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Abstract: Joints are widely used in large deployable structures but show semi-rigidity due to perfor-
mance degradation and some nonlinear factors affecting the structure’s dynamic characteristics. This
paper investigates the influence of semi-rigid joints on the characteristics of deployable structures in
orbit. A virtual connection element of three DOFs is proposed to model the semi-rigid joints. The
governing equations of semi-rigid joints are established and integrated into the dynamic equation of
the structures. A series of numerical experiments are carried out to validate the proposed model’s
accuracy and efficiency, and the deployable truss structures’ static and dynamic responses are an-
alyzed. The results show that semi-rigid joints exacerbate the effects of an in-orbit microvibration
on the stability of deployable truss structures. Semi-rigid joints lower the dominant frequencies of
structures, leading to a ‘closely-spaced-frequencies’ phenomenon and altering the dynamic responses
significantly. The effects of semi-rigid joints on deployable truss structures are long-term and can be
used to establish a relationship model between structural performance and service life. Nonlinear
effects vary with the external load and depend on the structures’ instantaneous status. These results
indicate that semi-rigid joints significantly influence the characteristics of deployable structures,
which must be considered in the design and analysis of high-precision in-orbit deployable structures.

Keywords: large deployable structure; semi-rigid joint; nonlinear analysis; dynamic response;
dominant frequency; structural stability; pointing precision; micro-vibration

1. Introduction

Spacecraft structures tend to be large-scale, flexible, and lightweight with the devel-
opment of aerospace technology. Large deployable space structures can transform from
a folded configuration to a deployed configuration to satisfy the requirements of appli-
cations [1,2]. Numerous works have been dedicated to this kind of structure’s dynamic
modeling and nonlinear analysis [3–7]. Almost all tackle the joints in trusses as ideally
rigid or hinged. However, due to performance degradation and some nonlinear factors,
such as clearance, friction, and other factors, joints virtually are not ideal, and they are
one of the major sources of structural nonlinearity and damping, which affect the dynamic
response, stability, and pointing accuracy of structures in orbit [8,9]. The semi-rigidity of
joints is the most typical of many unideal cases that affect the structure’s dynamic charac-
teristics. Therefore, it must be considered in modeling space truss structures to improve
model fidelity.

During the past few decades, the influence of semi-rigid joints on the performance of
frame structures has been widely studied using the finite element method. Mohammed
and Ismael [10] studied the influence of connection stiffness on the post-buckling behavior
of frame structures, finding that the effect of joint stiffness on structural stability could
be effectively reduced by adding an oblique structure to the frame structure. Keulen
and Nethercot [11] assessed the nonlinear stiffness of joints and used the rotating spring
element to simulate the joint structure in the frame. The research showed that the proposed
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method was suitable for the multi-story regular frame structure, which can be used to
solve common geometric nonlinear problems. In Refs. [12,13], a nonlinear analysis of
frame structures with rigid connections, semi-rigid connections, and hinge connections
was carried out, proving the importance of connection stiffness to determine the overall
stability and ultimate strength response of frame structures. A weak form of the incremental
governing equation in the complementary energy approach was proposed in Ref. [14],
which could effectively and accurately deal with flexible connected spatial structures’
static and dynamic problems. Kawashima et al. [15] and Chan [16] employed the direct
stiffness method to analyze the vibration of frame structures and considered the influence
of connection stiffness and friction. Chui et al. [17] proposed a geometric nonlinear analysis
method for flexible connected frame structures with hysteretic connection characteristics
based on the traditional static matrix analysis method, which can be applied to the deflection
analysis of frame structures with nonlinear connection stiffness to obtain nonlinear dynamic
response under dynamic loads. An original extension of the classic deformation method
for global elastic analysis of steel construction with semi-rigid connections was developed
in Ref. [18].

However, the aforementioned works mostly focused on rigid frame structures on the
ground, and scant research has been dedicated to structures in orbit. Space truss structures
are located in a different space environment from ground structures and require long-term
service and unmanned operation. Therefore, there is a high demand for their working
performance, such as pointing accuracy. The impact of micro-vibrations and other distur-
bances on the structure may be minimal, but it needs to be taken seriously. Furthermore,
widespread semi-rigid joints inevitably affect the nonlinear dynamic characteristics of
structures, and the large-scale effect of truss structures further aggravates this effect. Thus,
the nonlinear dynamic response of such a structure needs to be focused on.

Furthermore, strong geometric nonlinearities lead to many difficulties in modeling
and solving problems with the traditional finite element method, particularly for a truss
structure with semi-rigid connections undergoing large deflection [19,20], in which semi-
rigid joints involve complex constraints. Moreover, large-scale structures further complicate
the modeling. Therefore, a unified modeling principle is urgently needed to reduce the
difficulty of modeling and improve analysis efficiency. The Finite Particle Dynamic Method
(FPDM) is a novel structural analysis method based on the Vector Form Intrinsic Finite
Element (VFIFE) proposed by E. C. Ting et al. [21–23] in 2004. In FPDM, the structure’s
shape is described by the particles’ position, and the particles’ behavior follows Newton’s
law. The resultant force of the particle is calculated by using the principle of virtual work
to establish the particle motion governing equation. A large body of research shows that
FPDM possesses good convergence for large deformation [24], large displacement [25], and
fracture failure [26–28] problems due to the explicit integral method. However, there is
little work on nonlinear dynamic analysis of deployable truss structures with semi-rigid
joints using FPDM.

The main goal of this paper is to investigate the influence of semi-rigid joints on the
nonlinear dynamic response and dynamic characteristics of deployable truss structures
using a unified modeling principle. The remainder of this paper is organized as follows.
The properties of semi-rigid joints and their possible influences on the dynamics of de-
ployable truss structures are briefly introduced in Section 2. A virtual connection element
is innovatively proposed to model the behavior of the semi-rigid joints in Section 3. The
formulation of the additional joint moment, the governing equation of the moment of
the particle at the joint node, and the dynamic equation of the whole truss structure are
also presented in this section. Section 4 validates the proposed method first and then
investigates the effects of the semi-rigid joints on the structure’s dynamic characteristics
through a series of numerical examples. Concluding remarks and directions for future
research are discussed in Section 5.
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2. Problem Description

Hinge joints are the most intuitive and are often used for mobile joints without
rotational constraints. Most frame structures can be considered rigid joints when welding,
riveting, multi-point bolt fastening, and using similar connection methods. Generally,
a joint containing a coil spring can be regarded as a semi-rigid joint. Some rigid joints
need to be treated as semi-rigid when considering assembly clearance and performance
degradation due to fatigue.

Figure 1a,b illustrate a typical large deployable structure composed of beams and
joints that can unfold up to 10 m or longer. Often possessing large flexibility and low
natural frequencies, this structure is subjected to various loads but requires high precision
and structural stability. It can be fully folded to minimize its storage space during the
launch. Driven by deployment mechanisms in the joints, the structure self-unfolds after
entering the working state and then locks the joints. Figure 1c shows the deformation of a
deployable truss structure under external loads. Relative rotations exist between adjacent
beams at the joint due to the semi-rigid connection. These beam pairs are constrained to
some extent but not rigidly, as shown in Figure 1d. Semi-rigid joints affect the transfer
of internal force and moment between adjacent beams. So, the stiffness, as well as the
dynamic response, will be affected. Moreover, these effects may be amplified with the
increase in structure size.
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Figure 1. A deployable structure with semi-rigid joints. (a) Deployable space structure under
working conditions; (b) Deployment process of deployable structure; (c) Deformation of structure;
(d) Semi-rigid joint; (e) Several semi-rigid joints.

The joint structure and material properties determine semi-rigidity characteristics.
Experiments can measure semi-rigidity characteristics and describe them using M∗ − γ∗

curves [29], as shown in Figure 1e. The rotating stiffness Sr caused by semi-rigid joints can
be expressed as

Sr =
dM∗

dγ∗
(1)

where M∗ is the moment at the joint and γ∗ is the relative angle at the joint, i.e.,

γ∗ = γ1 − γ2 (2)

where γ1 and γ2 denote the rotation angles of the adjacent beams connected at the joint, as
shown in Figure 1d. The rotational stiffness Sr varies with materials, and structures and
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can be linear and nonlinear. The main goal of this paper is to investigate the influence of
various kinds of rotating stiffness Sr on the dynamic behavior of deployable trusses.

3. Model Establishment of Truss Structure

In the traditional analysis of a truss structure, joints between beams and bars are
usually regarded as rigid connections, which are usually treated as a common node in the
finite element method. However, this method does not apply to semi-rigid joints, which
must be simulated with additional complex constraints. In this section, a unified modeling
method for semi-rigid joints is proposed to improve modeling accuracy and efficiency.

3.1. Connection Element of Semi-Rigid Joints

Consider the semi-rigid joint χ connecting two beams a and b, as shown in Figure 2.
This joint can be modeled as a virtual spring system of three degrees of freedom (3 DOFs),
having no mass and length. This spring system connects the nodes i and j, i.e., the ends of
the two adjacent beams.
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Figure 2. Elements a and b are connected by joint χ. The joint can be modeled as a 3-DOFs spring
system without mass and length. The spring system has two translational and one rotational stiffness.

The constraint force and moment of the joint on the two beams are decomposed into
three components along the 3 DOFs. They are given by

F∗i =
[
Sa∆x St∆y

]T, M∗i = Srγ∗ (3)

where [
∆x ∆y

]T
=
[
xi − xj yi − yj

]T (4)

where (xi, yi) and
(

xj, yj
)

are the coordinates of the nodes i and j. Sa and St denote the
virtual joint’s axial and translational stiffness, respectively. The force and moment act on
node j are F∗j = −F∗i and M∗j = −M∗i , respectively.

3.2. VFIFE Model for Beams

According to the VFIFE method, a beam, although a physical continuum structure,
can be described by finite points connected by massless elements, as shown in Figure 3.
These points have mass and moment of inertia, thus also called particles, defined as [25]

mi = mic +
n

∑
k=1

m̂k, m̂k =
1
2

ρAl (5)
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Ii = Iic +
n

∑
k=1

Îk, Îk =
1
2

m̂kr2 (6)

where n is the number of beam elements connected to particle i. For particles not located at
the ends of beams, n = 2. For particles at the ends of beams, also called nodes, n depends
on how many beams are connected at the joint. mic is the mass of objects at the position
of the particle i. For nodes, i.e., particles connected by joints, mic should include masses
of the joints. ρ is the material density of the beam, A denotes the cross-sectional area, and
l is the length of the beam element. The equivalent mass m̂k represents the mass effect
of beam elements, divided equally by the particles at the ends. Similarly, the moment of
inertia of particle i arises from the beam elements connected to it. Every contribution Îk is
determined by the equivalent mass m̂k and the gyration radius r of the cross-section in the
direction of the principal coordinates.
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of particles follows Newton’s mechanics law.

All internal and external forces are added to the particles, as shown in Figure 3.
Particles at the ends of beams, i.e., nodes, are also subjected to constraint forces and
moments of joints, {

Fi = Fext
i + Fint

i − F∗i ,
Mi = Mext

i + Mint
i −M∗i ,

for particles at joints (7)

{
Fi = Fext

i + Fint
i ,

Mi = Mext
i + Mint

i ,
for ordinary particles (8)

The formulas of F∗i and M∗i are given in Equation (3). The formulas for internal forces
Fint

i and moments Mint
i are computed according to the VFIFE method. Both of them are

caused by pure deformation.
VFIFE innovatively proposes an approach to extract pure deformation by applying

reverse motion to the structure. As shown in Figure 4, taking node 1 as the reference point,
the virtual reverse translation of −u1 and the virtual reverse rotation ϕ are applied to
elements 1–2.
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As a result, the pure deformation of elements 1–2 is revealed, composed of three
components: axial length increment, deformation angle of node 1, and deformation angle
of node 2. They are given by

∆e = l − la, θ1 = β1 + (−ϕ), θ2 = β2 + (−ϕ) (9)

where l and la are the lengths of the element at time t + ∆t and t, respectively. β1 and β2
are rotating angles of nodes 1 and 2, respectively, from time t to t + ∆t. Each of them is
composed of two parts; one is caused by pure deformation θi, and the other one is caused
by rigid rotation ϕ. It should be pointed out that these angles are the same in local and
global coordinates due to their common z-axis, and γ(t) is the rotating angle of the nodes,
which varies with time.

After obtaining the pure deformation increment from time t to t + ∆t, the increments
of forces and moments at the beam element can be calculated by

∆F̂1x = −Ea Aa

la
∆e, ∆F̂2x =

Ea Aa

la
∆e (10)

∆F̂1y = −∆M1z + ∆M2z

la
, ∆F̂2y =

∆M1z + ∆M2z

la
(11)

∆M1z =
Ea Ia

la
(4θ1 + 2θ2), ∆M2z =

Ea Ia

la
(2θ1 + 4θ2) (12)

where ∆F̂ix and ∆F̂iy denote internal force increment on particle i from time t to t + ∆t.
∆Miz represents the internal moment increment. The subscript ∧ indicates the values in
the local coordinate system. The internal force acting on particle i at time t + ∆t can be
expressed as

F̂int
i (t + ∆t) = F̂int

i (t) +
[

∆F̂ix ∆F̂iy
]T

Mint
i (t + ∆t) = Mint

i (t) + ∆Miz
(13)

Appling coordinate transform, the internal force in the global coordinate system is
obtained using the following equation:

Fint
i = R2×2F̂int

i (14)
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where R2×2 is the directional cosine matrix from the local coordinate system to the global
coordinate system. mi

mi
Ii

 d2

dt2

xi
yi
γi

 =

Fix
Fiy
Mi

 (15)

where
[
Fix Fiy

]
= Fi. Solving Equation (15), the dynamic response of the truss structure

connected by semi-rigid joints can be obtained.

3.3. Solution Procedure

Figure 5 shows the logical diagram of modeling and solving procedures using FPDM.
The displacement of step n + 1 depends on the previous two steps n and n− 1. The unified
modeling method integrates the elements of the joints and beams to construct the truss
structure numerical analysis model.
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The central difference method is chosen to solve the governing equation, which
remains simple and efficient despite the increase in model scale. The formula for particle
displacement and the rotation angle is then given by

xn+1
i = C1

h2

mi
Fi + 2C1xn

i − C2xn−1
i

γn+1
i = C1

h2

Ii
Mi + 2C1γn

i − C2γn−1
i

(16)

where
C1 =

1

1 + ζh
2

, C2 = C1
1

1− ζh
2

(17)
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The dynamic response of the structure is obtained by FPDM. To obtain the static
solution, it is necessary to introduce the energy dissipation mechanism into the govern-
ing equation, so a virtual damping force is added here. ζ denotes the virtual damping
coefficient, which leads to a stable status.

4. Results and Discussion
4.1. Method Validation

To validate the accuracy and efficiency of the proposed model, a series of classical
nonlinear problems are studied numerically, including geometric nonlinearity, snap-through
buckling, and nonlinear dynamic response. The results are compared with those in the literature.

4.1.1. Geometrically Nonlinear Analysis of Column with Semi-Rigid Connection

First, a column constrained by a semi-rigid joint and subjected to lateral and longitudi-
nal loads is investigated—a classical benchmark problem to verify the validity of numerical
methods for nonlinear geometric problems. Structural and material parameters in Ref. [30]
are adopted directly for the sake of comparison. Various types of joints are considered,
including rigid and semi-rigid ones. Figure 6 shows the results obtained by using the
FPDM, which are depicted by solid and dashed lines.
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As shown in Figure 6, points marked by upward-pointing triangles and circles are
generated from data in the literature. It can be found that the results agree with those in
the literature very well. Thus, it can be concluded that the proposed model is applied to
nonlinear geometric problems. Moreover, another two cases, where Sr equals 5 EI/L and
20 EI/L, are investigated, respectively. Comparing the deformation curves with different
joint stiffness, i.e., the red lines, it can be found that the column switches from stable
to unstable as the load increases. The joint stiffness has a significant influence on the
critical load.
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4.1.2. Snap-through Analysis of William’s Toggle Frame

Figure 7 shows William’s toggle frame, which exhibits strong nonlinear behavior when
subjected to a vertical load, named snap-through buckling. This example aims to prove the
validity of the proposed model for large deflection problems. A structure and parameters
identical to Refs. [12,13,30,31] are employed and illustrated in Figure 7. The results include
the load–displacement curve and bending moment–displacement curve at the loaded point,
respectively, in Figure 7a,b. Three cases are considered. In the first case, all joints are rigid.
A semi-rigid joint is located at the vertex in the second case, and all joints are semi-rigid in
the last one. All semi-rigid joints have a rotating stiffness Sr = 10 EI/L.
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Figure 7. Comparison of results of the loaded point displacement of FPDM and the published results.
The solid line and dashed line in the plot represent the result of FPDM, and markers represent
the result in Refs. [30,31]. (a) Load-displacement of loaded point; (b) Moment-displacement of
loaded point.

Excellent agreements between the results obtained by using the proposed model and
those in the literature [30,31] are observed. Snap-through buckling behavior under vertical
load is captured precisely, as shown in Figure 7a. Thus, these results demonstrate the
validity of the FPDM model for large deflection problems. Moreover, the results also
reveal that the semi-rigid joints make the critical load of the structure decline significantly,
which impairs the capacity of the structure to keep high structural precision and stability
under disturbance.

4.1.3. Static and Dynamic Response of a Clamped-Clamped Beam

A beam constrained by semi-rigid joints at its ends and subjected to a concentrated
load at the midpoint is investigated in this section. Material and structural parameters are
illustrated in Figure 8, the same as in Ref. [17]. The rotating stiffness Sr is 10 EI/L and
EI/L. The beam’s static and dynamic responses with various joint stiffness are computed
using the FPDM and depicted in Figure 8a,b using solid and dashed lines. The results are
compared with those in Ref. [17], depicted by upward-pointing triangles. As expected,
they coincide very well regardless of the specific joint stiffness. For the static problem, the
stiffening phenomenon of the beam is revealed accurately. For the dynamic problem, the
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nonlinear response of the beam subjected to a step load of magnitude 640lb (2845 N) is
studied in detail. It can be observed that the displacement–time curves obtained using
the FPDM match with those in the literature very well. Moreover, it can be found that the
decrease in joint stiffness results in an apparent decrease in natural frequencies.
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Conclusions can be drawn from the aforementioned numerical experiments that the
FPDM is valid and precise for nonlinear static and dynamic problems. It should be pointed
out that the above examples also demonstrate the vital influence of semi-rigid joints on
static and dynamic characteristics and responses. This phenomenon will be investigated
deeply in the next section.

4.2. Influence of Semi-Rigid Joints on Dynamics of Deployable Structures

Now, we investigate semi-rigid joints’ influence on the static and dynamic behavior of
the large deployable space truss structure, as shown in Figure 1a. This truss structure is
10 m long after deployment and comprises 30 beams connected by rigid and semi-rigid
joints. The beams are made of aluminum alloy. Table 1 tabulates the geometric and material
parameters of the structure. Three kinds of joints are considered, including ideal rigid joints
and semi-rigid joints of rotating stiffness 100 EI/L and 10 EI/L.

4.2.1. Effects of Linear Joint Stiffness

Three numerical experiments are carried out to investigate the effects of the joint
stiffness on the bending stiffness, dominant frequencies, and dynamic responses of the
truss structure.

1. Case 1: Effects on structural bending stiffness

First, consider the quasi-static bending of the truss. A gradually increasing moment
Me is enforced at the end of the truss. The quasi-static bending stiffness kb = Me/θe at
every rotation angle is calculated and depicted in Figure 9. It can be found that the decrease



Aerospace 2023, 10, 821 11 of 19

in joint stiffness results in an apparent decrease in bending stiffness. The bending stiffness
is lower about 0.6% when Sr = 100 EI/L, compared to the case where all joints are rigid.
It is also observed that as the rotation angle increases, the truss’s stiffness also increases,
as shown in Figure 9b. The relationship between the stiffness of the whole truss and the
rotating stiffness of the joints is illustrated in Figure 9c. The stiffness of the truss with
semi-rigid joints is between that of the rigid-connected truss and the pinned-connected
truss. The increase in the rotating stiffness of the joints results in the rise of the stiffness of
the whole truss in a step-likewise form, as shown in Figure 9c. When Sr varies from 0 to
25 EI/L, a surge in the stiffness of the truss is observed. Further, the increase in Sr has a
smaller and smaller influence, and the bending stiffness of the truss ultimately approaches
the value of the rigid-connected truss.

Table 1. Geometric and material parameters of the truss structure.

Component Parameter Value

Transverse beam

Length L1 (m) 1
Outer diameter d1 (m) 0.04

Thickness δ1 (m) 0.003
Young’s modulus E1 (Pa) 6.8 × 1010

Poisson ratio µ1 0.3
Density ρ1 (kg/m3) 2500

Diagonal beam

Length L2 (m) 1.414
Outer diameter d2 (m) 0.04

Thickness δ2 (m) 0.003
Young’s modulus E2 (Pa) 6.8 × 1010

Poisson ratio µ2 0.3
Density ρ2 (kg/m3) 2500

Semi-rigid joints Equivalent mass m1 (kg) 0.1392
Rigid joints Equivalent mass m2 (kg) 0.1927
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Figure 9. Comparison of bending stiffness with different joints. (a) Bending behavior of truss
structure; (b) Bending stiffness–rotation curves; (c) Bending stiffness–rotating stiffness curves.

Large space structures usually work in orbit for more than ten years, and structural
fatigue and joint degradation occur inevitably. The stiffness of joints decreases over time.
Correspondingly, the stability of the structure will also be affected, which affects the
pointing accuracy of the in-orbit truss structure. The trend in Figure 9c indicates that
the stiffness of joints must be kept within a reasonable range and bigger than a critical
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value as shown in the figure. This is very important when monitoring and evaluating the
performance of large structures.

2. Case 2: Effects on natural frequencies

Consider the free vibration of a truss having an initial displacement of 0.05 m and no
damping. Dynamic responses of the same truss with different joint stiffnesses are plotted in
Figure 10, including the displacements, velocities, and frequency spectrum at the midpoint
and endpoint. The dominant frequencies are obtained through fast Fourier transform. The
values are 10.50 Hz and 10.44 Hz when the rotating stiffness is 100 EI/L and 10 EI/L,
0.19% and 0.8% lower than the rigid truss, respectively.
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Figure 10. Nonlinear dynamic responses of the free oscillating truss structure. (a) Rigid joints;
(b) Semi-rigid joints, Sr = 100 EI/L; (c) Semi-rigid joints, Sr = 10 EI/L.

As shown in Figure 11, the semi-rigid joints lower the dominant frequencies, resulting
in a ‘closely spaced frequencies’ phenomenon. The blue lines in the figure illustrate the
span of the dominated frequencies, whose interval shrinkages from 16.46 Hz to 12.42 Hz. A
significant deviation of frequencies is observed compared to the rigid-connected structure.
If the structure is regarded as ideally connected, the prediction of high–order frequencies
probably deviates by as much as 25~50%. It demonstrates that the effect of semi-rigid joints
cannot be ignored for precise space structures in the design process.
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3. Case 3: Effects on the dynamic response

To investigate the influence of semi-rigid joints on the nonlinear dynamic response of
the truss, a loading case, as shown in Figure 12, is considered. The micro-vibration load is a
harmonic excitation of magnitude P = 5 N along the transverse direction. Three cases of
loading frequencies are taken into account, i.e., Ω = 25 Hz, 50 Hz, and 75 Hz.
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The displacement time histories of the midpoint and endpoint are computed and,
respectively, depicted by solid and dashed lines, as shown in Figure 13. The results show
that the rigid truss’s nonlinear dynamic responses and the semi-rigid truss with joint
stiffness 100 EI/L are very close and share the same trend when the micro-vibration
frequency is low, as the black and red lines show. As the joint stiffness reduces further, for
example, to 10 EI/L, the dynamic response varies significantly. Figure 13a shows that the
response increases significantly at the midpoint when Ω = 25 Hz compared to the other two
cases of joint stiffness. As the exciting frequency comes to 50 Hz, a remarkable deviation in
the vibration amplitude is observed in Figure 13b. It indicates that when the joint stiffness
changes, the higher-order natural frequencies of the truss structure undergo significant
changes (Figure 11), which affect the structural dynamic response of the structure under
micro-vibration loads. As shown in Figure 13c, when Ω = 75 Hz, there is a significant
difference in displacement response at the midpoint of the structure but not the endpoint.
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force. (a) Ω = 25 Hz; (b) Ω = 50 Hz; (c) Ω = 75 Hz.

The above results demonstrate that semi-rigid joints are of vital influence on the
frequencies of each order of the structure, especially the high-order-dominated frequencies,
compared with the ideal rigid connection. It also leads to a ‘closely spaced frequencies’
phenomenon and significantly varying dynamic responses. Semi-rigid joints can reduce
the natural frequency of the structure, and, for in-orbit truss structures, subtle changes
in natural frequency can also have a significant impact on the dynamic characteristics of
the structure. At the same time, considering the high frequency of micro-vibration loads
in spacecraft structures, the effects on the higher-order frequencies are bound to have a
significant effect on the dynamic response of the structure. Therefore, it is necessary to
conduct in-depth research on the joint performance of deployable truss structures.

4.2.2. Effects of Nonlinear Joint Stiffness

Due to clearance, friction, and other factors, the joint stiffness tends to be nonlinear
rather than ideal linear [8]. The Ramberg–Osgood model [32] is a commonly used fitting
model to describe nonlinear joint stiffness.

In this model, the rotating stiffness can be expressed as

Sr =
M∗0 /γ∗0

1 + n
[
|M∗|/M∗0

]n−1 (18)

where M∗0 denotes the reference moment, γ∗0 denotes the reference relative rotating angle,
and n is a parameter describing the shape of the curve. These parameters are adopted
in the following numerical analysis: M∗0 = 10 N·m, γ∗0 = 0.00245 rad, and n = 4. M∗0 /γ∗0
is set to 4080 N·m·rad−1 for comparison convenience, which is equivalent to 10 EI/L in
Section 4.2.1. Then, the rotating stiffness is
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Sr =
4080

1 + 4× |0.1M∗|3
(19)

and the corresponding moment–rotation curve and stiffness–rotation curve are shown in
Figure 14.
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Figure 14. Comparison of connection stiffness of nonlinear Ramberg–Osgood model and linear
stiffness model. (a) Relationship of moment and rotation angle; (b) Relationship of rotating stiffness
and rotation angle.

Utilizing the proposed model, the bending stiffness of the truss connected by nonlinear
joints is computed and depicted in Figure 15. A notable phenomenon is observed that,
instead of increasing as in the linear case, the bending stiffness of the truss decreases with
the increase in the rotating angle. This value decreases by 3.69% when the rotating angle
comes up to 0.025 rad. In contrast, it increases by 0.98% in the linear case. This result
cautions engineers to care about the value of joint stiffness and its trend. Nonlinear joint
stiffness may bring in unexcepted influences on the dynamics of trusses.
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and linear stiffness model.

Figure 16 compares the dynamic responses of the two trusses of the same structure
but different joint stiffness models, one linear and another nonlinear. When the external
excitation is also small, the difference in displacement response of the structure is minor,
as shown in Figure 16a. With the increase in the external load, it can be found that the
distinction between the two joints grows. The distinction not only manifests in vibration
amplitude but also in phase. For instance, as the external force increases from 2.5 N to 10 N,
a significant difference can be observed in the midpoint displacement response of the two
joint models (Figure 16a,b). In addition, an apparent phase difference is also observed at
the endpoint, as shown in Figure 16c.
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The results above demonstrate that the nonlinear joint stiffness has a variety of in-
fluences on both static characteristics and dynamic response. More importantly, these
influences differ from one of the linear joints. The nonlinearity’s effect varies with the
external load, changes vibration amplitude and phase, and depends on the structures’
instantaneous status.

4.2.3. Effects of the Size of Deployable Structure

Whether the effect of semi-rigid joints varies as the size of the truss increases is
investigated in this section, focusing on the effect on the bending stiffness of the whole truss.
Three trusses of 10 m, 16 m, and 22 m lengths are considered. Figure 17 shows the variation
in the bending stiffness of these trusses as their rotating angles increase. Table 2 compares
the bending stiffness of the trusses of different joint stiffnesses, taking the corresponding
rigid trusses as benchmarks. For the truss structure with rigid connection and linear
connection stiffness, the stiffening phenomenon of the structure is observed again.

Table 2. Bending stiffness (N·m·rad−1) and decline ratio (%).

Length (m)
Rigid Sr = 100 EI/L Sr = 10 EI/L Ramberg–Osgood Model

Result Result Diff (%) Result Diff (%) Result Diff (%)

10 18,184.1 18,075.2 −0.599 17,436.1 −4.113 16,628.7 −8.554
16 18,022.8 17,924.9 −0.543 17,285.9 −4.089 16,490.8 −8.500
22 17,869.6 17,763.8 −0.592 17,149.7 −4.029 16,360.2 −8.447
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Moreover, for the truss structure with nonlinear connection stiffness, the nonlin-
ear static characteristics of the structure are also consistent with the results obtained in
Section 4.2.2. It can be found that the varying trends of the stiffnesses of the whole trusses
have nothing with the lengths of the trusses. Compared to their corresponding rigid
counterpart, the relative deviations of the trusses’ stiffness are independent of the lengths.

All of the numerical experiments demonstrate that joint stiffness must be considered
in the dynamic analysis of truss structures, which significantly influences the prediction
accuracy of static and dynamic problems.

5. Conclusions

This paper proposes a novel virtual connection element of three DOFs to model the
semi-rigid joints, which widely exist in deployable truss structures but are usually tackled
as ideal rigid connections in previous works. This modeling method is consistent for linear
and nonlinear joints and is thus more efficient and realistic than traditional FEM. The linear
and nonlinear additional joint moment formula is derived according to Hooke’s law and
the Ramberg–Osgood model of rotating stiffness. Then, the governing equation of motion
of the semi-rigid joints is established and integrated into the dynamic equation of the truss
structure using the finite particle dynamic method. The motion constraints of joints with
the components are taken into account. A series of numerical experiments are carried out
to validate the accuracy and efficiency of the proposed model, including both static and
dynamic problems.

The static and dynamic characteristics of a series of in-orbit deployable truss struc-
tures with semi-rigid joints are analyzed. The main conclusions of this work include
the following:

1. A three-DOFs virtual connection element of Vector Form Intrinsic Finite Element
is proposed to model semi-rigid joints. The proposed model can be used to evaluate
the additional forces and moments caused by the deformation of semi-rigid joints and
conveniently integrate them into the motion control equations of the nodes. The proposed
method has been proven to be accurate and effective.
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2. Semi-rigid joints exacerbate the effects of an in-orbit microvibration environment on
the stability of deployable truss structures. Semi-rigid joints lower the dominant frequen-
cies of structures, leading to a ‘closely-spaced-frequencies’ phenomenon and altering the
dynamic responses significantly. Some high-order frequencies probably deviate by as much
as 25~50%, demonstrating that the semi-rigid joints’ effect cannot be ignored for precise
space structures.

3. The effects of semi-rigid joints on deployable truss structures is a long-term behavior.
The increase in the joints’ rotating stiffness makes the whole truss’s stiffness increase in a
step likewise form, ultimately approaching the value of the rigid-connected truss when
the joint stiffness is higher than a certain value. This indicates a reasonable range of
joint stiffness, where the relationship between structural stability and service life can be
established correspondingly.

This paper demonstrates that semi-rigid joints must be considered in detail, instead of
ideal rigid joints, both in static and dynamic problems of truss structures, since they can
significantly influence the prediction accuracy of space structures. Based on the methodol-
ogy proposed in this paper, further work will be dedicated to the dynamic responses of
in-orbit structures with clearance joints and joint wear problems.
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