
Citation: Lou, J.; Yuksek, B.; Inalhan,

G.; Tsourdos, A. Real-Time On-the-Fly

Motion Planning for Urban Air

Mobility via Updating Tree Data of

Sampling-Based Algorithms Using

Neural Network Inference. Aerospace

2024, 11, 99. https://doi.org/

10.3390/aerospace11010099

Academic Editor: Michael Schultz

Received: 1 December 2023

Revised: 5 January 2024

Accepted: 10 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Real-Time On-the-Fly Motion Planning for Urban Air Mobility
via Updating Tree Data of Sampling-Based Algorithms Using
Neural Network Inference
Junlin Lou * , Burak Yuksek , Gokhan Inalhan and Antonios Tsourdos

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK;
burakyuksek@gmail.com (B.Y.); inalhan@cranfield.ac.uk (G.I.); a.tsourdos@cranfield.ac.uk (A.T.)
* Correspondence: junlin.lou@cranfield.ac.uk

Abstract: In this study, we consider the problem of motion planning for urban air mobility appli-
cations to generate a minimal snap trajectory and trajectory that cost minimal time to reach a goal
location in the presence of dynamic geo-fences and uncertainties in the urban airspace. We have
developed two separate approaches for this problem because designing an algorithm individually for
each objective yields better performance. The first approach that we propose is a decoupled method
that includes designing a policy network based on a recurrent neural network for a reinforcement
learning algorithm, and then combining an online trajectory generation algorithm to obtain the
minimal snap trajectory for the vehicle. Additionally, in the second approach, we propose a coupled
method using a generative adversarial imitation learning algorithm for training a recurrent-neural-
network-based policy network and generating the time-optimized trajectory. The simulation results
show that our approaches have a short computation time when compared to other algorithms with
similar performance while guaranteeing sufficient exploration of the environment. In urban air
mobility operations, our approaches are able to provide real-time on-the-fly motion re-planning for
vehicles, and the re-planned trajectories maintain continuity for the executed trajectory. To the best
of our knowledge, we propose one of the first approaches enabling one to perform an on-the-fly
update of the final landing position and to optimize the path and trajectory in real-time while keeping
explorations in the environment.

Keywords: motion planning; urban air mobility; machine learning; reinforcement learning;
generative adversarial imitation learning

1. Introduction

Urban air mobility (UAM), a novel air transportation concept designed for urban
environments, has garnered significant interest in recent years from the aerospace and
transportation sectors [1,2]. UAM’s goal is to enhance the efficiency of transporting people
and goods through specialized vehicles like electric vertical take-off and landing (eVTOL)
aircraft and small unmanned air vehicles (sUAVs) [3]. These vehicles, characterized by
high levels of automation, navigate autonomously from take-off to landing without human
operators. However, this innovative transportation approach faces numerous complex
challenges, including environmental concerns, urban infrastructure considerations, and
specific issues related to the UAM platform itself. These include building infrastructure
interactions [1], dense traffic of aerial vehicles [2], micro-weather patterns [3,4], urban
emergencies or disasters [1], and the quality and reliability of communication, navigation,
and surveillance systems [5,6]. These elements contribute to the formation of various
static, dynamic, and uncertain no-fly zones, obstacles, and geo-fences in urban airspace [7],
presenting three primary safety challenges for automated aerial vehicles. Firstly, there is a
need for real-time, adaptive re-planning in response to environmental uncertainties. Sec-
ondly, the nonlinear kinematics and dynamics of these systems, coupled with aerodynamic

Aerospace 2024, 11, 99. https://doi.org/10.3390/aerospace11010099 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11010099
https://doi.org/10.3390/aerospace11010099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-8596-7979
https://orcid.org/0000-0001-9991-0618
https://orcid.org/0000-0002-4490-8358
https://orcid.org/0000-0002-3966-7633
https://doi.org/10.3390/aerospace11010099
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11010099?type=check_update&version=1

Aerospace 2024, 11, 99 2 of 26

and power constraints, limit the vehicles’ cruising speed and acceleration. Thirdly, rapid
and feasible trajectory generation becomes crucial, especially when destination vertiports
change due to congestion or when emergency scenarios necessitate on-the-fly adjustments.
In this paper, we tackle these issues by integrating methodologies from sampling-based
path planning [8], trajectory optimization, recurrent neural networks (RNNs) [9], rein-
forcement learning (RL) [10], generative adversarial imitation learning (GAIL) [11], and
transformers [12]. Our approach aims to enable efficient, real-time re-planning under
uncertain airspace conditions.

In our study, we have developed two distinct algorithms for addressing the challenges
of path planning and trajectory optimization in urban air mobility (UAM) operations: a cou-
pled approach and a decoupled one. These algorithms represent a significant advancement
over traditional path planning methods, primarily due to their markedly reduced com-
putational times, which enable real-time implementation in UAM scenarios. The coupled
algorithm is intricately designed to ensure that the vehicle adheres to kinematic and dy-
namic constraints while also achieving the quickest possible journey to its destination. This
approach integrates the constraints directly into the planning process, thereby ensuring
efficient and safe navigation through urban airspace. On the other hand, the decoupled
algorithm focuses on optimizing straight path segments, making it particularly suitable for
scenarios where the aerial vehicle must adhere to strict scheduling constraints. This algo-
rithm first plans the path and then optimizes the trajectory, allowing for greater flexibility
in dealing with dynamic urban environments. Central to both approaches is the use of tree
data generated by the RRT* algorithm or its variants. The RRT* algorithm is known for its
asymptotic optimality and probabilistic completeness [13], characteristics that are critical
in ensuring a comprehensive exploration of the configuration space to yield feasible and
optimal paths. However, RRT*-based algorithms typically require extensive exploration
time, making them unsuitable for real-time path planning applications. Our algorithms
address this limitation by utilizing the tree data generated from previous RRT* explorations.
These tree data consist of a series of nodes, each with specific attributes such as coordinates,
cost to the tree root, and the index of its parent node. In more complex models, these nodes
may also include velocity and acceleration data. In our tree structure, all nodes maintain
optimal paths from the tree root, which is defined as the current position of the vehicle
or the position of the departure vertiport. The primary innovation in our approach lies in
the real-time update of these tree data in dynamic environments. We aim to continuously
guarantee the optimized attributes and connections (parent indices) of the nodes on the
tree, as well as the feasibility and optimality of the flight path to the destination. Traditional
graph-rewiring techniques based on RRT*, which involve significant forward and backward
propagation, are too time-consuming for real-time updates [14]. Instead, we utilize RL
policies or GAIL generators to guide the update of tree connections and node attributes.
This method replaces computationally expensive calculations with more efficient neural
network inference processes. Moreover, our approaches offer unparalleled flexibility in
UAM operations. They can adapt to changes in the destination of the aerial vehicle at any
moment, generating a feasible and optimal path from the vehicle’s current position to the
new destination in real-time. This flexibility is a direct result of the intensive exploration
that results in tree nodes spread throughout the configuration space and the inherent nature
of the tree data, where paths from the root to all nodes are optimized. To the best of our
knowledge, our paper introduces some of the first methodologies capable of performing
on-the-fly updates of the destination and optimizing the path and trajectory in real-time
while maintaining the comprehensive explorations of the environment. This feature is
especially valuable in urban settings where sudden changes in destination or route may
be necessary due to various unforeseen circumstances such as traffic congestion, weather
conditions, or emergency situations. Furthermore, our algorithms are designed to be robust
against the dynamic and unpredictable nature of urban airspaces. By continuously updat-
ing the tree data based on the latest environmental information, our approaches ensure
that the trajectory remains feasible and optimal, even in the face of rapid changes in the

Aerospace 2024, 11, 99 3 of 26

urban landscape. This aspect is crucial for maintaining safety standards and operational
efficiency in UAM applications. In summary, the coupled and decoupled algorithms that
we propose in this paper represent a significant leap forward in the field of UAM path
planning and trajectory optimization. By leveraging advanced techniques in machine
learning, such as RL and GAIL, combined with the efficient use of RRT*-based tree data,
our approaches not only reduce computational time but also enhance the flexibility and
robustness of UAM operations. This makes them highly suitable for the dynamic and
complex environment of urban air mobility, where real-time updates and adaptability are
key to successful operation.

The structure of this paper is outlined as follows: Section 2 delves into the existing
literature relevant to our study, highlighting both the contributions and limitations of
previous methods in motion planning and re-planning. In Section 3, we introduce a novel
decoupled planning algorithm. This algorithm leverages reinforcement learning and a
piecewise polynomial trajectory generation method to produce minimum snap trajectories
with significantly reduced computation times, while also ensuring comprehensive environ-
mental exploration. Section 4 is dedicated to discussing our coupled planning algorithm,
which employs a generative adversarial imitation learning framework. This approach is
adept at generating time-optimized trajectories, again with remarkably short computation
durations, and it maintains a thorough exploration of the configuration space. Finally,
Section 5 provides the concluding remarks of this paper, summarizing our key findings
and contributions to the field of motion planning in urban air mobility.

2. Related Works

Our methodologies are influenced by a wide array of prior research in the field. We
utilize the sampling-based rapidly exploring random tree (RRT) algorithm [15], known for
efficiently producing collision-free paths. Its advanced version, RRT* [13], further improves
upon this by ensuring that the cost of the solution progressively approaches the optimal.
The kinodynamic RRT* [16] expands on RRT* by incorporating kinematic and dynamic
constraints, thus generating time-optimal trajectories. A notable development in this area
is the RL-RRT [17], which stands as a leading kinodynamic planner in terms of efficiency.
This approach integrates reinforcement learning (RL) policies with RRT and kinodynamic
motion planning, capable of generating high-quality, time-optimal trajectories. In our
decoupled motion planning approach, the trajectory generation is based on a sequence
of waypoints provided by the path planner. For instance, the minimum snap trajectory
algorithm for quadrotors [18] demonstrates that quadrotor dynamics, with four inputs, can
be described as differentially flat, thus allowing for trajectory formulation as a polynomial
function optimized using quadratic programming (QP). Additionally, there are algorithms
that create more aggressive trajectories for quadrotors. These are based on time allocation
for waypoints, ensuring collision-free trajectories and state estimation for quadrotors,
and have been extended to trajectory generation for fixed-wing aircraft with Dubins-type
dynamics [19]. In the realm of trajectory optimization, the Operator Splitting Quadratic
Program (OSQP) [20] stands out as a state-of-the-art QP solver, enabling the real-time
optimization and generation of polynomial trajectories [21].

In our exploration of related works, various algorithms have been examined for their
application in dynamic environment path re-planning. An enhanced bidirectional RRT
algorithm is explored in [22], which introduces a tree pruning technique for rapid path
updates. This technique retains only a small number of nodes within the configuration
space, leading to an incomplete exploration of this space. The simulation results indi-
cate that this limitation adversely affects the quality of the paths generated. Alternative
strategies have been proposed, such as on-the-fly real-time planning using simplified tree
data [14]. However, this method compromises the thoroughness of configuration space
exploration to achieve real-time re-planning capabilities. Considering the complexity and
dynamic nature of urban airspace, intensive exploration is crucial for enhancing flight
path connectivity and safety. A hybrid method combining virtual force with the A* search

Aerospace 2024, 11, 99 4 of 26

algorithm is presented in [23]. This approach shows promise for simpler scenarios, yet
it struggles with the explicit construction of configuration space, a significant challenge
in more intricate planning problems, particularly in high-dimensional spaces. The use of
inverse reinforcement learning (IRL) [24], a traditional imitation learning algorithm, for
aerial vehicle path re-planning in dynamic environments is investigated in [25], alongside
the RRT*. Despite its applications, IRL faces challenges such as complex implementation
and the necessity of reinforcement learning in an inner loop, leading to high computational
costs. Contrasting IRL, generative adversarial imitation learning (GAIL) offers simpler
implementation and lower computational demands. Crucially, unlike IRL which learns a
cost function, GAIL focuses on learning a policy network. This distinction allows GAIL
to excel in more complex planning problems, as it directly learns policies for behavior
generation rather than the behaviors themselves.

3. An Reinforcement-Learning-Based Approach for Generating Minimal
Snap Trajectory

In this section, we introduce a decoupled re-planning algorithm that combines re-
inforcement learning with online minimum snap trajectory generation algorithms. This
approach is designed to re-plan trajectories with considerably reduced computational times
while still ensuring a thorough exploration of the environment. A prominent challenge in
utilizing reinforcement learning for this purpose is the impracticality of using the complete
tree data as an input to the policy network [26]. The tree data, encompassing an extensive
number of nodes each with multiple attributes, can be seen as a high-dimensional vector.
This complexity exceeds the processing capabilities of standard reinforcement learning
techniques. To overcome this obstacle, we employ recurrent neural networks (RNNs) as
the policy network within our RL framework. This choice not only addresses the issue
of handling large-scale tree data but also solves several other related challenges. Figure 1
illustrates the structure of this policy network.

Figure 1. Recurrent neural networks policy network of RL.

3.1. Obtain Waypoints via Reinforcement Learning with RNN Policy Network

Proximal policy optimization (PPO) [27] is utilized in the training phase of the rein-
forcement learning framework. This algorithm is an evolution of the trust region policy
optimization (TRPO) [28], which employs a second-order trust region method to maximize
the objective function. In contrast, PPO utilizes a first-order method, simplifying imple-
mentation while maintaining, if not surpassing, the performance of TRPO. Moreover, PPO

Aerospace 2024, 11, 99 5 of 26

presents several distinct advantages for the approach outlined in this section, particularly
when compared with other policy gradient learning algorithms. Firstly, PPO exhibits a
lower sensitivity to the learning rate. This aspect facilitates an easier tuning of hyper-
parameters and results in a more stable learning process. Secondly, the hyper-parameters in
PPO demonstrate robustness across a diverse range of tasks [29], enhancing its applicability.
Finally, PPO is capable of achieving comparable performance to other policy gradient
methods with fewer state, action, and reward samples, making it a more efficient choice in
terms of data requirements.

The asymptotic optimality characteristic of the RRT* algorithm is primarily attributed
to its ChooseParent and Rewire operations. During the ChooseParent operation, the
algorithm assesses a set of potential parent nodes within a defined Euclidean distance of a
newly added child node. This process involves checking for collisions and selecting the
most suitable parent node based on certain criteria to update the tree. Subsequently, the
Rewire operation involves examining nodes within a specified neighborhood of the new
node. If no collision is detected and a reduction in the cumulative cost is possible, the new
node is then designated as a parent to some of these neighboring nodes.

Our RNN-based policy network comprises several dozen node structures, with the
cumulative number of these structures in multiple networks equaling the total number
of nodes in the tree data. Typically, a policy network contains about 20 node structures.
Each node structure in the network consists of nc + 1 tokens, with each token responsible
for generating an action. Here, nc represents the count of nearby nodes. The network’s
architecture is defined by matrices Wih, Whh, and Who, representing input-to-hidden, hidden-
to-hidden, and hidden-to-output connections, respectively. The bias vectors bh and bo are
associated with the hidden and output layers. Each node structure transforms its input data
Ft into Xt using embedding matrices E1 and E2: Xt = E1 · one-hot(Findex

t) + E2 · F
pos
t . The

first token’s output in each node structure is an nc-dimensional one-hot vector, computed
as softmax(Who · ht + bo), that denotes the selection of the parent node. The outputs of the
subsequent tokens, from the second up to the nc + 1th token, are two-dimensional one-hot
vectors indicating the selection of corresponding nodes as child nodes, also determined
through softmax functions. During training, the agent learns to add or modify connections
within an environment that already includes sampled nodes and some existing connections.
At each time step, the RNN updates its hidden state ht using ht = ReLU(Wih · Xt + Whh ·
ht−1 + bh) and computes the output yt as yt = softmax(Who · ht + bo). This approach helps
to circumvent issues associated with excessively long sequences. Furthermore, each node
is limited to observing only the states of its n nearest neighbors. This partial observability
of the environment is addressed by the RNN’s ability to retain information across time
steps, with the hidden state ht being a function of both the current input Xt and the
previous hidden state ht−1. The parameter nc is a hyper-parameter influencing the speed
of convergence and training outcomes of the reinforcement learning algorithm. Since our
approach does not include a configuration space sampling step, the asymptotic optimality
condition does not dictate the choice of nc value. Upon user-defined nc, an iteration over
tree data is performed to identify the nc nearest nodes for each node. Prior to training, tree
data are updated to include these nc nearest nodes for every node.

Figure 2 shows the details of the token of the RNN policy network. Part of the
node information Ft undergoes data pre-processing to obtain Xt. This process is math-
ematically represented as follows: Xt is the result of concatenating two transformed
components of Ft. The first component, the one-hot encoded node index Findex

t , is trans-
formed by an embedding matrix E1 (dimension kd × kv) into a kd-dimensional vector.
The second component, the node’s two-dimensional position Fpos

t , is transformed by an-
other embedding matrix E2 (dimension ld × 2) into an ld-dimensional vector. Therefore,
Xt = [Embed1(one-hot(Findex

t)), Embed2(Fpos
t)]. For each token, the input Xt and the fea-

ture vector ht output by the hidden layer of the previous token are input into the current
token’s hidden layer to obtain ht+1. This can be represented as ht+1 = ReLU(Wih · Xt +
Whh · ht + bh), where Wih and Whh are the weight matrices and bh is the bias vector. The state

Aerospace 2024, 11, 99 6 of 26

st at time t is given by st = [Ft, ht]. A fully connected layer followed by softmax activation
is then applied to ht+1, resulting in a probability distribution pt+1. The action at+1 is deter-
mined by applying the argmax function on pt+1; formally, at+1 = argmax(pt+1). Hence, the
policy network is denoted as π(at+1|[Ft, ht]; θ), where θ represents the network parameters.

Figure 2. Details of token of RNN policy network.

Figure 3 shows the details of data pre-processing. Ft is a three-dimensional vector
[index, posx, posy] including the index, x coordinate, and y coordinate of the node. The
start point is always the first node structure with index 0. Each obstacle contains four
vectors and each vector contains three parts. For the sets of coordinates of each of the four
corners, these four vectors share the same obstacle identification code, and all vectors of
obstacles share the same type code. Obstacle information must be input in each token of all
node structures, and will be concatenated after the embedding layer, keeping the size of the
input vectors the same. The index needs to be one-hot encoded because the index does not
represent the numerical feature of the node but a category. For example, if we use the index
number directly, the computer will misunderstand that the sum of the first node and the
second node is equal to the third node, which is unreasonable. After one-hot encoding, each
index number becomes a kv-dimensional vector, where kv is the number of nodes in the tree
data. This vector is too sparse, so we need to reduce its dimension with embedding layer 1.
Embedding layer 1 is a kd × kv matrix, and outputs a kd-dimensional vector, where kd is a
hyper-parameter that needs to be adjusted by the user. The two-dimensional coordinates
of the nodes will be input into embedding layer 2, which amplifies the location features of
the nodes by increasing the dimension. Embedding layer 2 is an ld × 2 matrix that outputs
an ld-dimensional vector. ld is also a hyper-parameter that needs to be tuned by the user.
Then, the output of embedding layer 1 and embedding layer 2 is concatenated into a vector,
which is the aforementioned Xt. The matrix parameter of embedding layers 1 and 2 will be
learned via reinforcement learning in the next step.

Algorithm 1 shows the process of training the RNN policy network through reinforce-
ment learning. Randomizing obstacles, node indexes, and tree roots when each episode
starts is carried out in order to learn the policy of on-the-fly re-planning in a dynamic
environment and to guarantee the robustness. There are m nodes in the tree data, and each
episode contains m(n + 1) steps. To train the policy network, we need to define the reward
rt. In the first n steps of each n + 1 steps, the rewards remain zero.

r(i−1)(n+1)+1 = r(i−1)(n+1)+2 = · · · = r(i−1)(n+1)+n = 0 (1)

Aerospace 2024, 11, 99 7 of 26

Figure 3. Details of data pre-processing.

Algorithm 1: Training of RNN policy network.
Initialize the parameter θ for new RNN policy network and parameter θold for old
RNN policy network;

for episode← 1 : K do
clear tree connections, randomize obstacles, tree root and index of nodes;
θ = θold;
for i← 1 : m do

for step← 1 : m(n + 1) do
collect state and action via πθold;
while current step = i(n + 1) is True do

update tree connections;
collect reward;
update parameter θ of RNN policy network via Equation (3);
θold ← θ;

end
end

end
Adapt the entropy regularization coefficient in Equation (3) in the light of

Equation (6) and then update
entropy regularization with new policy network πθ ;
return θ;

end

After the n + 1 step, all decisions are obtained to ensure a node structure, and then
updating tree data, collecting the reward, and updating return (aka cumulative reward) ut
are carried out. The normalized reward includes:

• Connecting each previously unconnected node;
• Each node that has a lower cost
• Each connection that collides with obstacles;
• The Euclidean distance from each node to the tree root;
• A big punishment if the parent is also connected as a child.

At the beginning of each episode, each node is an orphan node and each node’s cost
to the tree root is infinite. When the tree growing from the root is connected to an orphan
node, the cost becomes a finite real number and a fixed reward is obtained. If subsequent

Aerospace 2024, 11, 99 8 of 26

updates of tree data reduce the cost from a node to the tree root, a normalized reward will
be obtained.

All steps inside each package of n + 1 steps have the same return.

u(i−1)(n+1)+1 = u(i−1)(n+1)+2 = · · · = ui(n+1) = u(i−1)(n+1) + ri(n+1) (2)

Afterward, with the proximal policy optimization (PPO) algorithm [27], the parameter
of the policy network will be updated once every n + 1 steps via the clipping surrogate
objective shown in Equation (3)

Lclip(θ) = E(min(r(θ)Aθold([Ft, ht], at+1)), clip(r(θ), 1− ϵ, 1 + ϵ)Aθold([Ft, ht], at+1)

+λH([Ft, ht], at+1))
(3)

where ϵ is a hyper-parameter used to control the clipping ratio. E[·] denotes the expectation
operator obtained by Monte Carlo approximation [30]. Aθold[·] is an advantage function
under the old policy. r(θ) in Equation (3) denotes the probability ratio

rt(θ) =
πθ((at+1|[Ft, ht]))

πθold((at+1|[Ft, ht]))
(4)

H[·] is the entropy operator displayed in Equation (5). Entropy is used to measure the
probability distribution output by the softmax activation function in the policy network.
Smaller entropy leads to a more concentrated probability distribution. We found that
entropy shrinks to a small value prematurely during the training process, resulting in
insufficient exploration in policy learning, therefore obtaining a defective policy. In the face
of this problem, we then introduce entropy regularization [31] to Equation (3).

H[st; θ] = −∑ π(at+1|st; θ) ln π(at+1|st; θ) (5)

λ = µ tanh
episode

η
(6)

where λ denotes the adaptive entropy regularization coefficient shown in Equation (6), and
µ and η are hyper-parameters that determine λ.

Although the standard RNN has an efficient structure for the generation of sequential
tree data in our case, it suffers from vanishing and exploding gradient problems [32] due to
its simple iterative mechanism. This makes the standard RNN inappropriate for handling
long-term dependencies. To address these limitations, we incorporate long short-term
memory (LSTM) [33] and a gated recurrent unit (GRU) [34] in our simulation. LSTM,
introduced by [33], is designed to have longer memory capabilities than standard RNNs
thanks to its unique structure of gates. An LSTM unit contains four interacting components:
the forget gate, the input gate, the cell state, and the output gate. The forget gate decides
what information should be discarded from the cell state using a sigmoid function. The
input gate controls the extent of new information to be added to the cell state, while the
cell state carries the network’s memory over time with minimal alterations. Finally, the
output gate determines the next hidden state. Each of these gates has its parameter matrix,
typically of dimensions ht × (ht + Xt), where ht is the size of the hidden state, and Xt
is the size of the input vector. The GRU, proposed by [34], simplifies the architecture of
LSTM by combining the forget and input gates into a single update gate. It also merges the
cell state and hidden state, resulting in a more compact architecture. The GRU comprises
three gates: the reset gate, the update gate, and the candidate hidden state. The reset gate
determines how much of the past information to forget, while the update gate controls the
extent to which the unit updates its activation or state. The candidate hidden state creates a
candidate vector using the current input and the past hidden state. The GRU’s parameter
matrices for these gates are smaller than those of LSTM, contributing to a reduction in

Aerospace 2024, 11, 99 9 of 26

computational complexity and memory requirements. The choice between LSTM and the
GRU typically depends on the specific requirements of the task and the computational
resources available. While LSTM offers more control over the information flow within
the unit, the GRU provides a more streamlined and computationally efficient architecture.
Both have been shown to effectively address the limitations of standard RNNs in handling
long-term dependencies in sequential data. Both of LSTM and the GRU will be utilized in
our simulations.

3.2. Generate Minimum Snap Trajectory

The subsequent phase in our methodology involves generating a secure trajectory us-
ing the waypoints and a predefined total time. For the purposes of simulation, we consider
a multi-rotor system, specifically a quadrotor, as our vehicle model. This choice allows us
to employ the minimum snap formulation for quadrotor trajectory generation [18]. The
formulation demonstrates that piecewise polynomial trajectories are effective in defining
the flat outputs for the coordinates in various dimensions, as well as the yaw angle x, y, z,
ψ, and their derivatives, ensuring a smooth trajectory. This is feasible due to the differential
flatness characteristic inherent in vehicles akin to quadrotors. Given that the cruise phase
of UAM vehicles typically occurs within a specific altitude range in urban airspace and
involves small altitude changes [1], we will omit the planning of the z coordinate in our
model. Additionally, the planning for the yaw angle, ψ, is an aspect that we intend to
explore in future work.

Given the start time of trajectory and all end times of segments (τ0, τ1, τ2,· · · ,τM)
and one dimension out of the x, y of the M-segment, the Nth-order piecewise polynomial
trajectory [35] can be written as Equation (7).

f (τ) =


∑N

j=0 c1j(τ − τ0)
j, τ0 ≤ τ ≤ τ1,

∑N
j=0 c2j(τ − τ1)

j, τ1 ≤ τ ≤ τ2,
...

∑N
j=0 cMj(τ − τM−1)

j, τM−1 ≤ τ ≤ τM

(7)

where cij is the jth-order polynomial coefficient of the ith segment. As minimum snap
trajectory is required, we phrase the problem as the generic minimization of the fourth
derivative of f (τ). In that case, the trajectory optimization problem for flat polynomial
output is described as Equation (8):

minimize
∫ τM

τ0

(
d4 f (τ)

dτ4

)2

dτ

subject to

f (τ0) = s0,

f (τM) = sM,

dk f
dτk (τ

−
i) =

dk f
dτk (τ

+
i),

for k = 0, 1, · · · , N − 1 and i = 1, 2, · · · , M− 1.

(8)

where s0 and sM are the start and goal position; dk f
dτk (τ

−
i) represents the kth-order derivative

of the trajectory to the left of the ith segment point; dk f
dτk (τ

+
i) represents the kth-order

derivative of the trajectory to the right of the ith segment point. Such constraints ensure
that, at each segment point, the trajectory and its derivatives up to order N − 1 (including
position, velocity, acceleration, etc.) are continuous.

The objective function (8) can be written as min pTQp and min ∑M
i=1pTQip, where p =

[pT
1 , pT

2 , · · · , pT
i , · · · , pT

M]T is the vector of the polynomial coefficients of all segments [18,19],
and Qi and Q are shown as (9) and (10):

Aerospace 2024, 11, 99 10 of 26

Qi =

 04,4 04,N−3

0N−3,4
qr !

(qr−4)!
qc !

(qc−4)!
tqr+qc−7
i −tqr+qc−7

i−1
qr+qc−7

 (9)

Q =


Q1

Q2
. . .

QM

 (10)

where 4 ≤ qr ≤ N, qr ∈ N is the row index starting from number 0 and 4 ≤ qc ≤ N, qc ∈ N
is the column index starting from number 0.

The trajectory has a predefined start point, waypoints, and end point, and the ve-
hicle following the trajectory has dynamic constraints. Moreover, to ensure continuity
of trajectory, we enforce the same velocity and acceleration for adjacent segments at the
segment transition times (τ1, · · · , τM−1). The conditions mentioned above can be formu-
lated as either linear equality (Aeqp = beq) or inequality (Alqp ≤ blq) constraints. As a
result, we form a quadratic programming problem (QP) for trajectory generation, shown in
Equation (11).

min pTQp

s.t. Aeqp = beq

Alqp ≤ blq

(11)

In this trajectory optimization formulation, specific constraints have been defined
to ensure the practicality and efficiency of the vehicle’s trajectory. These constraints are
detailed as follows:

1. Equality Constraints(Aeqp = beq): These constraints ensure that the vehicle’s trajec-
tory precisely passes through predetermined waypoints. Each row in matrix Aeq and
vector beq corresponds to a waypoint, ensuring that the vehicle reaches these points
at specific times. This is critical for maintaining the accuracy and reliability of the
trajectory, especially in environments where deviation from the planned path can lead
to inefficiencies or safety hazards.

2. Inequality Constraints (Alqp ≤ blq): These constraints are imposed to adhere to the
vehicle’s dynamic limitations, such as maximum allowable velocities and accelerations.
They ensure that the trajectory remains within the vehicle’s operational capabilities,
thereby avoiding scenarios where the vehicle is required to perform beyond its feasible
mechanical limits.

In this scenario, the overall duration of the trajectory is predetermined. It is crucial to
allocate specific time intervals (τi − τi−1) to each trajectory segment, as these allocations
significantly influence the formation of the cost matrix. Optimizing this time allocation is
vital, as it directly impacts the quality of the final trajectory. A conventional approach is to
start with an initial estimate of segment times and then refine these estimates iteratively
using gradient descent methods [18,19]. However, this process can be time-intensive and
challenging to implement in real-time applications. Moreover, we observe that some trajec-
tory segments, particularly those with excessive convexity, may intersect with obstacles,
despite the underlying path being collision-free. To mitigate these issues, we introduce two
methods. In the first method, we draw inspiration from the work of Chen et al. [35]. We
incorporate the concept of a corridor as a constraint in the quadratic programming (QP)
problem, which aids in avoiding such intersections and optimizes the trajectory within the
defined spatial boundaries.

Aerospace 2024, 11, 99 11 of 26

Figure 4 illustrates our approach of uniformly introducing additional sub-waypoints
along the path and establishing an inequality constraint regarding their positions. Con-
currently, we transition from a stringent waypoint positional constraint to a more le-
nient one. This alteration permits the trajectory to approximate the waypoints rather
than necessitating direct passage through them. The weak constraint, as formulated in
Equation (12), effectively transforms the requirement for the vehicle to pass a specific posi-
tion at a pre-set time into the more flexible goal of reaching a designated square area within
the same timeframe. This adjustment in the algorithm implicitly optimizes the timing by
modifying segment transition points. Although this approach increases the number of
trajectory segments, it enables the generation of a trajectory in approximately 0.1 s using the
state-of-the-art quadratic programming (QP) solver OSQP [20], as it obviates the need for
iterative computations. Furthermore, this strategy restricts the trajectory within a corridor
demarcated by multiple square areas, ensuring spatial conformity.

[1, τϕ, τ2
ϕ , · · · , τN

ϕ]pϕ ≤ pϕ(τϕ) + dcor

[−1,−τϕ,−τ2
ϕ , · · · ,−τN

ϕ]pϕ ≤ −pϕ(τϕ) + dcor
(12)

where pϕ and τϕ are positions and allocated time for particular waypoints or sub-waypoints,
and dcor denotes half the side length of the square area. The value of dcor is set manually by
the user, but it cannot be too small in order to keep the square areas connected to form a
corridor, and

√
2dcor cannot be greater than the difference between clearance defined in the

path planning algorithm and the flight interval stipulated by the local traffic regulations.

Figure 4. Trajectory generation with corridor for collision avoidance and implicit time optimization.
Purple star marks are original waypoints and Red dots are sub-waypoints.

The trajectory optimization problem formulated here bears resemblance to the concepts
of interpolating and smoothing splines, which is worth mentioning for a comprehensive
understanding.

Interpolating Splines: In Equation (11), the vehicle’s trajectory is designed to pre-
cisely pass through predetermined waypoints, akin to interpolating splines where the
curve passes exactly through the set of knots (waypoints). The equality constraints
(Aeqp = beq) ensure this interpolative nature of the trajectory, maintaining high precision in
path planning.

Smoothing Splines: Conversely, the introduction of leniency in waypoint navigation
reflects the principles of smoothing splines. Here, the trajectory does not strictly adhere to
each waypoint but optimizes for a balance between path fidelity and operational constraints.
This aspect is particularly evident in the formulation given by Equation (12), where the

Aerospace 2024, 11, 99 12 of 26

vehicle is required to reach within a specified square area, rather than a precise point,
aligning with the smoothing spline’s objective of overall curve smoothness and practicality.

Such an approach, incorporating elements of both interpolating and smoothing splines,
enables our trajectory optimization model to not only ensure the specific established routes
but also to maintain the vehicle’s dynamic feasibility and operational safety.

As illustrated in Figure 5, our proposed decoupled approach effectively solves real-
time motion re-planning problems in dynamic environments, starting from a fixed point.
This approach leverages tree data that have been thoroughly explored, demonstrating
that, even without additional configuration space sampling, high-quality path planning
or re-planning in dynamic environments is achievable. This is accomplished by updating
and optimizing the connections between existing tree nodes, followed by the generation
of a collision-free trajectory with optimized snap, in accordance with the planned path.
Figure 6 showcases the dynamic capabilities of our vehicle in real-time re-planning. In
instances where on-the-fly re-planning is necessary, the closest tree node to the vehicle’s
position becomes the new tree root (or the starting point for path planning). This method
provides a significant advantage by allowing for the direct modification of the start point
without the need for complex procedures like a root-moving algorithm [14]. Post obtaining
the waypoints, the initial state of the trajectory, considering the vehicle’s current position,
velocity, and acceleration, is determined, rather than the path’s starting point, to generate
the trajectory. The simulation results, depicted in Figure 6a–c, illustrate our vehicle’s
capability to perform real-time motion re-planning during flight, especially when the
original trajectory becomes infeasible due to unpredictable and dynamic obstacles. The
paths generated by the RNN policy network are represented by red straight line segments,
and the minimal snap trajectories are shown as green curves. Additionally, Figure 6e
demonstrates the method’s effectiveness in rapidly re-planning a safe and optimized
trajectory if the final landing point needs alteration, such as in emergency situations.
Figure 6d,f confirm that our approach ensures the continuity of the trajectory during
re-planning.

(a) Situation 1 (b) Situation 2 (c) Situation 3

Figure 5. Real-time motion re-planning in dynamics environment. Red lines refer to path and green
curve refers to trajectory.

Table 1 presents simulation execution times on a computer with an AMD Ryzen 9
5900× CPU (from Advanced Micro Devices, Inc. Santa Clara, CA, USA), NVIDIA RTX
3090 GPU (from EVGA Corporation, Brea, CA, USA), and 32 GB RAM (from Corsair,
Fremont, CA, USA). The benchmarks include the informed RRT* [36] and a method by
Richter et al. [19] that uses a substitution technique to convert the trajectory generation
problem into an unconstrained QP, enhancing efficiency in complex trajectory scenarios.
For comparison, we also employed batch informed trees (BIT*s) [37] to generate waypoints,
followed by our approach for trajectory generation. Our algorithm, built on a set of tree
data containing 800 nodes and using LSTM or a GRU as the policy network, was tested with
different configurations of potential parents and children. The application of the NVIDIA
CUDA Deep Neural Network library (cuDNN) enabled GPU acceleration for LSTM and
the GRU. In 20 randomly sampled environments similar to Figure 6, each algorithm was

Aerospace 2024, 11, 99 13 of 26

applied separately, and the snaps and mean computation times were recorded. After
normalizing the snaps with those of the benchmark algorithm, we calculated the mean
normalized snap. Our proposed method showed significantly shorter computation times
compared to the first benchmark algorithm, maintaining high-quality trajectory generation.
The BIT*’s performance was similar in terms of processing time and result accuracy, but its
biased sampling approach did not provide the comprehensive environment exploration
required in UAM scenarios. In contrast, our method’s capability to quickly generate
trajectories to nearby vertical ports and select the most suitable one in emergencies makes
it particularly advantageous for UAM applications compared to BIT*s.

(a) Situation 1 (b) Situation 2 (c) Situation 3

(d) Trajectory re-planning 1 (e) Situation 4 (f) Trajectory re-planning 4

Figure 6. Real-time on-the-fly re-planning in dynamics environment. Curves of various colours refer
to trajectories generated under Situation 1, 2, 3, and 4.

Table 1. Simulation results of decoupled motion planning approach

Algorithm Mean Computation Mean Normalized
Time (s) Snap

Info. RRT* + poly 16.19 1.00

BIT* + poly with cor 2.51 1.07

Our method with LSTM, nc = 20 5.09 1.06

Our method with LSTM, nc = 16 4.09 1.09

Our method with LSTM, nc = 12 2.92 1.14

Our method with LSTM, nc = 8 1.91 1.25

Our method with GRU, nc = 20 3.27 1.06

Our method with GRU, nc = 16 2.69 1.08

Our method with GRU, nc = 12 1.96 1.14

Our method with GRU, nc = 8 1.52 1.26

Our method effectively circumvents the challenge of waypoint time allocation, a factor
known to influence the processing duration of our complete method. Nonetheless, in

Aerospace 2024, 11, 99 14 of 26

specific urban air mobility (UAM) applications, the precise traversal of certain waypoints is
imperative, rendering time allocation an essential step in such scenarios. In the classical
approach, this issue has been addressed by initializing with estimated segment times and
subsequently refining them iteratively using a gradient descent technique according to
snap. However, this method tends to be time-intensive, posing challenges for real-time
application in UAM contexts. To overcome this limitation, we present an efficient technique
designed to substantially expedite the time allocation process. Figure 7 shows trajectories
generated by these two methods for the same path.

In this work, we introduce a novel method for the time allocation of waypoints in
minimum snap trajectory planning for UAM using a transformer-based model. The process
is divided into three key steps: data preparation, model design, and training and validation.
During the data preparation phase, trajectory data obtained through multiple iterations of
the gradient-descent-based method mentioned earlier are collected. These data include key
features such as coordinates, velocity, and acceleration limitations for each waypoint. The
time differences between consecutive waypoints are calculated and utilized as the target
variable for the model. Feature normalization and sequence transformation are applied to
convert the data into a suitable format for processing by the transformer model, and the
dataset is split into training, validation, and test sets. Our model design is similar to the
transformer encoder architecture used in natural language processing. The input layer is
designed to embed waypoint features into a fixed-length vector, incorporating positional
encoding based on time to retain the continuity of the temporal sequence. The transformer
architecture comprises multiple attention heads to capture long-distance dependencies
within the sequence, a feedforward network within each transformer block, and layer
normalization following each sub-layer to stabilize the training process. The output layer
is configured to predict the time intervals between waypoints. It is a dense layer and
uses softplus as the activation function. The training and validation of the model are
conducted using a mean squared error (MSE) loss function, optimized using the AdamW
optimizer with adjusted learning rates and other hyperparameters. Appropriate batch sizes
and iteration counts are determined, and regularization techniques such as dropout are
employed to mitigate overfitting. The model’s performance is regularly monitored on a
validation set, with early stopping implemented to prevent overtraining. Finally, we input
the generated time allocation of each waypoint into the piecewise polynomial trajectory
generation method, and then use OSQP to solve it to obtain the complete minimum snap
trajectory. The response time for the complete process of generating the trajectory is slightly
longer than the previous method but still short enough for UAM real-time application, and
the trajectory can pass exactly through each preset waypoint. Algorithm 2 shows the details.

(a) Situation 1 (b) Situation 2

Figure 7. Minimum snap trajectory generated by two methods.

Aerospace 2024, 11, 99 15 of 26

Algorithm 2: Transformer-based Time Allocation for Minimum Snap Trajectory
Input: Set of trajectories T, each trajectory t ∈ T consists of waypoints

Wt = {w1, w2, . . . , wn}
Output: Optimized time intervals for each waypoint in T

for each trajectory t ∈ T do
Collect trajectories generated by method using iteration for time allocation
Extract features Ft from Wt
Normalize features Fnorm

t
Convert Fnorm

t into sequential format St
Divide St into training set Strain, validation set Sval , and test set Stest
Initialize Transformer Model M
Define loss function L as Equation (13)
Initialize Adam optimizer with learning rate α
for each epoch do

for each batch B ⊆ Strain do
Apply dropout to B with rate r
Predict time intervals ŶB using M(B)
Calculate loss L(YB, ŶB)
Update M using AdamW to minimize L

end
Calculate average loss Lval on Sval
if Lval has not improved then

Early Stopping
break

end
end
Evaluate M on Stest

end

L(Y, Ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (13)

where T is the set of trajectories, where each trajectory is a sequence of waypoints. t is
a single trajectory in the set T. Wt is a set of waypoints in trajectory t, denoted as
Wt = {w1, w2, . . . , wn}. wi is the ith waypoint in a trajectory, represented by its spa-
tial coordinates and other features like velocity and acceleration limitation. Ft is the feature
set extracted from the waypoints in trajectory t. Fnorm

t represents normalized features of Ft.
St is the sequential format of the normalized features Fnorm

t . Strain, Sval , Stest are training,
validation, and test sets derived from St. M is the transformer-based model used for time
interval generation. L is the loss function, defined as the mean squared error (MSE) in the
context of the algorithm. YB is time intervals generated by the classical method for a batch
B. ŶB represents time intervals generated for a batch B by model M. α is the learning rate
for the AdamW optimizer. r is the dropout rate used during training to mitigate overfitting.
Lval represents the average loss calculated on the validation set Sval . Y = {y1, y2, . . . , yN}
represents the set of values generated by the classical method. Ŷ = {ŷ1, ŷ2, . . . , ŷN} repre-
sents the set of predicted values by the model. N is the number of samples in the set. yi is
the value of the i-th sample in the set of values generated by the classical method. ŷi is the
predicted value for the i-th sample.

4. Approach Based on Generative Adversarial Imitation Learning

In this section, we propose a coupled planning algorithm that generates the time-
optimal trajectory in an extremely short computation time via a generative adversarial
imitation learning (GAIL) algorithm [11], meanwhile guaranteeing sufficient exploration of
the environment. This method also performs motion planning and re-planning on the basis

Aerospace 2024, 11, 99 16 of 26

of existing tree data, but the algorithm for producing tree data is kinodynamic RRT* [16].
There are two main reasons for why kinodynamic RRT* is expensive. First, a complete
process requires a large number of iterations. Second, in kinodynamic RRT*, evaluating the
connection cost between two states requires solving a two-point boundary value problem
(TPBVP), which is usually complicated because the dynamic transition from one state to
another is required to be considered. Unlike RRT*, when we want to generate a minimum
time trajectory, the step size of kinodynamic RRT* is not the Euclidean distance but the time
difference; in addition, the connection between the tree nodes generated by kinodynamic
RRT* is not a straight line but a curve trajectory that conforms to kinematic and dynamic
constraints [26]. When the goal of kinodynamic RRT* is the minimum time trajectory, using
time as the step size can indeed provide some intuitive benefits for solving the TPBVP,
especially compared to using Euclidean distance. This simplifies the TPBVP when the exact
time difference between two points is known. Furthermore, since the goal of optimization
is to minimize time, making the step size correspond to time is intuitive and can help to
ensure that the generated path is consistent with the optimization goal. For the overall
algorithm, whenever trying to connect a node in the tree to a new random sample point, or
when trying to connect a node in the tree to another node in the ’choose parent’ and ’rewire’
phase, whether there are feasible trajectories satisfying dynamical constraints needs to be
considered. This requires solving a TPBVP in almost every iteration, which leads to a very
long processing time. Therefore, in order to make the processing time of our algorithm
short enough to achieve real-time requirements, we need to bypass the large number of
iterations and the challenging two-point boundary value problems.

Each node in kinodynamic RRT* tree data has more attributes than that of RRT*.
Each kinodynamic RRT* tree node contains the index of itself, the index of the parent,
and the time cost to reach the node from the starting point, as well as the coordinate,
velocity, and acceleration of each dimension. If still using the reinforcement-learning-
based approach, complex tree data will lead to bloated reward functions, highly raising
the difficulty of designing appropriate rewards and violating our intention of pursuing
simpler but effective approaches. Hence, we utilize the approach based on GAIL, which
has advantages in implementing and tuning hyper-parameters because it does not require
the design of reward function compared to RL algorithms.

GAIL requires the agent to interact with the environment but cannot obtain rewards from
the environment. In addition, GAIL needs an object to be imitated and, in practice, it needs
to collect the decision-making records of the imitated object. In our method, this imitated
object is kinodynamic RRT*. Equation (14) shows the decision-making record τreal created by
kinodynamic RRT*, where sreal

t is consistent every five time steps in two-dimensional motion
planning and donates the node index and positions, and areal

t represents the parent selection,
single-dimensional velocity, and acceleration of the corresponding sreal

t .

τreal = [sreal
1 , areal

1 , sreal
2 , areal

2 , · · · , sreal
t , areal

t , · · · , sreal
m , areal

m] (14)

GAIL consists of a generator and a discriminator. The generator is a policy network
that makes decisions, and we will use PPO [27] to train the generator. The target of GAIL is
to learn a policy network such that the discriminator cannot distinguish whether a decision
is made by the policy network or the imitated object. The discriminator is a neural network
that will be trained by gradient descent. Training makes the discriminator more accurate in
determining where decisions are coming from, and this adversarial approach to mutual
progress is the main idea of GAIL.

As mentioned previously, PPO will be used as our algorithm for training the policy
network. Similar to the method in Section 3, we cannot use the entire tree data as input
to the policy network, since tree data contain many nodes, and each node has several
attributes, which makes tree data actually a very-high-dimensional vector that PPO is
unable to process. Therefore, we still apply a recurrent neural network as the policy

Aerospace 2024, 11, 99 17 of 26

network (known as the generator) of GAIL for handling this problem. Figure 8 shows the
details of the RNN policy network.

Figure 8. Using recurrent neural networks as policy network of GAIL.

Using the RNN policy network is the key to bypassing the large number of iterations
and the challenging two-point boundary value problems. Solving the TPBVP is avoided
by neural network inference. Furthermore, the tree is not built by iterations but by the
sequential RNN tokens. The RNN policy network of GAIL still contains node structures
whose number is equivalent to the number of nodes in the tree data. Each node structure
can be regarded as a set of single-input multi-output RNN sequences. In two-dimensional
motion planning, each node structure has five tokens and each token outputs an action.

The design of the first token in each node structure is very similar to that in Section 3:
the input Xt is pre-processed Gt, which contains a node index and position, and its output
at is an mc-dimensional one-hot vector representing the selection of the parent node. The
value of mc is a manually tuned hyper-parameter that affects the speed of convergence of
the reinforcement learning algorithm and the results of training. Before the start of training,
the algorithm will iterate over the tree data and update tree data by adding mc nearest nodes
for each tree node. Closer nodes also represent shorter arrival times when there are zero
initial velocity and acceleration. Equations (15), (17) and (18) display the pre-processing
and input formation, probability distribution generation, and action determination of the
first token.

Xt = Eindex · one-hot(Findex
t) + Epos · Fpos

t (15)

ht = GRU(Xt, ht−1; θ) (16)

pt = softmax(Wp · ht + bp) (17)

at = one-hot(argmax(pt)) (18)

Aerospace 2024, 11, 99 18 of 26

where Xt is the input to the first token at time t; Eindex is the embedding matrix for the
one-hot encoding of the node index; GRU(Xt, ht−1; θ) represents the GRU function taking
the current input Xt, the previous hidden state ht−1, and GRU parameters θ; one-hot(Findex

t)
represents the one-hot encoding of the node index at time t; Epos is the embedding matrix
for the node position; Fpos

t stands for the position (coordinates) of the node at time t; pt
is the probability distribution output by the first token at time t; Wp denotes the weight
matrix for generating the probability distribution; ht and ht−1 represent the hidden state
of the RNN from the current and previous time step; bp is the bias vector associated with
the probability distribution; at is the one-hot encoded action representing the selection of
the parent node at time t; argmax(pt) denotes the function that returns the index of the
maximum value in pt, indicating the most probable parent node selection.

The output of the second token of each node is a single-dimensional velocity whose
value depends on the position of the node itself and the choice of the parent node, and is
influenced by other nodes. The hidden layer of the RNN contains information of the index
and position of the current node, and historical information of some other nodes. The input
of the second token Xt+1 is the output of the first token (also known as the selection of the
parent) after going through the embedding layer. The output of the third token of each
node is also a single-dimensional velocity whose value depends on the position of the node
itself, the choice of the parent node, and the obtained velocity of another dimension, and is
influenced by other nodes. The input of the third token Xt+2 is therefore the output of the
second token after going through the embedding layer. The input of the fourth token is
the output of the third token after going through the embedding layer since the output of
the fourth token is a single-dimensional acceleration that also depends on velocity. The
input of the fifth token is similar to that of previous tokens. In the second to fifth tokens
of each node, we utilize gained tanh as the activation function to output the velocity and
acceleration of each dimension. tanh is a center-symmetric function and monotonically
increasing in a certain range, so the RNN policy network has equivalent performance
regardless of whether the output velocity and acceleration of each dimension are positive
or negative. Gain is determined in accordance with velocity and acceleration constraints.
Equations (19) and (20) describe the process of the second to fifth token.

Xt+i−1 = Ei · at+i−1 for i = 2, 3, 4, 5 (19)

at+i−1 = gain · tanh((Wv,a · ht+i−1 + bv,a)) for i = 2, 3, 4, 5 (20)

where Xt+i−1 is the input for the i-th token, computed from the output of the previous token
(i = 2, 3, 4, 5); Ei represents the embedding matrix specific to the i-th token; at+i−1 denotes
the output of the i-th token, which could be a single-dimensional velocity or acceleration;
Wv,a is the weight matrix for the velocity or acceleration outputs; ht+i−1 represents the
hidden state of the RNN from the current time step for the i-th token; bv,a is the bias
vector associated with the velocity or acceleration outputs; tanh is the hyperbolic tangent
activation function, used here for its symmetric properties; gain is a factor used to adjust
the output within the constraints of velocity and acceleration.

It is worth mentioning that these four embedding layers between every two tokens in
the structure of each node are different as they perform different tasks, whereas all node
structures share the set of these four embedding layers because they separately execute the
same tasks in each node. The output of the embedding layer will be concatenated with a
corresponding type embedding vector [0][1][2][3][4] for ’select parent’ and different dimen-
sional velocities and accelerations before being input into Xt+i. Similar to the approach
proposed in Section 3, we do not use a standard RNN, in fact, but use a GRU (Equation (16))
to avoid the problem of gradient vanishing and gradient explosion, where each token has
two hidden layers. Equation (21) displays the decision-making record τ f ake created by the
RNN policy network, where s f ake

t is also consistent every five time steps in two-dimensional
motion planning and donates the node index and positions, a f ake

t represents the parent

Aerospace 2024, 11, 99 19 of 26

selection, single-dimensional velocity, and acceleration of the corresponding s f ake
t , and m is

the number of tokens in the RNN policy network.

τ f ake = [s f ake
1 , a f ake

1 , s f ake
2 , a f ake

2 , · · · , s f ake
t , a f ake

t , · · · , s f ake
m , a f ake

m] (21)

The discriminator of GAIL is a neural network whose structure is shown in Figure 9.
The essence of the discriminator is actually a binary classifier. Its output value D(st, at|ϕ)
represents the judgment of authenticity, where ϕ is the neural network parameter. The
closer the output is to 1, the more true it is—that is, the action is produced by kinodynamic
RRT*—and the closer the output is to 0, the more false it is; that is, it is generated by the
policy network.

Figure 9. Discriminator of GAIL.

The goal of training GAIL is to make the generator (also known as the RNN policy
network) produce a record of decisions that are as good as those of the imitated object. At
the end of training, the discriminator cannot distinguish between the generator’s decision
records and the imitated object’s decision records. Therefore, while training the generator,
we need to train the discriminator simultaneously, and only if the discriminator is good
enough will the generator that can fool it obtain satisfactory results. When training the dis-
criminator, we encourage it to make more accurate judgments. We want the discriminator
to know that (sreal

t , areal
t) is true, so D(sreal

t , areal
t |ϕ) should be encouraged to be as large as

possible. We want the discriminator to know that (s f ake
t , a f ake

t) is false, so D(s f ake
t , a f ake

t |ϕ)
should be encouraged to be as small as possible. Equation (22) defines the loss function.

F(τreal , τ f ake|ϕ) = 1
m

m

∑
t=1

ln [1− D(sreal
t , areal

t |ϕ)] +
1
m

m

∑
t=1

ln [D(s f ake
t , a f ake

t |ϕ) (22)

We expect the loss function to be as small as possible so that we can use gradient
descent to update parameters ϕ, which are shown in function (23).

ϕ← ϕ− β∇ϕF(τreal , τ f ake|ϕ) (23)

where β donates the learning rate and∇ϕ is the gradient. The larger the output D(s f ake
t , a f ake

t |ϕ)
of the discriminator, the more similar the decisions generated by the RNN policy network are to
those generated by kinodynamic RRT*, and the more successful the imitation learning; therefore,
we substitute the reward ut with Equation (24).

ut = ln D(s f ake
t , a f ake

t |ϕ) (24)

Then, according to ut, we can apply the PPO algorithm to train the RNN policy
network πθ of GAIL with Equations (25) and (26).

Aerospace 2024, 11, 99 20 of 26

Lclip(θ) = E(min(r(θ)Aθold([Xt, ht−1], at)), clip(r(θ), 1− ϵ, 1 + ϵ)Aθold([Xt, ht−1], at) (25)

rt(θ) =
πθ((at|[Xt, ht−1]))

πθold((at|[Xt, ht−1]))
(26)

where ϵ is a hyper-parameter used to control the clipping ratio. E[·] denotes the expec-
tation operator. Aθold[·] is the advantage function under the old policy. r(θ) denotes the
probability ratio.

Algorithm 3 shows the details of training process. The training performance of the
RNN policy network acting as the generator of GAIL is strongly dependent on the hyper-
parameters of the PPO algorithm. The discriminator that outputs rewards for the PPO
algorithm is a neural network, which is also dependent on the selection of hyper-parameters.
Therefore, optimizing hyper-parameters is essential since this approach is highly sensitive
to hyper-parameters. Among the commonly used hyper-parameter optimization methods
for machine learning, Bayesian hyper-parameter optimization methods have shown advan-
tages in both accuracy and efficiency compared to grid search and random search [38] as
this optimization problem has no explicit objective function expression.

Algorithm 3: Train RNN policy network using GAIL with PPO updates
Initialization:
Initialize RNN policy network πθ and GAIL discriminator Dϕ;
Initialize environment and decision-making algorithm (Kinodynamic RRT*);
Define loss functions for πθ and Dϕ;
Training Loop:
while not converged do

Data Generation:
Generate decision record τreal using Kinodynamic RRT*;
Generate decision record τ f ake using RNN policy network πθ ;
Discriminator Update:
for each timestep t in τreal and τ f ake do

Compute Dϕ(sreal
t , areal

t) and Dϕ(s
f ake
t , a f ake

t);
Update ϕ by minimizing F(τreal , τ f ake|ϕ);

end
Policy Network Update:
Calculate reward ut = ln Dϕ(s

f ake
t , a f ake

t);
Estimate advantage function Aθ([Xt, ht−1], at);
Compute probability ratio rt(θ);
Update θ using clipped objective Lclip(θ);
if fine-tuning needed then

Adjust hyperparameters and learning rates;
end
Convergence Check:
Evaluate training performance and convergence criteria;

end

The core in the Bayesian optimization method includes a surrogate model and an
acquisition function. In our approach, the Gaussian process model (GP) is applied as
a surrogate model. The Gaussian process is a joint distribution of a series of random
variables that obey the normal distribution. Based on this model, the distribution of the
objective function f (x) can be estimated from the mean value µ(x), and the uncertainty
of each position can be obtained from variance σ(x), where x is a set of hyper-parameters

Aerospace 2024, 11, 99 21 of 26

and f (x) is the mean ratio of the time cost of trajectories generated by the RNN policy
network and the benchmark algorithm kinodynamic RRT*, respectively, in the Monte Carlo
simulation. In detail, we randomly generated 1000 sets of different starting points and
target points, as well as obstacle positions, for the Monte Carlo simulation. The Euclidean
distances between the starting points and the target points are greater than a threshold. Our
proposed method and the baseline classical method will, respectively, generate a trajectory
in each environment and then obtain the ratio of the time cost of the two trajectories, finally
obtaining the mean ratio of the time cost of 1000 environments.

After constructing the surrogate model, the acquisition function is used to determine
the next set of hyper-parameters, trading off exploration (sampling from high-uncertainty
areas) and exploitation (sampling from high-value areas). The process will be iterated
multiple times until it is close to the global optimum. The next set of hyper-parameters is
determined as Equation (27).

xn+1 = arg max
x

g(x|X) (27)

where g(x|X) is the acquisition function and X is the n observation points from f (x) so far.
The expected improvement (EI) is a common choice as the acquisition function and it

can be evaluated under the GP model as Equation (28) [39]:

EI(x) =


(µ(x)− f (x+ − ξ))Φ(Z) + σ(x)ϕ(Z), σ(x) > 0

0, σ(x) = 0

(28)

where

Z =


µ(x)− f (x+−ξ)

σ(x) , σ(x) > 0

0, σ(x) = 0

(29)

where ϕ(·) and Φ(·) are the standard normal density and standard normal distribution
function. The first term (µ(x)− f (x+ − ξ))Φ(Z) in Equation (28) is used for exploitation,
the second term σ(x)ϕ(Z) is used for exploration, and the parameter ξ determines the
proportion of exploration.

Additionally, when the vehicle that needs to perform motion planning changes—that
is, the speed and acceleration limits of the vehicle change—we do not need to entirely
retrain an RNN policy network but perform fine-tuning on the basis of the RNN policy
network trained previously. Fine-tuning will perform the following five steps:

• Changing values of the gain of the gained tanh activation function;
• Setting independent learning rates for the two hidden layers of the RNN policy

network;
• Fine-tuning by GAIL with fewer episodes;
• Applying a Bayesian hyper-parameter optimization method;
• Using the greedy soup receipt of the model soups method [40].

Model soups is a method used to average the weights of multiple models fine-tuned
with different hyper-parameter configurations, resulting in improving accuracy and ro-
bustness without incurring any additional inference or memory costs. The greedy soup
is constructed by sequentially adding each model as a potential ingredient in the soup,
and only keeping the model in the soup if the performance on a held-out validation set
evaluated by Monte Carlo simulation results improves. Before running this procedure, we
sort the models in decreasing order of validation set accuracy so the greedy soup can be no
worse than the best individual model on the held-out validation set [40].

Figure 10 shows the results produced by the approach based on GAIL. It can be found
that our algorithm successfully generates a collision-free tree with curve connections and

Aerospace 2024, 11, 99 22 of 26

obtains a safe trajectory. Figure 10a shows planning before flying and Figure 10b shows
re-planning on the fly. In addition, a GRU is utilized as the RNN policy network, and
cuDNN acceleration is applied. Based on tree data of 1200 nodes, an extremely short
computation time is required to generate the trajectory using the trained policy network,
which is only around three seconds on our device, while it takes more than two minutes to
complete 1200 iterations using kinodynamic RRT*.

(a) Situation 1 (b) Situation 2

Figure 10. GAIL-based motion planning in environment 1 containing 5 dynamic obstacles.

Table 2 displays the average processing time and average normalized vehicle travel
time of the benchmark method and the three methods used for comparison under 50 dif-
ferent situations of environment 1, as well as the average processing time and mean
normalized vehicle travel time of our approach’s Monte Carlo simulations. Kinodynamic
RRT* is our benchmark algorithm. This algorithm needs a large number of iterations and
requires solving a TPBVP in almost every iteration, which leads to a very long processing
time. Learning-based kinodynamic RRT* [41] replaces solving the TPBVP in the ’choose
parent’ phase and ’rewire’ phase with neural network inference, thus significantly accelerat-
ing the algorithm. However, the processing time of this algorithm is still not short enough
as a large number of iterations is still required. The stable sparse RRT (SST) [42] algorithm
achieves optimality guarantees without requiring optimal boundary value problem so-
lutions, and only requires forwarding dynamically propagating random actions from a
selected node, but such a technique is prone to ’wandering’ through the state space and
taking a long time to identify a solution [43]. Since our approach bypasses the large number
of iterations and the challenging two-point boundary value problems, the processing time
of our approach is significantly short, and the average vehicle travel time is also close to
the baseline algorithm. Moreover, our approach produces significantly better trajectories
than the ’directly imitate trajectory using kinodynamic RRT*’ method, which reflects the
necessity and superiority of the RNN policy network.

Figure 11a shows the Monte Carlo simulation results produced by the approach based
on GAIL. After applying a Bayesian hyper-parameter optimization method, it can be found
that the properties of the resulting trees, including the velocity, acceleration, and time that
it takes to reach the node, are close to the results of kinodynamic RRT*. Figure 11b displays
the Monte Carlo simulation results for fine-tuning based on the original generated RNN
policy network. In this scene, the velocity limit is increased by half and the acceleration
limit is doubled. As shown in Table 2, with Bayesian hyper-parameter optimization and
greedy soup, the performance of the fine-tuned policy network for a new vehicle is close to
that of the original policy network.

Aerospace 2024, 11, 99 23 of 26

Table 2. Monte Carlo simulation results of coupled motion planning approach and results of algo-
rithms for comparison and benchmark algorithm in environment 1.

Algorithm Mean Computation Mean Normalized Time to
Time (s) Reach the Goal Position

Kinodynamic RRT* 121 1.00

Extract trajectory from SST 18.99 1.04

Directly imitate trajectory using
kinodynamic RRT* <1 1.47

Learning-based kinodynamic RRT* 21.82 1.02

Original policy network using our method 3.24 1.09

Fine-tuned policy network using our
method 3.31 1.10

(a) Original RNN policy network (b) Fine-tuned RNN policy network

Figure 11. Monte Carlo simulation for GAIL-based motion planning and fine-tuning.

Figure 12 shows a trajectory generated by our approach based on GAIL in environment
2, which includes five dynamic obstacles and three static obstacles. Table 3 displays the
average processing time and average normalized vehicle travel time of the benchmark
method, three methods used for comparison, and our approaches under 50 different
situations of environment 2. It can be found that our methods have relatively better
performance in environments with more obstacles and fewer effective samples.

Table 3. Monte Carlo simulation results of coupled motion planning approach and results of algo-
rithms for comparison and benchmark algorithm in environment 2.

Algorithm Mean Computation Mean Normalized Time to
Time (s) Reach the Goal Position

Kinodynamic RRT* 109 1.00

Extract trajectory from SST 17.39 1.04

Directly imitate trajectory using
kinodynamic RRT* <1 1.41

Learning-based kinodynamic RRT* 23.09 1.03

Original policy network using our method 3.11 1.06

Fine-tuned policy network using our
method 3.16 1.06

Aerospace 2024, 11, 99 24 of 26

Figure 12. GAI- based motion planning in environment 2 containing 5 dynamic obstacles and 3 static
obstacles.

5. Conclusions

In this paper, we presented two novel approaches in the face of challenges of motion
planning and re-planning in UAM operations in the presence of the uncertainty of the
environment, kinematic and dynamic constraints of the vehicle, and possible emergency
situations. Both of our methods utilize the tree data generated by the RRT*-based algorithm,
which ensures ample exploration of the configuration space. Moreover, we apply neural
network inference instead of a math-based algorithm to update the tree data, which makes
our approaches suitable for real-time application in UAM operations due to their short
computation times.

The first approach is a decoupled approach in which we design a policy network
based on a recurrent neural network for the reinforcement learning algorithm in terms of
addressing three issues. These three issues are that (a) the input vector has a significantly
high dimension, (b) the input and output vectors of consecutive steps have different
dimensions, and (c) the agent is unable to observe the global environment. Afterward, we
combine an online trajectory generation algorithm to obtain the minimal snap trajectory
for the vehicle. The simulation results demonstrate that this method can generate high-
quality trajectories in an extremely short computation time. Furthermore, it enables on-
the-fly motion re-planning, where the re-planned trajectory maintains continuity for the
executed trajectory.

We also propose a coupled method that generates a time-optimized trajectory. We
design a single-input multiple-output RNN policy network for this method, and utilize
GAIL to train the policy network so as to generate similar decisions to kinodynamic RRT*.
The results show that this approach can update and generate collision-free global tree
data in a very short time, and we use Bayesian hyperparameter optimization to solve the
problem of the results of this method being extremely dependent on the hyper-parameter
configuration. In addition, we design a model soup-based fine-tuning method for the
problem of changing to vehicles with different velocities and accelerations, which avoids
the need to retrain a policy network; in addition, the performance of the fine-tuned model
is close to the original model.

Author Contributions: Conceptualization, G.I.; methodology, J.L. and B.Y.; software, J.L.; validation,
J.L. and B.Y.; formal analysis, J.L., B.Y., G.I. and A.T.; resources, G.I. and A.T.; data curation, J.L.;
writing—original draft preparation, J.L.; writing—review and editing, B.Y., G.I. and A.T.; visualization,
J.L.; supervision, G.I. and A.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Aerospace 2024, 11, 99 25 of 26

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bauranov, A.; Rakas, J. Designing airspace for urban air mobility: A review of concepts and approaches. Prog. Aerosp. Sci. 2021,

125, 100726. [CrossRef]
2. Yu, X.; Zhang, Y. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Prog.

Aerosp. Sci. 2015, 74, 152–166. [CrossRef]
3. Murray, C.W.; Ireland, M.; Anderson, D. On the response of an autonomous quadrotor operating in a turbulent urban environment.

In Proceedings of the AUVSI’s Unmanned Systems Conference, Orlando, FL, USA, 12–15 May 2014.
4. Logan, M.J.; Bird, E.; Hernandez, L.; Menard, M.; Moore, A.; Balachandran, S.; Young, S.D.; Dill, E.T.; Glaab, L.J.; Munoz, C.; et al.

Operational Considerations of Small UAS in Urban Canyons. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA,
6–10 January 2020; p. 1483.

5. Pang, B.; Ng, E.M.; Low, K.H. UAV Trajectory Estimation and Deviation Analysis for Contingency Management in Urban
Environments. In Proceedings of the AIAA Aviation 2020 Forum, Virtual, 15–19 June 2020; p. 2919.

6. Radio Technical Commission for Aeronautics. Minimum Aviation System Performance Standards for Automatic Dependent Surveillance
Broadcast (ADS-S); RTCA, Incorporated: Washington, DC, USA, 2002.

7. Dill, E.T.; Young, S.D.; Hayhurst, K.J. SAFEGUARD: An assured safety net technology for UAS. In Proceedings of the 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016; pp. 1–10.

8. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
9. Medsker, L.R.; Jain, L.C. Recurrent neural networks. Des. Appl. 2001, 5, 64–67.
10. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
11. Ho, J.; Ermon, S. Generative adversarial imitation learning. arXiv 2016. [CrossRef]
12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

arXiv 2017. [CrossRef]
13. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
14. Lou, J.; Yuksek, B.; Inalhan, G.; Tsourdos, A. An RRT* Based Method for Dynamic Mission Balancing for Urban Air Mobility

Under Uncertain Operational Conditions. In Proceedings of the 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), San Antonio, TX, USA, 3–7 October 2021; pp. 1–10.

15. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Iowa State University: Ames, IA, USA, 1998.
16. Webb, D.J.; Van Den Berg, J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics.

In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany , 6–10 May 2013;
pp. 5054–5061.

17. Chiang, H.T.L.; Hsu, J.; Fiser, M.; Tapia, L.; Faust, A. RL-RRT: Kinodynamic motion planning via learning reachability estimators
from RL policies. IEEE Robot. Autom. Lett. 2019, 4, 4298–4305. [CrossRef]

18. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525.

19. Bry, A.; Richter, C.; Bachrach, A.; Roy, N. Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments.
Int. J. Robot. Res. 2015, 34, 969–1002. [CrossRef]

20. Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math.
Program. Comput. 2020, 12, 637–672. [CrossRef]

21. Burke, D.; Chapman, A.; Shames, I. Generating minimum-snap quadrotor trajectories really fast. In Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020; pp. 1487–1492.

22. Meng, L.; Qing, S.; Jun, Z.Q. UAV path re-planning based on improved bidirectional RRT algorithm in dynamic environment. In
Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–27 April
2017; pp. 658–661.

23. Dong, Z.; Chen, Z.; Zhou, R.; Zhang, R. A hybrid approach of virtual force and A* search algorithm for UAV path re-planning.
In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 21–23 June 2011;
pp. 1140–1145.

24. Ng, A.Y.; Russell, S. Algorithms for inverse reinforcement learning. Icml 2000, 1, 2.
25. Sadhu, A.K.; Shukla, S.; Sortee, S.; Ludhiyani, M.; Dasgupta, R. Simultaneous Learning and Planning using Rapidly Exploring

Random Tree* and Reinforcement Learning. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems
(ICUAS), Athens, Greece, 15–18 June 2021; pp. 71–80.

26. Lou, J.; Yuksek, B.; Inalhan, G.; Tsourdos, A. Real-time on-the-fly Motion planning via updating tree data of RRT* using Neural
network inference. In Proceedings of the AIAA SCITECH 2023 Forum, Washington, DC, USA, 23–27 January 2023; p. 0786.

27. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

28. Hammersley, J. Monte Carlo Methods; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013.
29. Chow, Y.; Nachum, O.; Ghavamzadeh, M. Path consistency learning in tsallis entropy regularized mdps. In Proceedings of the

International Conference on Machine Learning PMLR, Baltimore, MD, USA, 17–23 July 2018; pp. 979–988.

http://doi.org/10.1016/j.paerosci.2021.100726
http://dx.doi.org/10.1016/j.paerosci.2015.01.001
http://dx.doi.org/10.48550/arXiv.1606.03476
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1109/LRA.2019.2931199
http://dx.doi.org/10.1177/0278364914558129
http://dx.doi.org/10.1007/s12532-020-00179-2

Aerospace 2024, 11, 99 26 of 26

30. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning PMLR, Lille, France, 6–11 July 2015; pp. 1889–1897.

31. Yuksek, B.; Demirezen, M.U.; Inalhan, G.; Tsourdos, A. Cooperative Planning for an Unmanned Combat Aerial Vehicle Fleet
Using Reinforcement Learning. J. Aerosp. Inf. Syst. 2021, 18, 739–750. [CrossRef]

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. Chen, J.; Su, K.; Shen, S. Real-time safe trajectory generation for quadrotor flight in cluttered environments. In Proceedings of the

2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 1678–1685.
34. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International

Conference on Machine Learning PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1310–1318.
35. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
36. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling

of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

37. Gammell, J.D.; Barfoot, T.D.; Srinivasa, S.S. Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search. Int. J.
Robot. Res. 2020, 39, 543–567. [CrossRef]

38. Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based
on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40.

39. Zhang, D.; Ma, G.; Deng, Z.; Wang, Q.; Zhang, G.; Zhou, W. A self-adaptive gradient-based particle swarm optimization algorithm
with dynamic population topology. Appl. Soft Comput. 2022, 130, 109660. [CrossRef]

40. Wortsman, M.; Ilharco, G.; Gadre, S.Y.; Roelofs, R.; Gontijo-Lopes, R.; Morcos, A.S.; Namkoong, H.; Farhadi, A.; Carmon, Y.;
Kornblith, S.; et al. Model soups: Averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In Proceedings of the International Conference on Machine Learning PMLR, Baltimore, MD, USA, 17–23 July 2022;
pp. 23965–23998.

41. Zheng, D.; Tsiotras, P. Sampling-based kinodynamic motion planning using a neural network controller. In Proceedings of the
AIAA Scitech 2021 Forum, Virtual, 11–15 January 2021; p. 1754.

42. Li, Y.; Littlefield, Z.; Bekris, K.E. Asymptotically optimal sampling-based kinodynamic planning. Int. J. Robot. Res. 2016, 35,
528–564. [CrossRef]

43. Allen, R.; Pavone, M. A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016; p. 1374.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.I010961
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1177/0278364919890396
http://dx.doi.org/10.1016/j.asoc.2022.109660
http://dx.doi.org/10.1177/0278364915614386

	Introduction
	Related Works
	An Reinforcement-Learning-Based Approach for Generating Minimal Snap Trajectory
	Obtain Waypoints via Reinforcement Learning with RNN Policy Network
	Generate Minimum Snap Trajectory

	Approach Based on Generative Adversarial Imitation Learning
	Conclusions
	References

