l
ailg
dilg

0 1

]
; l

ailg
dilg

=
[
di

1, 0, 0
]

Similarly, each point in the No. i landing gear coordinate system can be obtained.

Since l
OLLgi
aiLgi , l

OLLgi
biLgi

and l
OLLgi
ciLgi are the given design parameters of the lander to define the

install position of the landing gear structure, some vectors l
OLLgi
diLgi

, l
OLLgi
fiLgi

and l
OLLgi
eiLgi can be

denoted using the generalized coordinate, di
1, θi

1, θi
2, according to the theory of spatial

descriptions and transformations.

l
OLLgi
diLgi

= f1
(
di

1, θi
1, θi

2
)
; l

OLLgi
fiLgi

= f2
(

di
b1, θi

b1, θi
b2

)
;

l
OLLgi
eiLgi = f3

(
di

c1, θi
c1, θi

c2
)
;

l
aiLgi
fiLgi

= f4
(
θi

1, θi
2
)
; l

aiLgi
eiLgi = f5

(
θi

1, θi
2
)
;

(4)

According to the above equation and the principle of the virtual work, the velocity
of the points ML, ai, di, ei, fi in the global coordinate system, Og-xgygzg, can be expressed
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by the Jacobian matrix and the generalized velocity,
.
x,

.
y,

.
z,

.
ψ,

.
θ,

.
φ,

.
θ

i
1,

.
θ

i
2,

.
d

i
1, which are

as follows.

v
og
ML

= J1(x, y, z,ψ, θ,φ)[(ẋ, ẏ, ż, ψ̇, θ̇, φ̇)]
v

og
di

= Jdi
(
x, y, z,ψ, θ,φ, di

1, θi
1, θi

2
)[(

ẋ, ẏ, ż, ψ̇, θ̇, φ̇, ḋi
1, θ̇i

1, θ̇i
2
)]

v
og
ei = Jei

(
x, y, z,ψ, θ,φ, θi

1, θi
2
)[(

ẋ, ẏ, ż, ψ̇, θ̇, φ̇, θ̇i
1, θ̇i

2
)]

v
og
fi
= Jei

(
x, y, z,ψ, θ,φ, θi

1, θi
2
)[(

ẋ, ẏ, ż, ψ̇, θ̇, φ̇, θ̇i
1, θ̇i

2
)] (5)

Moreover, the constraint equations of the geometric relationships in the landing gear
can be shown in Equation (6).

l
OLLgi
fiLgi

= l
OLLgi
aiLgi + l

aiLgi
fiLgi

= l
OLLgi
biLgi

+ l
biLgi
fiLgi

;

l
OLLgi
eiLgi = l

OLLgi
aiLgi + l

aiLgi
eiLgi = l

OLLgi
ciLgi + l

ciLgi
eiLgi ;

(6)

Similarly, the velocity of point, diLg in the No. i landing gear coordinate system,
Olgi-xlgiylgizlgi, can be expressed by the Jacobian matrix and the generalized coordinate

velocity,
.
d

i
1,

.
θ

i
1,

.
θ

i
2, which is as follows:

[ .
x

OLgi
di ,

.
y

OLgi
di ,

.
z

OLgi
di

]T
= J2 J−1

3

[
.
d

i
1,

.
d

i
b1,

.
d

i
c1

]T
= J
[

.
d

i
1,

.
d

i
b1,

.
d

i
c1

]T
(7)

where [ .
x

OLgi
di ,

.
y

OLgi
di ,

.
z

OLgi
di

]T
= J2

(
di

1, θi
1, θi

2

)[ .
d

i
1,

.
θ

i
1,

.
θ

i
2

]
[

.
d

i
1,

.
d

i
b1,

.
d

i
c1

]T
= J3

(
di

1, θi
1, θi

2

)[ .
d

i
1,

.
θ

i
1,

.
θ

i
2

]
Additionally, according to the principle of virtual work, the equivalent dynamic force,

FLgi, can be obtained by the Jacobian matrix.

FT
g

[
δx

OLgi
di , δy

OLgi
di , δz

OLgi
di

]T
= FT

Lgi

[
δdi

1, δdi
b1, δ

.
d

i
c1

]T
;

Fg = JTQlgi

Fg =
[
FXLgi, FYLgi, FZLgi

]T ; FLgi =
[

Fi
pri, Fi

sec_L, Fi
sec_R

]T

(8)

2.3. Dynamics Model of the Simplified Base Model of the Lander

Assuming that the simplified base model of the lander is a rigid body and that its total
mass and the relative position of the mass center remain constant throughout the landing
process, the kinematics and dynamics of the lander can be described using a 12-state
variable, 6 degrees of freedom model, as outlined by the following equations [21]. Moreover,
to understand the dynamic model of the whole system easily, the free-body diagram of the
lander is shown in Figure 4.

.
u = rv− qw + Fx/m
.
v = pw− ru + Fy/m
.

w = qu− pv + Fz/m
.
p = 1

Ix

[
Ixz

.
r + Ixy

.
q + rHZ − qHY + Mx

]
.
q = 1

Iy

[
Ixy

.
p + Iyz

.
r + pHZ − qHX + MY

]
.
r = 1

Iy

[
Ixz

.
p + Iyz

.
q + qHX − pHY + MZ

]
(9)
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

.
x
.
y
.
z
.
ψ
.
θ
.
φ


=



cθcψ sθcψsφ− cφsψ sθcψcφ + sφsψ
cθsψ sθsψsφ + cφcψ sθsψsφ− sφcψ
−sθ sφcθ cφcθ

1 sφ tan θ cφ tan θ
0 cφ −sφ
0 sφ sec θ cφ sec θ





u
v
w
p
q
r

 (10)

Aerospace 2023, 10, x FOR PEER REVIEW 7 of 28 
 

 

  
(a) (b) 

Figure 4. The free-body diagram of the legged lander. (a) The simplified base model of the lander; 
(b) No. 1 landing gear (L.G.). Red arrows are for the coordinate system. Black arrows are for the 
force. Blue arrows are for Blue arrows is for labelling.  

/
/
/

1

1

1

x

y

z

xz xy Z Y x
x

xy yz Z X Y
y

xz yz X Y Z
y

u rv qw F m
v pw ru F m
w qu pv F m

p I r I q rH qH M
I

q I p I r pH qH M
I

r I p I q qH pH M
I

= − +
 = − +
 = − +

  = + + − +  



 = + + − +  

  = + + − + 





  

  

  
 

(9) 

s
1 tan tan
0
0 sec sec

x c c s c s c s s c c s s u
y c s s s s c c s s s s c v
z s c c c w

s c p
c s q
s c r

θ ψ θ ψ φ φ ψ θ ψ φ φ ψ
θ ψ θ ψ φ φ ψ θ ψ φ φ ψ

θ φ θ φ θ
ψ φ θ φ θ
θ φ φ
φ φ θ φ θ

− +     
     + −     
     −

=     
     
     −
     
          








 

(10) 

Typically, the forces acting on the lander include gravitational force mg, engine thrust 
force T, and the forces transferred from the No. i landing gear 

fF i
b u

. These force and mo-
ment matrices, F and M, acting on the lander can be denoted as follows. 

4 4

lg lg
1 1

; ) ) ;g g g g
y M M fF=R mg+T+ R F    M=R (l l T+R (l l R F

L L i L

i i
O O O Oi i

Lg L i buffer Lg Lg d L i bu
i i

= =

= =

− × − × 
 

(11) 

where 

_

_

0 0
0 ; 0 ;mg T F J

i
pri

i T i
buf sce L

i
sce R

N
N

mg T N

    
    = = =     
    −       𝑙௬ಽை೒, lெಽை೒ , and 𝑙ௗ೔ை೒ are the vectors expressed in the global coordinate system. The trans-

mission force in the struts, 𝑁௣௥௜௜ , 𝑁௦௘௖_௅௜ , 𝑁௦௘௖_ோ௜ , can be shown as follows: 

Figure 4. The free-body diagram of the legged lander. (a) The simplified base model of the lander;
(b) No. 1 landing gear (L.G.). Red arrows are for the coordinate system. Black arrows are for the
force. Blue arrows are for Blue arrows is for labelling.

Typically, the forces acting on the lander include gravitational force mg, engine thrust
force T, and the forces transferred from the No. i landing gear Fi

bu f . These force and
moment matrices, F and M, acting on the lander can be denoted as follows.

F = RLgmg + T+
i=4

∑
i=1

RLlgiF
i
bu f f er; M = RLg(l

Og
yL − l

Og
ML

)× T + RLg(l
Og
di
− l

Og
ML

)×
i=4

∑
i=1

RLlgiF
i
bu f ; (11)

where

mg =

 0
0

mg

; T =

 0
0
−T

; Fi
bu f = JT

 Ni
pri

Ni
sce_L

Ni
sce_R


l
Og
yL , l

Og
ML

, and l
Og
di

are the vectors expressed in the global coordinate system. The

transmission force in the struts, Ni
pri, Ni

sec_L, Ni
sec_R, can be shown as follows:

Ni
pri =

{
Fi

pri Fi
pri ≤ Fpri_crush

Fcrush Fi
pri > Fpri_crush

; Ni
sec =


Fi

sec Fi
sec ≤ FTen_crush_ sec,

.
s ≥ 0

FTen_crush Fi
sec > FTen_crush_ sec,

.
s ≥ 0

Fi
sec Fi

sec ≤ FCom_crush_ sec,
.
s ≤ 0

FCom_crush Fi
sec > FCom_crush_ sec,

.
s ≤ 0

(12)

The equivalent dynamic forces Fi
pri and Fi

sce can be obtained by Equation (10).
Fpri_crush, FTen_crush_sec , and FCom_crush_sec are the crushing forces of the primary and sec-
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ondary struts, which can be obtained by Equations (22)–(26). Meanwhile, the remaining
driving force matrix Fi

driving can be denoted as:

Fi
driving =

 Fi
driving_pri

Fi
driving_ sec _L

Fi
driving_ sec _r

 =

 Fi
pri − Ni

pri
Fi

sec _L − Ni
sec _L

Fi
sec _R − Ni

sec _R

; (13)

where

Fi
j − Ni

j =

{
Fi

j − Ni
j Fi

j ≥ Ni
j

0 Fi
j < Ni

j
; j =

[
pri sec _L sec _R

]
2.4. Dynamic Model of Landing Gear

According to the principle of the Lagrange multiplier form of dynamic equations, the
dynamic equation of each landing gear can be denoted as:[

M ΦT
q

Φq 0

][ ..
q
λ

]
=

[
Qi

ine + Qi
grv

γ

]
+

[
Qi

driving
0

]
(14)

Qi
driving is the driving force in the generalized coordinate system. Qi

ine is the general-

ized internal force matrix, which is the velocity coupling force, and Qi
grv is the generalized

gravity force matrix of the landing gear struts.

Qi
driving =

[
Fi

driving_pri 0 0 Fi
driving_sec_L 0 0 Fi

driving_sec_r 0 0
]T

(15)

However, considering that the constraint relation Φ cannot be invalidated or deleted
and is changed with the time variable during the soft landing, the Φqt and Φtt also equal
zero, thus the constraint matrix γ is listed as follows.

γ = −
(
Φq

.
q
)

q
.
q − 2Φqt

.
q−Φtt = −

(
Φq

.
q
)

q
.
q (16)

Additionally, the numerical method for this dynamic model is direct integration with
direct constraint violation correction [23,24], which can efficiently control the violations of
constraint equations within any given accuracy at each time step. Compared to conven-
tional methods such as the Newmark method or the generalized method, this method has
a clear physical meaning, less calculation, an obvious correction effect, and a minor effect
on the form of the dynamic equation of systems. The detailed algorithm of the method
used in this paper is in Section 3.

2.5. Footpad–Ground Bearing Model

The footpad–ground bearing model comprises the vertical bearing model and the
horizontal bearing model. While the vertical bearing model has been extensively studied in
previous research, there is no uniform view of the calculation function, despite there being
four calculation models available. To establish a widely accepted calculation model, the
approximate contact calculation equation integrated into MSC Adams was utilized in this
model. Meanwhile, since the surface soil exhibits low bearing capacity in the horizontal
direction and is more easily movable, the horizontal bearing force is usually equal to the
friction force acting on the footpad–ground interface caused by the vertical bearing force.
Thus, the footpad–ground contact force vector under the local lunar coordinate system is
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expressed based on the geometry relation of the lander. The calculated force equation can
be expressed as follows.

Flun =

FX
FY
FZ

 =

[
−u

.
dlocix√( .

dlocix

)2
+
( .

dlociy

)2

−u
.
dlociy√( .

dlocix

)2
+
( .

dlociy

)2
1
]T

· FZ (17)

FZ =

{
0 dlociz < 0

Kg(dlociz)
n + κCg

.
dlociz dlociz ≥ 0

, κ =

{
(dlociz/d1) dlociz < d1

1 dlociz ≥ d
(18)

2.6. Dynamic Model of the Buffers

The previous lander was equipped with multiple types of buffers in its landing gear,
including the AL-honeycomb buffer, the large plastic deformation rod buffer, and the
hydro-pneumatic buffer. Each buffer can be modeled as a normalized equation form, which
can be expressed as follows.

F = a
(..
s
)
+ b
( .

s
)
+c(s)+d (19)

Moreover, this equation is derived based on the principles of virtual work and the
geometric relations defined by the generalized coordinates of the multi-body system. It
takes the following form.

Fq =
W(F,s)

∂q
= F

∂s
∂q

(20)

Due to the slow touchdown velocity of the lander, the strain rate effect of the Al-
honeycomb buffer is not considered. Then, the force of the Al-honeycomb buffer in the
primary strut can be denoted as:

F =


0 other
F1 s1 < s ≤ s0, s ≤ shismin,

.
s < 0

F2 s2 < s ≤ s1, s ≤ shismin,
.
s < 0

F3 s ≤ s2, s ≤ shismin,
.
s < 0

(21)

Similarly, the crushing force of the Al-honeycomb in the secondary strut can be
denoted as:

F =


0 other

Fcom sc1 < s, s ≤ ss
hismin,

.
s < 0

FTen st1 > s, s ≥ ss
hismax,

.
s > 0

F1
com sc1 > s, s ≤ ss

hismin,
.
s < 0

F1
Ten st1 < s, s ≥ ss

hismax,
.
s > 0

(22)

Moreover, in the lander with the cantilever beam landing gear, the friction force
between the outer and inner tubes in the primary strut must be considered. Then, the
contact force can be denoted as follows:

Ni
E/F =

√(
Fi

Ycon
)2

+
(

Fi
Zcon

)2;

Fi
con = RdiiLg

 l
biLgi
eiLgi∣∣∣∣lbiLgi
eiLgi

∣∣∣∣F
i
sec_L +

l
ciLgi
fiLgi∣∣∣∣lciLgi
fiLgi

∣∣∣∣F
i
sec_R

;
(23)

The forces can be obtained by Equation (10). The generalized crush force of the primary
strut in the No. i landing gear can be denoted as:

Fi
pri = ηu1Ni

E/F + Fi
pri (24)

Further, the calculation equation of η is listed in Section 2.7.
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2.7. Correction Coefficient η

Due to the force-transmitting feature of the landing gear, the lateral denominational
force of the primary strut was equal to the force acted by the secondary struts. Therefore,
the correction coefficient η was only used in the contact force calculation between the outer
and inner tubes in the primary strut. Figure 5 illustrates the force relation among the outer,
inner, and secondary struts in one landing gear. Based on the structural characteristics and
the contact behavior of the primary strut, two assumptions were given: (1) the deflection
and angle of each cross-section at the landing gear are consistent with the deformation
coordination relationship; (2) the contact pressure p upon the outer tube is distributed in
the form of a cosine function by the inner tube, p = pm × cos(θ), where pm is the maximum
pressure acting on the outer tube and with the same direction as NE/F; (3) the contact angle
θ between the outer and inner tubes is assumed to be π/2 since the inner diameter of
the outer tube is approximately equal to the outer diameter of the inner tube. The force
diagrams among the outer, inner, and secondary struts in one landing gear are shown
in Figure 4.
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Then, according to the above assumptions, the calculation equation of the correction
coefficient η is denoted as follows:

η = η1η2 (25)

According to the force relations in the landing gear, the calculation equations for these
correction factors are as follows. LO, L1, and LL are the lengths of the different areas in
one landing gear. A detailed introduction is shown in Figure 5.

η1 = |NA |+|NB |
NE/F

= 1 + 2LO1
(LI+LO−LL)

;

η2 =
∫

pdl
NE/F

=
∫ π/2

0 pm lR cos θcdθc∫ π/2
0 pm lR cos θc cos θcdθc

= 4
π

(26)

3. Simulation and Model Validation
3.1. Program Flow

A four-legged lunar lander with a total mass of 16 tons was established as a demonstra-
tive application to validate the dynamic model used in this paper, based on our previous
research [25]. The numerical simulation was performed using MATLAB R2021a on a desk-
top computer with a 5.3 GHz CPU and 64 GB RAM. With a time step of 0.000005 s for
a total simulation setting of 1 s, so the model only required 290 s to complete. Moreover,
the numerical method in this dynamic model was the direct integration with the direct
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constraint violation correction to control the constraint stabilization. The calculation steps
in this model code can be shown as follows.

Step 1: at time t0 = 0, define the initial values of the designed variable:
The design variables of the lunar lander include the initial position and velocity

matrix, mass property values of the lander, design parameters of the landing gear such
as the crushing force of each strut, and the install position and length parameters of one
landing gear. Additionally, the loading coefficient of the soil, the friction coefficient between
the structure and ground or structure, as well as the value of the time increment and total
simulation time, are also considered design variables.

Step 2: at time tn, identify whether the footpad of the No. i landing gear touched down
on the relative local surface or not:

Based on the generalized position and velocity of the No. i landing gear, and the posi-
tion and velocity vector (at time tn) of the lander, calculate the position and velocity matrix
of point di,

.
di in the No. i local lunar surface coordinate system using the Jacobian matrix in

Equation (5) and the translation matrix in Equation (2). If dlociz < 0, the transmission force of
the No. i landing gear is equal to zero, then perform step 5; if touch down happens, obtain
the footpad–ground bearing force vector Fi

lun using Equations (17) and (18). Based on the
Jacobian matrix in Equations (7) and (8), calculate the equivalent dynamic force matrix Flgi
in the No. i landing gear and the component force in each strut.

Step 3: at time tn, identify whether the buffer of the No. i landing gear is crushed
or not:

According to the current value of the length and velocity in each strut at time tn, obtain
the crushing force of the Al-honeycomb buffer of each strut using Equations (21)–(26).
According to Equations (12)–(13), the transmission force in the struts and the driving force
of the relative struts can be obtained. Using the driving force of the relative strut, the
dynamic model of one landing gear is calculated using Equations (14)–(16). In addition,
using the transmission force of the relative strut, the forces and moments acting on the
lander can be obtained from the No. i landing gear using Equation (11). When the
equivalent dynamic force is no less than the defined crush force of the Al-honeycomb
buffer of the strut, the buffer begins to crush. The transmission force in the strut is equal
to the crushing force of the relative strut. Moreover, the driving force in the relative strut
is equal to the remaining force. However, if the equivalent force is less than the crushing
force, the buffer does not crush. The driving force in the relative strut is equal to zero,
and the transmission force in the strut in the No. i landing gear is equal to the equivalent
dynamic force.

Step4: at time tn, calculate the dynamic model of the landing gear i and check the
constraint stabilization:

Solve the variables in Equation (11), then the position and velocity q̂n+1,
.̂
q

n+1
are

obtained in turn using the direct integration method. Check the constraint stabiliza-
tion of the nonlinear equation, if the result satisfies the constraint stabilization equation:

0 < ‖Φi‖ < 10−10, 0 <
∥∥Φqq

∥∥ < 10−10, then qn+1 = q̂n+1,
.
qn+1

=
.̂
q

n+1
, go to step 5.

Otherwise, firstly, calculate ∆q = −Φ+
q Φ; Φ+

q = Φq
T
(

ΦqΦq
T
)−1

to carry out the dis-

placement constraint violation correction, then obtain qn+1 = q̂n+1 + ∆q, check
0 < ‖Φi‖ < 10−10 again, and, if not satisfied, perform the above calculation process again
until the equation satisfies. Secondly, using the qn+1 obtained from the above displacement
correction, perform the velocity constraint violation correction ∆

.
q = −Φ+

q Φq
.̂
q then obtain

.
qn+1

=
.̂
q

n+1
+ ∆

.
q, check 0 <

∥∥Φqq
∥∥ < 10−10 again, and, if not satisfied, perform the above

calculation process again until the equation is satisfied. At last, the position qn+1 and
.
qn+1

after constraint violation correction will be taken in the next dynamic model.
Step 5: identify whether all landing gears have been calculated or not:
If the transmission force of all the landing gears has been calculated, then go to step 6.

Otherwise, return to step 2.
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Step 6: at time tn, calculate the dynamic model of the lander:
Based on the forces and moments from all the landing gear systems, solve the accelera-

tion variable of the lander using Equations (9) and (10) and obtain the position and velocity
vector (at time tn+1) of the lander in the lander coordinate system in turn using the direct
integration. Then, based on the transient matrix theory, calculate the position and velocity
value of the lander in the global coordinate system.

Step 7: repeat steps 2 to 7 until the total time is over:
To clearly introduce the detailed calculation steps for the soft-landing model, the flow

chart of the touch down dynamic model of the lander during a soft landing is presented in
Figure 6.
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3.2. Program Flow

Figure 7 and Table 1 present the configuration and parameters of a legged lander.
Further details on the parameters and modeling of the lander can be found in [25]. To
analyze the soft-landing dynamics of a legged lander, four severe load cases [25] are chosen
in Table 2, including vertical loading load case (LC-1), the high-overloading load case
(LC-2), the easily turnover load case (LC-3), and the maximum compression of primary
strut load case (LC-4). To conduct a comparative analysis, two analytical models for the
lander were generated using the methodology proposed in this paper and MSC Adams.
Notably, there are three main differences between the two models, consisting of (1) the
contact and friction force calculation equation differs: the STEP functions used in Adams are
non-linear and non-clearly expression equations, while the functions used in the proposed
method are linear functions; (2) the defined method of the crushing force: in MSC Adams,
the widely used method of the SFROCE function was used, only considering the velocity’s
direction and the crushing displacement of the buffer, without the maximum/minimum
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history displacement; (3) the numerical calculation method: the Runge–Kutta numerical
method was used in MSC Adams, while the direct integration with the direct constraint
violation correction was used in the proposed model.
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Table 1. The parameter information of a lunar lander.

Mass Property C.L. of Points
Crush Force of Buffers Contact

PropertyPri. Strut Sec. Strut

Ix 8.18 × 104 a1 (3.89, 0, −2.18) F1 78,000 Fcom 43,000 Kg
(1000)1.5

×105

Iy 8.18 × 104 b1 (3.37, 1.23, −1.01) F2 156,000 Ften 30,000 Cg 10,000
Iz 8.17 × 104 c1 (3.37, −1.23, −1.01) s1 0.2 st1 0.27 D1 0.0001

Mass 1.6 × 104 d1 (5.48, 0, 0.94) s2 0.475 sc1 0.27 us 0.4/0.4
e1 (4.65, 1.09, −0.505) ud 0.1
f1 (4.65, −1.09, 0.505) u1 0.1

MC (0, 0, −3.818) η 0
vs 0.1
vd 1

Note: (1) unit: mass: kg, length: m, velocity: m/s, angle: deg, force: N, moments of inertia: kg×m2; (2) Kg, Cg, D1,
and us, ud, vs, vd are the default values in MSC Adams.

Table 2. The load case information for soft-landing analysis.

Load Cases
Velocity m/s Attitude Angles

/Deg
Lunar Surface Slope Angle

/DegVertical Horizontal

LC-1 4 −0 0/0/0 0
LC-2 4 1 45/0/0 0
LC-3 4 1 45/−4/0 8
LC-4 4 1 0/4/0 8

Note: (1) unit: mass: kg, length: m, velocity: m/s, angle: deg. (2) Attitude angles are the rotation angle relation to
the global coordinate system in terms of Z-Y-X.

Since the crushing length of each buffer after landing is the most direct and effective
way to validate the simulated results [18], the crushing length of each strut after touch
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down is thereby analyzed emphatically in this work as well as the deviation data of the
crushing length. Table 3 and Figure 8 show the crushing length of each strut in the four
classical load cases as well as their error data under the theoretical dynamic model and
multi-body model in MSC Adams. The comparative results show that the crushing length
of each strut from the theoretical dynamic model was close to that from MSC Adams in
general. Most of the error ratios of the results ranged between 2.0% and 7.0%. The max
deviation crushing length was nearly 20.9 mm at the primary strut of LG-3 (No. 3 landing
gear) in LC-4, and the relative error ratio was 17.0% based on the crushing length from
MSC Adams that was 261.6 mm. The main reason for this calculation deviation is the
differences between the calculation equations for contact and friction force, especially the
calculation of friction force. Moreover, the other reason may be the SFROCE function used
in the definition of the buffer force between the software and the theoretical model, which
causes a small error during landing. The SFROCE function defined in MSC Adams does not
consider the maximum history displacement of each strut. Once the reciprocating motion
of a strut occurred during landing, some errors were taken in.

Table 3. The crush length of each Al-honeycomb buffer during soft landing.

No.
LC-1 LC-2 LC-3 LC-4

Theory Adams Dev Theory Adams Dev Theory Adams Dev Theory Adams Dev

1 1 287.0 288.8 −1.8 314.3 319 −4.7 360.3 354.1 9.8 390.0 385.0 5.0
2 2 49.8 50.3 −0.5 3.9 5.1 −1.2 −112.1 −132.2 19.1 4.4 5.0 −0.6
3 3 49.8 50.7 −0.5 72.6 74.5 −1.9 77.0 74.2 3.8 4.4 5.1 −0.7
4 4 287.0 288.7 −0.7 244.0 240.0 4.0 255.3 252.7 2.6 280.6 261.0 19.6
5 5 49.8 50.0 −0.2 41.2 43.5 −1.8 46.1 49.4 −3.3 7.3 7.3 0
6 6 49.8 50.3 −0.5 113.7 119.7 6.0 132.3 135.6 3.3 151.9 164.4 −13.5
7 7 287 289.2 2.0 244.0 242.9 1.1 255.4 251.2 4.2 277.9 261.0 16.9
8 8 49.8 50.6 −0.8 113.7 121.4 −7.7 132.6 135.6 3.0 98.3 121.9 −20.9
9 9 49.8 50.7 −0.9 41.2 45.5 −4.3 46.0 49.4 3.0 98.3 121.5 −20.9

10 10 287.0 287.5 2.0 314.2 319.5 −5.3 360.3 354.0 6.3 280.6 261.6 19.0
11 11 49.8 51.7 −1.9 72.6 75.1 −2.5 77.0 74.5 2.5 151.9 165.0 −14.1
12 12 49.8 51.7 −1.9 3.9 5.2 −1.3 −114.7 −132.2 18.5 7.3 7.3 0

1 No. 1 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1 landing gear. 2

No. 2 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the No. 1 landing
gear. 3 No. 3 measure option: the crush length of each Al-honeycomb in the secondary strut (right) in the No. 1
landing gear. 4 No. 4 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 2
landing gear. 5 No. 5 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the
No. 2 landing gear. 6 No. 6 measure option: the crush length of each Al-honeycomb in the secondary strut (right)
in the No. 2 landing gear. 7 No. 7 measure option: the crush length of each Al-honeycomb in the primary strut in
the No. 3 landing gear. 8 No. 8 measure option: the crush length of each Al-honeycomb in the secondary strut
(left) in the No. 3 landing gear. 9 No. 9 measure option: the crush length of each Al-honeycomb in the secondary
strut (right) in the No. 3 landing gear. 10 No. 10 measure option: the crush length of each Al-honeycomb in the
primary strut in the No. 4 landing gear. 11 No. 11 measure option: the crush length of each Al-honeycomb in the
secondary strut (left) in the No. 4 landing gear. 12 No. 12 measure option: the crush length of each Al-honeycomb
in the secondary strut (right) in the No. 4 landing gear.

Furthermore, it also can be found that the max error ratios were 23% at LC-2 based
on the fact that the crushing length from MSC Adams was 5.2 mm. Its relative deviation
was 1.7 mm at the secondary struts in LG-1 and LG-4. The reason may be the different
numerical solution process between the software and the theoretical model, which causes
a small error during landing. In the numerical method, as we all know, there is, more or
less, some deviation between the results from each other method. Moreover, according to
Figure 9, it is easily found that the stroke of each strut in the lander from two models have
good agreement under four load cases. In conclusion, the agreement of the results proves
the availability of soft-landing prediction of the theoretical dynamic model proposed in
this paper.
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Figure 9. The stroke of each strut of the lander during landing. (a) The primary strut of the lander in
LC-1; (b) the secondary strut of the lander in LC-1; (c) the primary strut of the lander in LC-2; (d) the
secondary strut of the lander in LC-2; (e) the primary strut of the lander in LC-3; (f) the secondary
strut of the lander in LC-3; (g) the primary strut of the lander in LC-4; (h) the secondary strut of the
lander in LC-4.

4. Discussions
4.1. Different Kinds of the Footpad–Ground Bearing Models

Although there are different types of footpad–ground bearing models, there is no
uniform view of the functional form of the footpad–ground bearing model. The essence of
the footpad–ground bearing model is a dissipative contact force model, which is a pivotal
tool to predict the contact force and energy dissipation characteristics of the soil during
soft landing. The soft-landing performance of a lander is therefore highly dependent on
the accuracy and precision of the contact force model. To better understand the differences
and similarities between contact force models, some frequently used impact contact force
models, such as the Hertz contact model [26], Hertz contact + linear damping factor
model [27], Hertz contact + step damping factor model [28,29] Hertz contact + bilinear
damping factor model [19], and Hertz contact + hysteresis damping factor model [30], were
discussed in this section, which are listed in Table 4. According to Table 4, it was easy to
see that the difference between the five contact models was the damping option, aimed to
accurately describe energy dissipation in the collision process. Detailed advantages and
disadvantages for most contact models are discussed in reference [31]. Table 5 shows the
parameter information of the five different contact force calculation models. To discuss
the effect of the five different contact force models on the soft-landing performance, the
parameters of each contact force model were chosen based on the rigid surface contact
theory of MSC Adams. Moreover, the friction calculation method was the penalty function
method, and the friction coefficient us = ud = 0.4.
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Table 4. Some commonly used contact force models defined in this work.

Contact Model Types Equation Contact Model Equation

Hertz contact F = Kδn Hertz contact
+ linear damping F = Kδn + D

.
δ

Hertz contact
+ step damping F =

{
Kδn + D

.
δ δ ≤ d

Kδn δ ≥ d

Hertz contact
+ bilinear damping F = Kδn + D1

.
δ + D2

.
δ

2

Hertz contact
+ hysteresis damping 1 F = Kδn + χδ

n .
δ

1 χ = 3(1−cr)

2
.
δ
(−) K, cr = 1− α

.
δ
(−)

. α is a constant value ranging between 0.008 and 0.32.

Table 5. The parameter information of the five different contact force calculation models.

Model Name 1 Model Type Parameter Defined in the Model

Hertz contact Hertz contact K = (1000) 1.5 × 1.0 × 105, n = 1.5
Kelvin–Voigt model Hertz contact + linear damping factor K = (1000)1.5 × 1.0 × 105, D = 10 × 1000, n = 1.5

Kelvin–Voigt 1 Hertz contact + step damping factor K = (1000)1.5 × 1.0 × 105, D = 10 × 1000, n = 1.5

Kelvin–Voigt 2 Hertz contact + bilinear damping factor K = (1000)1.5 × 1.0 × 105,
D1 = 10 × 1000, D2 = 10 × 1000, n = 1.5

Hunt–Crossley Hertz contact + hysteresis damping factor K = (1000)1.5 × 1.0 × 105, n = 1.5

1 The hertz contact + step damping factor model and the Hertz contact + bilinear damping factor model are the
contact models with relation to velocity options, which are similar to the Kelvin–Voigt model. To clearly express
the difference between the contact models, the names Kelvin–Voigt 1 and Kelvin–Voigt 2 are defined as the two
contact models, respectively.

Table 6 and Figure 10 present the error data and crushing length of each strut under
five different contact models for two classical load cases (LC-1 and LC-2). The simulation
results, based on a comparative analysis of each buffer in the lunar lander after landing,
indicated that the crushing length of each strut in the theoretical dynamic model under
different contact force models was generally similar. The deviation ratios of most results
under the five contact force models were less than 5%. The maximum deviation ratio
of crushing length was nearly 200% at the secondary struts of L.G.-1 in LC-2 under the
H–C contact force model, and the crushing value was 12.1 mm. The reason is due to the
differences in the contact force calculation equations. To better understand these differences,
the results of LC-1 were analyzed, primarily focusing on the deviation of the contact force
time history curves of the footpad–ground bearing model, as shown in Figure 11. The
results in Figure 11 indicated that the Hunt–Crossley contact model, the Hertz contact
model, and the Kelvin–Voigt 1 model were the most influential models on the footpad–
ground bearing force, with many oscillations in the load time history curves of these three
models. This is the main reason for the deviation in the crushing length results of each strut.
In contrast, the load time history curves of the Kelvin–Voigt and Kelvin–Voigt 2 models
have fewer oscillations. Compared to the results of the Hertz contact model, the reason
for this difference may be the effect of the velocity option in the calculation equation of
the contact force model, which is usually used as a damping option to describe the energy
dissipation and suppress data fluctuations during the collision process.

4.2. Friction Analysis

Friction is important in various fields such as engineering, physics, and materials
science. Usually, the magnitude of the friction force depends on the normal force pressing
the two surfaces together and the coefficient of friction between the two surfaces. The
friction coefficient is a dimensionless constant that represents the friction characteristics of
the two surfaces. It depends on various factors such as the nature of the two surfaces in
contact, the roughness of the surfaces, the temperature, the relative speed of the surfaces,
etc. To understand more clearly the lateral interaction of the footpad–ground bearing
model, the default contact force model shown in Equations (17) and (18) were chosen first.
Meanwhile, six commonly used friction models [32,33] were discussed in this section. The
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force calculation equations for the six classical friction models used in the engineering
field are shown in Table 7. Table 8 provides the parameter information for the six different
friction calculation models.

Table 6. The crush length of each Al-honeycomb buffer under five contact models.

Info. No. Base Result Hertz Kelvin–Voigt Kelvin–Voigt 1 Kelvin–Voigt 2 Hunt–Crossley

LC-1
1 1 287.0 288.8 287.3 288.8 287.0 289.8
2 2 49.8 50.5 49.8 50.5 49.8 50.7
3 3 49.8 50.5 49.8 50.5 49.8 50.7

LC-2

4 4 314.0 312.9 314.1 311.4 314.0 317.7
5 5 3.9 6.3 4.0 6.4 3.9 12.1
6 6 41.1 41.6 41.2 41.8 41.1 41.6
7 7 244.0 244.5 244.1 244.9 244.0 244.1
8 8 113.6 112.7 113.9 114.0 113.6 109.1
9 9 73.4 74.2 72.7 75.1 73.4 74.0

1 No. 1 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1 landing gear.
2 No. 2 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the No. 1 landing
gear. 3 No. 3 measure option: the crush length of each Al-honeycomb in the secondary strut (right) in the No. 1
landing gear. 4 No. 4 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1/4
landing gear. 5 No. 5 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the
No. 1 landing gear. 6 No. 6 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in
the No. 2 landing gear. 7 No. 7 measure option: the crush length of each Al-honeycomb in the primary strut in the
No. 2/3 landing gear. 8 No. 8 measure option: the crush length of each Al-honeycomb in the secondary strut (left)
in the No. 3 landing gear. 9 No. 9 measure option: the crush length of each Al-honeycomb in the secondary strut
(left) in the No. 4 landing gear.
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Table 7. The force calculation equations of the six different friction calculation models.

Friction Model Types 1 Calculation Equations 2 The Change Rule Figures

The static Coulomb
friction model FC =

{
us Nsgn(v) v 6= 0

min(Fe, us N)sgn(v) v = 0

Aerospace 2023, 10, x FOR PEER REVIEW 20 of 28 
 

 

4.2. Friction Analysis 
Friction is important in various fields such as engineering, physics, and materials sci-

ence. Usually, the magnitude of the friction force depends on the normal force pressing 
the two surfaces together and the coefficient of friction between the two surfaces. The fric-
tion coefficient is a dimensionless constant that represents the friction characteristics of 
the two surfaces. It depends on various factors such as the nature of the two surfaces in 
contact, the roughness of the surfaces, the temperature, the relative speed of the surfaces, 
etc. To understand more clearly the lateral interaction of the footpad–ground bearing 
model, the default contact force model shown in Equations (17) and (18) were chosen first. 
Meanwhile, six commonly used friction models [32,33] were discussed in this section. The 
force calculation equations for the six classical friction models used in the engineering 
field are shown in Table 7. Table 8 provides the parameter information for the six different 
friction calculation models. 

Table 7. The  force calculation equations of the six different friction calculation models. 

Friction Model Types 1 Calculation Equations 2 The Change Rule Figures 

The static Coulomb friction 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e s

u N v v
F

F u N v v
≠

=  =  

 

The static Coulomb friction 
model with viscous effect 

sgn( ) 0
min( , ) sgn( ) 0

s v
C

e s

u N v C v v
F

F u N v v
+ ≠

=  =  

 

The regularized Coulomb friction 
model 

0

3

03

0

1 sgn( )
1

sgn( )

v
v

s
C

s

eu N v v v
eF

u N v v v

−

−

  
  − ≤  −=   
  
 >  

 

The stiction + dynamic Coulomb 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e d

u N v v
F

F u N v v
≠

=  =  

 

The stiction + Stribeck + Coulomb 
+ viscous friction model ( ) sgn( )s

v
v

f D S DF F F F e v

δ
 

−  
 

 
 = + −  
   

 

The static Coulomb friction
model with viscous effect FC =

{
us Nsgn(v) + Cvv v 6= 0

min(Fe, us N)sgn(v) v = 0

Aerospace 2023, 10, x FOR PEER REVIEW 20 of 28 
 

 

4.2. Friction Analysis 
Friction is important in various fields such as engineering, physics, and materials sci-

ence. Usually, the magnitude of the friction force depends on the normal force pressing 
the two surfaces together and the coefficient of friction between the two surfaces. The fric-
tion coefficient is a dimensionless constant that represents the friction characteristics of 
the two surfaces. It depends on various factors such as the nature of the two surfaces in 
contact, the roughness of the surfaces, the temperature, the relative speed of the surfaces, 
etc. To understand more clearly the lateral interaction of the footpad–ground bearing 
model, the default contact force model shown in Equations (17) and (18) were chosen first. 
Meanwhile, six commonly used friction models [32,33] were discussed in this section. The 
force calculation equations for the six classical friction models used in the engineering 
field are shown in Table 7. Table 8 provides the parameter information for the six different 
friction calculation models. 

Table 7. The  force calculation equations of the six different friction calculation models. 

Friction Model Types 1 Calculation Equations 2 The Change Rule Figures 

The static Coulomb friction 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e s

u N v v
F

F u N v v
≠

=  =  

 

The static Coulomb friction 
model with viscous effect 

sgn( ) 0
min( , ) sgn( ) 0

s v
C

e s

u N v C v v
F

F u N v v
+ ≠

=  =  

 

The regularized Coulomb friction 
model 

0

3

03

0

1 sgn( )
1

sgn( )

v
v

s
C

s

eu N v v v
eF

u N v v v

−

−

  
  − ≤  −=   
  
 >  

 

The stiction + dynamic Coulomb 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e d

u N v v
F

F u N v v
≠

=  =  

 

The stiction + Stribeck + Coulomb 
+ viscous friction model ( ) sgn( )s

v
v

f D S DF F F F e v

δ
 

−  
 

 
 = + −  
   

 

The regularized Coulomb
friction model FC =

us N

(
1−e−

3|v|
v0

1−e−3

)
sgn(v) |v| ≤ v0

us Nsgn(v) |v| > v0

Aerospace 2023, 10, x FOR PEER REVIEW 20 of 28 
 

 

4.2. Friction Analysis 
Friction is important in various fields such as engineering, physics, and materials sci-

ence. Usually, the magnitude of the friction force depends on the normal force pressing 
the two surfaces together and the coefficient of friction between the two surfaces. The fric-
tion coefficient is a dimensionless constant that represents the friction characteristics of 
the two surfaces. It depends on various factors such as the nature of the two surfaces in 
contact, the roughness of the surfaces, the temperature, the relative speed of the surfaces, 
etc. To understand more clearly the lateral interaction of the footpad–ground bearing 
model, the default contact force model shown in Equations (17) and (18) were chosen first. 
Meanwhile, six commonly used friction models [32,33] were discussed in this section. The 
force calculation equations for the six classical friction models used in the engineering 
field are shown in Table 7. Table 8 provides the parameter information for the six different 
friction calculation models. 

Table 7. The  force calculation equations of the six different friction calculation models. 

Friction Model Types 1 Calculation Equations 2 The Change Rule Figures 

The static Coulomb friction 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e s

u N v v
F

F u N v v
≠

=  =  

 

The static Coulomb friction 
model with viscous effect 

sgn( ) 0
min( , ) sgn( ) 0

s v
C

e s

u N v C v v
F

F u N v v
+ ≠

=  =  

 

The regularized Coulomb friction 
model 

0

3

03

0

1 sgn( )
1

sgn( )

v
v

s
C

s

eu N v v v
eF

u N v v v

−

−

  
  − ≤  −=   
  
 >  

 

The stiction + dynamic Coulomb 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e d

u N v v
F

F u N v v
≠

=  =  

 

The stiction + Stribeck + Coulomb 
+ viscous friction model ( ) sgn( )s

v
v

f D S DF F F F e v

δ
 

−  
 

 
 = + −  
   

 

The stiction + dynamic
Coulomb model FC =

{
us Nsgn(v) v 6= 0

min(Fe, ud N)sgn(v) v = 0

Aerospace 2023, 10, x FOR PEER REVIEW 20 of 28 
 

 

4.2. Friction Analysis 
Friction is important in various fields such as engineering, physics, and materials sci-

ence. Usually, the magnitude of the friction force depends on the normal force pressing 
the two surfaces together and the coefficient of friction between the two surfaces. The fric-
tion coefficient is a dimensionless constant that represents the friction characteristics of 
the two surfaces. It depends on various factors such as the nature of the two surfaces in 
contact, the roughness of the surfaces, the temperature, the relative speed of the surfaces, 
etc. To understand more clearly the lateral interaction of the footpad–ground bearing 
model, the default contact force model shown in Equations (17) and (18) were chosen first. 
Meanwhile, six commonly used friction models [32,33] were discussed in this section. The 
force calculation equations for the six classical friction models used in the engineering 
field are shown in Table 7. Table 8 provides the parameter information for the six different 
friction calculation models. 

Table 7. The  force calculation equations of the six different friction calculation models. 

Friction Model Types 1 Calculation Equations 2 The Change Rule Figures 

The static Coulomb friction 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e s

u N v v
F

F u N v v
≠

=  =  

 

The static Coulomb friction 
model with viscous effect 

sgn( ) 0
min( , ) sgn( ) 0

s v
C

e s

u N v C v v
F

F u N v v
+ ≠

=  =  

 

The regularized Coulomb friction 
model 

0

3

03

0

1 sgn( )
1

sgn( )

v
v

s
C

s

eu N v v v
eF

u N v v v

−

−

  
  − ≤  −=   
  
 >  

 

The stiction + dynamic Coulomb 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e d

u N v v
F

F u N v v
≠

=  =  

 

The stiction + Stribeck + Coulomb 
+ viscous friction model ( ) sgn( )s

v
v

f D S DF F F F e v

δ
 

−  
 

 
 = + −  
   

 

The stiction + Stribeck +
Coulomb + viscous

friction model
Ff =

(
FD +

(
FS − FD

)
e−(

|v|
vs
)

δ
)

sgn(v)

Aerospace 2023, 10, x FOR PEER REVIEW 20 of 28 
 

 

4.2. Friction Analysis 
Friction is important in various fields such as engineering, physics, and materials sci-

ence. Usually, the magnitude of the friction force depends on the normal force pressing 
the two surfaces together and the coefficient of friction between the two surfaces. The fric-
tion coefficient is a dimensionless constant that represents the friction characteristics of 
the two surfaces. It depends on various factors such as the nature of the two surfaces in 
contact, the roughness of the surfaces, the temperature, the relative speed of the surfaces, 
etc. To understand more clearly the lateral interaction of the footpad–ground bearing 
model, the default contact force model shown in Equations (17) and (18) were chosen first. 
Meanwhile, six commonly used friction models [32,33] were discussed in this section. The 
force calculation equations for the six classical friction models used in the engineering 
field are shown in Table 7. Table 8 provides the parameter information for the six different 
friction calculation models. 

Table 7. The  force calculation equations of the six different friction calculation models. 

Friction Model Types 1 Calculation Equations 2 The Change Rule Figures 

The static Coulomb friction 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e s

u N v v
F

F u N v v
≠

=  =  

 

The static Coulomb friction 
model with viscous effect 

sgn( ) 0
min( , ) sgn( ) 0

s v
C

e s

u N v C v v
F

F u N v v
+ ≠

=  =  

 

The regularized Coulomb friction 
model 

0

3

03

0

1 sgn( )
1

sgn( )

v
v

s
C

s

eu N v v v
eF

u N v v v

−

−

  
  − ≤  −=   
  
 >  

 

The stiction + dynamic Coulomb 
model 

sgn( ) 0
min( , ) sgn( ) 0

s
C

e d

u N v v
F

F u N v v
≠

=  =  

 

The stiction + Stribeck + Coulomb 
+ viscous friction model ( ) sgn( )s

v
v

f D S DF F F F e v

δ
 

−  
 

 
 = + −  
   

 

The stiction + modified
Stribeck + Coulomb +
viscous friction model Ff =


(
− FS

v2
0
(|v| − v0)

2 + FS

)
sgn(v) |v| < v0(

FC +
(

FS − FC
)
e−ε( |v|vs

)
δ
)

sgn(v) |v| ≥ v0

Aerospace 2023, 10, x FOR PEER REVIEW 21 of 28 
 

 

The stiction + modified Stribeck + 
Coulomb + viscous friction model 

( )

( )

2
0 02

0

0

sgn( )

sgn( )s

S
S

vf
v

C S C

F
v v F v v v

v
F

F F F e v v v

δ

ε
 

−   
 

  
− − + <  
 =  

 + − ≥     
 

1 Stribeck effect is the effect that describes the decrease in the friction force as the relative tangential 
velocity increases; the viscous effect can be established as a proportion of the relative tangential 
velocity of the sliding surfaces, F = u × v; the stiction effect is the manifestation that static friction is 
greater than dynamic friction mechanics; 2 vo is the stiction velocity, and when v is no greater than 
vo, the static force is the main force in friction force. 

Table 8. The parameter information of the six different friction calculation models. 

No. Friction Model  Parameter  
TY-1 Static Coulomb friction  𝑢௦ = 0.4 
TY-2 Static Coulomb friction model with viscous effect 𝑢௦ = 0.4; 𝐶௩ = 100 
TY-3 Regularized Coulomb friction  𝑣଴ = 0.1 m/s; 𝑢௦ = 0.4 
TY-4 Stiction + dynamic Coulomb  𝑢ௗ = 0.4 
TY-5 Stiction + Stribeck + Coulomb + viscous friction  𝑣௦ = 1 m/s; 𝛿 = 0.85 
TY-6 Stiction + modified Stribeck + Coulomb + viscous friction  𝑣଴ = 𝑣௦ = ଴.ଵ௠௦ ;  𝜀 = 0.85 𝛿 = 0.85 

Table 9 and Figure 12 show the deviation ratio of the crushing length and the crush-
ing length of each strut under six different friction models in the two classical load cases. 
Based on the comparative results of each strut in the lander, it is shown that the crushing 
length of each strut from the theoretical dynamic model under different friction force 
models was close to each other. The max deviation for crushing length was 54.3 mm at 
LC-2 under TY-1 and TY-4 models, and the relative error was 17.3% at the primary struts, 
while the relative value of the crushing length from the theory model was 312.4 mm. The 
max deviation ratio for crushing length was 18.7% at LC-2 under TY-1 and TY-4 models, 
and the relative deviation was 21.2 mm at the secondary struts, while the relative value of 
the crushing length from the theory model was 113.6 mm. Causing these calculation de-
viations was the velocity option defined in the friction calculation model and its coupling 
cumulative deviation mechanism. Since the TY-1 and TY-4 friction models do not consider 
the constraint of the speed option, its component force in the direction of the main strut is 
less than that of the other friction force models. Meanwhile, due to less influence on the 
friction model by the lateral velocity of the lander in LC-1, the results among each friction 
model were relatively closer than those in LC-2. In addition, compared with the results of 
the contact force model, it was found that the influence of the friction model on the results 
was greater than that of the contact force model. Therefore, more attention should be paid 
to the friction force model in the footpad–ground force model during the modeling and 
analysis process of the soft-landing dynamics of the lander. 

  

1 Stribeck effect is the effect that describes the decrease in the friction force as the relative tangential velocity
increases; the viscous effect can be established as a proportion of the relative tangential velocity of the sliding
surfaces, F = u × v; the stiction effect is the manifestation that static friction is greater than dynamic friction
mechanics; 2 vo is the stiction velocity, and when v is no greater than vo, the static force is the main force in
friction force.
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Table 8. The parameter information of the six different friction calculation models.

No. Friction Model Parameter

TY-1 Static Coulomb friction us = 0.4
TY-2 Static Coulomb friction model with viscous effect us = 0.4; Cv = 100
TY-3 Regularized Coulomb friction v0 = 0.1 m/s; us = 0.4
TY-4 Stiction + dynamic Coulomb ud = 0.4
TY-5 Stiction + Stribeck + Coulomb + viscous friction vs = 1 m/s; δ = 0.85
TY-6 Stiction + modified Stribeck + Coulomb + viscous friction v0 = vs =

0.1m
s ; ε = 0.85 δ = 0.85

Table 9 and Figure 12 show the deviation ratio of the crushing length and the crushing
length of each strut under six different friction models in the two classical load cases.
Based on the comparative results of each strut in the lander, it is shown that the crushing
length of each strut from the theoretical dynamic model under different friction force
models was close to each other. The max deviation for crushing length was 54.3 mm at
LC-2 under TY-1 and TY-4 models, and the relative error was 17.3% at the primary struts,
while the relative value of the crushing length from the theory model was 312.4 mm. The
max deviation ratio for crushing length was 18.7% at LC-2 under TY-1 and TY-4 models,
and the relative deviation was 21.2 mm at the secondary struts, while the relative value
of the crushing length from the theory model was 113.6 mm. Causing these calculation
deviations was the velocity option defined in the friction calculation model and its coupling
cumulative deviation mechanism. Since the TY-1 and TY-4 friction models do not consider
the constraint of the speed option, its component force in the direction of the main strut is
less than that of the other friction force models. Meanwhile, due to less influence on the
friction model by the lateral velocity of the lander in LC-1, the results among each friction
model were relatively closer than those in LC-2. In addition, compared with the results of
the contact force model, it was found that the influence of the friction model on the results
was greater than that of the contact force model. Therefore, more attention should be paid
to the friction force model in the footpad–ground force model during the modeling and
analysis process of the soft-landing dynamics of the lander.

Table 9. The crush length of each Al-honeycomb buffer after soft landing.

Measure
Option

Base
Result TY-1 TY-2 TY-3 TY-4 TY-5 TY-6

LC-1
1 1 287.0 295.1 295.0 290.6 295.1 295.1 290.2
2 2 49.8 48.4 48.4 49.3 48.4 48.4 49.5
3 3 49.8 48.4 48.4 49.3 48.4 48.4 49.5

LC-2

4 4 314.0 368.3 324.4 316.0 368.3 323.7 313.4
5 5 4.0 10.2 7.4 7.2 10.2 7.4 6.8
6 6 41.1 39.6 39.8 40.9 39.6 39.8 41.2
7 7 244.0 252.7 249.0 245.3 252.7 249.1 245.5
8 8 113.6 92.4 106.0 109.9 92.4 107.0 111.8
9 9 73.4 62.0 71.8 75.7 62.0 73.2 76.4

1 No. 1 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1 landing gear.
2 No. 2 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the No. 1 landing
gear. 3 No. 3 measure option: the crush length of each Al-honeycomb in the secondary strut (right) in the No. 1
landing gear. 4 No. 4 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1/4
landing gear. 5 No. 5 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the
No. 1 landing gear. 6 No. 6 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in
the No. 2 landing gear. 7 No. 7 measure option: the crush length of each Al-honeycomb in the primary strut in the
No. 2/3 landing gear. 8 No. 8 measure option: the crush length of each Al-honeycomb in the secondary strut (left)
in the No. 3 landing gear. 9 No. 9 measure option: the crush length of each Al-honeycomb in the secondary strut
(left) in the No. 4 landing gear.
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4.3. Correction Coefficient η

According to the force-transmitting feature of the landing gear, the lateral denom-
inational force of the primary strut equals the force acted by the secondary strut. The
correction coefficient η is thereby only used in the contact force calculation between the
outer and inner tube in the primary strut. To analyze the effect of the correction factor
η, the comparison analysis of the crushing length and its deviations were discussed in
this section.

Table 10 and Figure 13 show the deviation data of the crushing length and the crushing
length of each strut with and without correction factor η in the two classical load cases.
According to the comparative results of each buffer, the simulation results showed that
the crushing length of each strut in the theory dynamic model with and without friction
correction was close to each other in general. The max error in crushing length was
13.1 mm at the primary strut 1/4 in LC-2, and the relative error ratio was 4.4%. Causing this
calculation deviation was mainly the added friction in the crushing force of the primary
strut, which is mainly led by the lateral force. In fact, the friction force upon the primary
strut is decided by two factors, namely the friction coefficient and the lateral force in the
landing gear. Since the friction coefficient is only dependent on the material properties, the
added friction is thereby only decided by the lateral force in the landing gear. According to
Equations (23) and (24), the lateral force upon the primary strut was mainly decided by the
defined crushing force and the relative velocity of the secondary strut.
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Table 10. The crush length of each Al-honeycomb buffer during soft landing for correction factor.

Info. Measure Options Without η/mm Within η/mm Error/%

LC-1
1 1 287.0 276.9 3.6
2 2 49.8 48.2 3.3
3 3 49.8 48.2 3.3

LC-2

4 4 314.0 300.9 4.4
5 5 4.0 6.6 −39.0
6 6 41.1 40.0 2.7
7 7 243.7 235.2 3.6
8 8 113.6 109.9 3.4
9 9 73.4 73.3 0.1

1 No. 1 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1 landing gear.
2 No. 2 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the No. 1 landing
gear. 3 No. 3 measure option: the crush length of each Al-honeycomb in the secondary strut (right) in the No. 1
landing gear. 4 No. 4 measure option: the crush length of each Al-honeycomb in the primary strut in the No. 1/4
landing gear. 5 No. 5 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in the
No. 1 landing gear. 6 No. 6 measure option: the crush length of each Al-honeycomb in the secondary strut (left) in
the No. 2 landing gear. 7 No. 7 measure option: the crush length of each Al-honeycomb in the primary strut in the
No. 2/3 landing gear. 8 No. 8 measure option: the crush length of each Al-honeycomb in the secondary strut (left)
in the No. 3 landing gear. 9 No. 9 measure option: the crush length of each Al-honeycomb in the secondary strut
(left) in the No. 4 landing gear.

The deviation ratios of the results in the secondary strut ranged between 0.1% and
4.4%. However, there is a large deviation ratio among the results, 39% at the primary strut
in LC-2. Considering that the base value is 4.0 and some deviation may exist, the result can
be accepted. In conclusion, the agreement of the results proved the friction force upon the
primary strut has few effects on the soft-landing performance of the legged lander.

5. Conclusions

A novel 3D soft-landing dynamic theoretical model of a legged lander is developed
in detail as well as its numerical solution process. The six degrees of freedom motion
(6-DOF) of the base model of the lander with mass center offset setting is considered in the
model as well as the spatial motion (3-DOF) of each landing gear. The characteristics of
the buffering force, the footpad–ground contact, and the inter-structure friction are also
taken into account during the motion of each landing gear. Some salient conclusions are
summarized as follows:

Comparative analysis between the theory dynamic model and multi-body model in
MSC Adams under four classical load cases were carried out. The results show that the
crushing length of each strut from the theory dynamic model is close to that from the
MSC Adams Software in general. Despite there being some max deviation error in some
struts, the theoretical dynamic model established in this paper remains feasible due to
the differences in the contact and friction force calculation models as well as the solving
method in each numerical solution process.

Comparative analysis among the five classical contact models and the six commonly
used friction models shows that the crushing lengths of most struts from the theory dynamic
model are relatively close to each other. However, it is in the friction model result that the
max deviation of crushing length is 53.8 mm at the primary strut in LG-3 at LC-2, and the
average relative error is 17.3%. The relative value from the theoretical model is 312.4 mm.
Causing the deviation error is the difference between the velocity option in the friction
models. Therefore, building a precise friction model in the footpad–ground bearing model
during the soft-landing process is necessary to obtain the soft-landing performance of
one lander.

The friction correction between the outer and inner tubes in the primary strut is also
discussed. The results show that the deviation of the model with and without the friction
correction coefficient is not significantly obvious.
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Nomenclature

i−1
i T =

The transformation matrix from the No. i-1 coordinate system to the No. i
coordinate system.

I = Unit matrix.

Ri−1,i =

Rotation matrix from the No. i-1 coordinate
system to the No. i coordinate system in terms of Z-Y-X axis in the Euler
angle way ψ, θ, ϕ.

Ri−1,i = RZ(ψ)RY′ (θ)RX′′ (ϕ); RZ(ψ) =

cψ

sψ

−sψ

cψ

0
0

0 0 1

;

RY(θ) =

cθ

0
0
1

−sθ

0
sθ 0 cθ

; RX(ϕ) =

1
0

0
cϕ

0
−sϕ

0 −sϕ cϕ

;

sϕ = sinϕ; cϕ = cosϕ;

Pi =
Translation matrix relative to the No. i coordinate system.
Pi = [xi; yi; zi]

l
OLLgi
aiLgi

=
Translation vector

→
OLai relative to the No. i landing gear coordinate

system.

l
OLLgi

biLgi
=

Translation vector
→

OLbi relative to the No. i landing gear coordinate
system.

l
OLLgi
ciLgi

=
Translation vector

→
OLci relative to the No. i landing gear coordinate

system.

θi
1 =

yaw(z) angle of the primary strut in the Euler angle form under the No. i
landing gear coordinate system, aiLg-xiLgyiLgziLg.

θi
2 =

pitch(y) angle of the primary strut in the Euler angle form under the No. i
landing gear coordinate system, aiLg-xiLgyiLgziLg.

di
1 =

x-component value in the No. i primary strut coordinate system,
aiLg-xiLgyiLgziLg.

θi
b1, θi

c1 =
The yaw(z) angle of the primary strut in the Euler angle form under the
No. i landing gear coordinate system,
biLg-xiLgyiLgziLg and ciLg-xiLgyiLgziLg, respectively.

θi
b2, θi

c2 =
pitch(y) angle of the primary strut in the Euler angle form under the No. i
landing gear coordinate system,
biLg-xiLgyiLgziLg and ciLg-xiLgyiLgziLg, respectively.

di
b1, di

c1 =
x-component value in the No. i secondary strut coordinate system,
bi-xilgyilgzilg and ci-xilgyilgzilg, respectively.

ν
Og
ML

, ν
Og

di
, ν

Og
ei , ν

Og

fi
=

The velocity matrix of the points ML, di, ei, fi in the global coordinate
system, Og-xgygzg.

J,J1,J2 = The Jacobian matrices for different mapping relationships.

FLgi =
The equivalent dynamic force matrix in the No. i landing gear coordinate
system, OLgi-xLgiyLgizLgi.

Fg = The footpad–ground force matrix.
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FXLgi =
The x component of the footpad–ground force in the No. i landing gear
coordinate system, OLgi-xLgiyLgizLgi.

FYLgi =
The y component of the footpad–ground force in the No. i landing gear
coordinate system, OLgi-xLgiyLgizLgi.

FZLgi =
The z component of the footpad–ground force in the No. i landing gear
coordinate system, OLgi-xLgiyLgizLgi.

Fi
pri =

The equivalent dynamic forces in the primary strut of the No. i landing
gear coordinate system.

Fi
sec _L =

The equivalent dynamic forces in the left secondary strut of the No. i
landing gear coordinate system.

Fi
sec _R =

The equivalent dynamic forces in the right secondary strut of the No. i
landing gear coordinate system.

.
u, v .,

.
w =

x, y, z component of the translation acceleration vector of mass center of
the lander in the lander coordinate system.

.
p, q .,

.
r =

x, y, z component of the angle acceleration vector of mass center of the
lander in the lander coordinate system.

.
x, y .,

.
z = x, y, z component of the translation velocity vector of mass center of the

lander in the global coordinate system.
.
ψ,

.
θ,

.
φ =

The Euler rates in terms of Euler angles (Z-Y-X) from the global
coordinate system to the lander coordinate system.

Fx, Fy, Fz =
The x, y, z component of the force acting on the mass center of the lander
in the lander coordinate system.

Mx, My, Mz =
The x, y, z component of the moment acting on the mass center of the
lander in the lander coordinate system.

Hx, Hy, Hz =
The x, y, z scale component for the moment of momentum in the lander
coordinate system.

Ix, Iy, Iz =
Mass moments of inertia of the lander about x, y, and z axes in the
lander coordinate system.

Ixy, Iyz, Ixz = The products of the inertia of the lander in the lander coordinate system.

Ni
pri =

The transmission force in the primary strut of the No. i landing gear
coordinate system.

Ni
sec _L =

The transmission force in the left secondary strut of the No. i landing
gear coordinate system.

Ni
sec _R =

The transmission force in the right secondary strut of the No. i landing
gear coordinate system.

Fpri_crush = The crushing force of buffer in the primary strut.
FTen_crush_ sec = The tensile crushing force of buffer in the secondary strut.
FCom_crush_ sec = The compression crushing force of buffer in the secondary strut.

Fi
driving_pri =

The remaining driving force in the primary strut of the No. i landing
gear coordinate system.

Fi
driving_sec _L =

The remaining driving force in the left secondary strut of the No. i
landing gear coordinate system.

Fi
driving_sec _R =

The remaining driving force in the left secondary strut of the No. i
landing gear coordinate system.

M = Generalized mass matrix of each landing gear system.

q =
Generalized coordination vectors matrix,[
di

1 θi
1 θi

2 di
b1 θi

b1 θi
b2 di

c1 θi
c1 θi

c2
]T

..
q =

The generalized acceleration vectors matrix,[ ..
di

1

..
θi

1

..
θi

2

..
di

b1

..
θi

b1

..
θi

b2

..
di

c1

..
θi

c1

..
θi

c2

]T

Φq = The Jacobi matrix of the constraint equation (Equation (7)).
λ = Lagrange multiplier column matrix.
γ = Constraint matrix.
Qi

driving_pri = The remaining driving force matrix in the generalized coordinate system.
Flun = Footpad–ground contact force.
n = Exponential coefficient of the penetration depth.
µ = Frictional coefficient of the contact force.
Kg, Cg = Penetration stiffness and damping coefficient of the footpad–ground model.
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dlocix, dlociy, dlociz =
x, y, z component of the displacement of the No. i footpad in the lunar
surface coordinate system.

.
dlocix,

.
dlociy,

.
dlociz =

x, y, z component of the translation velocity of the No. i footpad in the
lunar surface coordinate system.

D, D1, D2 = Defined displacement parameters in contact model.
κ = Contact parameter.
..
s, s .,s = Crushing acceleration, velocity, and displacement of the buffer.

a, b, c, d =
Coefficients of inertia, viscosity, stiffness, and constant resistance of the
buffer.

F1, F2 =
Crush forces of the first and second step of the buffer in the primary
strut.

F3 = Transmission force after the AL-honeycomb is crushed.
s0 = Initial length of the primary strut.

s1, s2 =
Lengths of the primary strut when the first and second step foam crush
are done.

shismin = Minimum length of the primary strut before the currently measured time.

sc1, st1 =
Length value of the secondary strut when the compaction buffer or the
tension buffer crush are done.

Fcom, FTen = Compaction and tension force of the buffer in the secondary struts.

Fcom1, FTen1 =
Compaction and tension transmission force of the buffer in the secondary
struts after the AL-honeycomb is crushed.

ss
hismax =

Maximum length of the secondary strut before the currently measured
time.

ss
hismin =

Minimum length of the secondary strut before the currently measured
time.

Ni
E/F =

Total normal contact force acted upon the No. i primary strut by the
relative secondary struts.

Fi
Ycon =

y component of the contact force matrix in the No. i primary strut
coordinate system.

Fi
Zcon =

z component of the contact force matrix in the No. i primary strut
coordinate system.

Fi
con =

Contact force matrix acted upon the No. i primary strut and by the
secondary struts in the No. i primary strut coordinate system,
di-xilgyilgzilg.

η =
Correction coefficient of the contact between the outer and inner tube in
the primary strut.

µ1 =
Friction factor of the contact between the outer and inner tube in the
primary strut.

η1 =
Correction factor accounts for the changing length of the landing gear
during the soft-landing process.

η2 =
Correction factor takes into consideration the effect on the contact
pressure distribution.

NA = Lateral force caused by the upper contact action of the tubes.
NB = Lateral force caused by the below contact action of the tubes.
µk = Kinetic coefficient of friction.
FC = The magnitude of friction force.
FS = Static friction force.
FD = Dynamic friction force.
Fe = External tangential force.
v = The relative tangential velocity of the contacting surfaces.
vo = Stiction velocity.
p = Contact pressure.
pm = Maximum contact pressure.
θc = Contact angle between the outer and inner tube in the primary strut.

l =
Arc length of the contact between the outer and inner tube in the
primary strut.

lR The inner radius of the outer tube in the primary strut.
Φi = Constraint function in the No. i landing gear.
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q̂n+1,
.̂
q

n+1 =
Generalized coordinate displacement and velocity by numerical
integration at time step tn+1.

∆qn+1, ∆
.
qn+1 Correction displacement and velocity item at time step tn+1.

Subscripts

Soft landing
Any type of spacecraft landing that does not result in significant damage
to or destruction of the vehicle or its payload.

MC Center of mass.
C.L. Coordinate location.
No. Number order.
C.S. Coordinate system.
L.G. Landing gear.
LC Load case.
Pri. Strut Primary strut.
Sec. Strut Secondary strut.

References
1. China Unveils Preliminary Plan on Manned Lunar Landing. Available online: http://english.www.gov.cnnews/202305/29/

content_WS64748c46c6d03ffcca6ed781.html (accessed on 12 July 2023).
2. Yang, J.; Wu, Q.; Yu, D.; Jiang, S.; Xu, Z.; Cui, P. Preliminary Study on Key Technologies for Construction and Operation of

Robotics Lunar Scientific Base. J. Deep. Space Explor. 2020, 7, 111–117. (In Chinese)
3. Lin, R.; Guo, W.; Zhao, C.; He, M. Conceptual design and analysis of legged landers with orientation capability. Chin. J. Aeronaut.

2023, 36, 171–183. [CrossRef]
4. Hu, Y.; Guo, W.; Lin, R. An Investigation on the Effect of Actuation Pattern on the Power Consumption of Legged Robots for

Extraterrestrial Exploration. IEEE Trans. Robot. 2023, 39, 923–940. [CrossRef]
5. Zhou, J.; Ma, H.; Chen, J.; Jia, S.; Tian, S. Motion characteristics and gait planning methods analysis for the walkable lunar lander

to optimize the performances of terrain adaptability. Aerosp. Sci. Technol. 2023, 132, 44–46. [CrossRef]
6. John, F.C. After LM: NASA Lunar Lander Concepts beyond Apollo. Available online: https://ntrs.nasa.gov/citations/20190031985

(accessed on 22 June 2023).
7. Rogers, W.F. Apollo Experience Report-Lunar Module Landing Gear Subsystem. Available online: https://ntrs.nasa.gov/

citations/19720018253 (accessed on 22 June 2023).
8. Liang, D.; Chai, H.; Chen, T. Overview of Lunar Lander Soft Landing Dynamic Modeling and Analysis. Spacecr. Eng. 2011, 20,

104–112. (In Chinese)
9. Lavender, R.E. Equations for Two-Dimensional Analysis of Touchdown Dynamics of Spacecraft with Hinged Legs Including Elas-

tic, Damping, and Crushing Effects. Available online: https://ntrs.nasa.gov/citations/19660014379 (accessed on 22 June 2023).
10. Alderson, R.G.; Wells, D.A. Surveyor Lunar Touchdown Stability Study Final Report, July 1965–July 1966. Available online:

https://ntrs.nasa.gov/citations/19670003854 (accessed on 22 June 2023).
11. Zupp, G.A.; Doiron, H.H. A Mathematical Procedure for Predicting the Touchdown Dynamics of a Soft-Landing Vehicle. Available

online: https://ntrs.nasa.gov/citations/19710007293 (accessed on 22 June 2023).
12. Maeda, T.; Ozaki, T.; Hara, S.; Matsui, S. Touchdown Dynamics of Planetary Lander with Translation–Rotation Motion Conversion

Mechanism. J. Spacecr. Rocket. 2017, 54, 973–980. [CrossRef]
13. Wan, J. Research on Soft Landing Dynamic Analysis and Several Key Technologies of Lunar Lander. Ph.D. Thesis, Nanjing

University of Aeronautics and Astronautics, Nanjing, China, 2010.
14. Yue, S.; Lin, Q.; Zheng, G.; Du, Z. Touchdown Dynamics of Planetary Lander with Translation–Rotation Motion Conversion

Mechanism. Chin. J. Aeronaut. 2022, 35, 156–172. [CrossRef]
15. Yin, K.; Sun, Q.; Gao, F.; Zhou, S. Lunar surface soft-landing analysis of a novel six-legged mobile lander with repetitive landing

capacity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 236, 1214–1233. [CrossRef]
16. Lin, Q.; Ren, J. Investigation on the Horizontal Landing Velocity and Pitch Angle Impact on the Soft-Landing Dynamic Character-

istics. Int. J. Aerosp. Eng. 2022, 2022, 1214–1233. [CrossRef]
17. Yin, C.; Quan, Q.; Tang, D.; Deng, Z. Landing of the asteroid probe with three-legged cushioning: Planar asymmetric dynamics

and safety margin. Adv. Space Res. 2023, 71, 2075–2094. [CrossRef]
18. Dong, Y.; Ding, J.; Wang, C.; Wang, H.; Liu, X. Soft landing stability analysis of a Mars lander under uncertain terrain. Chin. J.

Aeronaut. 2022, 35, 377–388. [CrossRef]
19. Jeffrey, A.; Goldman, D.I. Robophysical study of jumping dynamics on granular media. Nat. Phys. 2016, 12, 278–283.
20. Wu, S.; Wang, Y.; Hou, X.; Xue, P.; Long, L. Research on Theoretical Model of Vertical Impact of Foot Pad on Lunar Soil. Manned

Spacefl. 2016, 26, 135–141. (In Chinese)
21. Nelson, R.C. Flight Stability and Automatic Control, 1st ed.; McGraw-Hill College: New York, NY, USA, 1989; pp. 50–90.
22. Craig, J.J. Introduction to Robotics Mechanics and Control, 3rd ed.; Pearson Education, Inc.: River Street Hoboken, NJ, USA, 2005;

pp. 40–80.

http://english.www.gov.cnnews/202305/29/content_WS64748c46c6d03ffcca6ed781.html
http://english.www.gov.cnnews/202305/29/content_WS64748c46c6d03ffcca6ed781.html
https://doi.org/10.1016/j.cja.2022.08.001
https://doi.org/10.1109/TRO.2022.3206665
https://doi.org/10.1016/j.ast.2022.108030
https://ntrs.nasa.gov/citations/20190031985
https://ntrs.nasa.gov/citations/19720018253
https://ntrs.nasa.gov/citations/19720018253
https://ntrs.nasa.gov/citations/19660014379
https://ntrs.nasa.gov/citations/19670003854
https://ntrs.nasa.gov/citations/19710007293
https://doi.org/10.2514/1.A33630
https://doi.org/10.1016/j.cja.2022.06.022
https://doi.org/10.1177/0954406221999422
https://doi.org/10.1155/2022/3277581
https://doi.org/10.1016/j.asr.2022.10.028
https://doi.org/10.1016/j.cja.2021.10.034


Aerospace 2023, 10, 811 28 of 28

23. Yu, Q.; Chen, I.-M. A direct violation correction method in numerical simulation of constrained multibody systems. Comput.
Mech. 2000, 26, 52–57. [CrossRef]

24. Hong, J. Computational Dynamics of Multibody Systems, 1st ed.; Higher Education Press: Beijing, China, 1999; pp. 360–380.
25. Chen, H. Investigation on Energy-Absorption Nanomaterials for Lunar Lander and Analysis on Soft-Landing Performance. Ph.D.

Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2017.
26. Zhao, D.; Liu, Y. Improved Damping Constant of Hertz-Damp Model for Pounding between Structures. Math. Probl. Eng. 2016,

2016, 52–57. [CrossRef]
27. Paulo, F.; Margarida, M.; Silva, M.T.; Martins, J.M. On the continuous contact force models for soft materials in multibody

dynamics. Multibody Syst. Dyn. 2011, 25, 357–375.
28. Jankowski, R. Non-linear viscoelastic modelling of earthquake-induced structural pounding. Earthq. Eng. Struct. Dyn. 2005, 34,

595–611. [CrossRef]
29. Jankowski, R. Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear

viscoelastic model of structural pounding. Earthq. Eng. Struct. Dyn. 2005, 35, 517–524. [CrossRef]
30. Hunt, K.H.; Crossley, F.R.E. Coefficient of Restitution Interpreted as Damping in Vibroimpact. J. Appl. Mech. 1975, 42, 440–445.

[CrossRef]
31. Wang, G.; Ma, D.; Liu, Y.; Liu, C. Coefficient of Restitution Interpreted as Damping in Vibroimpact. Chin. J. Theor. Appl. Mech.

2022, 54, 3239–3266.
32. Filipe, M.; Paulo, F.; Pimenta Claro, J.C.; Lankarani, H.M. Modeling and analysis of friction including rolling effects in multibody

dynamics: A review. Nonlinear Dyn. 2016, 45, 223–244.
33. Filipe, M.; Paulo, F.; Pimenta Claro, J.C.; Lankarani, H.M. A survey and comparison of several friction force models for dynamic

analysis of multibody mechanical systems. Nonlinear Dyn. 2016, 86, 1407–1443.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s004660000149
https://doi.org/10.1155/2016/9161789
https://doi.org/10.1002/eqe.434
https://doi.org/10.1002/eqe.537
https://doi.org/10.1115/1.3423596

	Introduction 
	Soft-Landing Model 
	Model Definition 
	Position and Velocity Definition of the Lander 
	Dynamics Model of the Simplified Base Model of the Lander 
	Dynamic Model of Landing Gear 
	Footpad–Ground Bearing Model 
	Dynamic Model of the Buffers 
	Correction Coefficient  

	Simulation and Model Validation 
	Program Flow 
	Program Flow 

	Discussions 
	Different Kinds of the Footpad–Ground Bearing Models 
	Friction Analysis 
	Correction Coefficient  

	Conclusions 
	References

