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Abstract: The stratospheric airship is a type of aerostat that uses solar energy as its power source
and can fly continuously for months or even years in near space. The rapid and accurate prediction
of the output power of its solar array is the key to maintaining energy balance and extending flight
time. This paper establishes an online learning model for predicting the output power of the solar
array of stratospheric airships. The readings of radiometers arranged on the surface of the airship are
used as features for training the model. The parameters of the model can be updated in real-time
during the flight process without retraining the entire model. The effect of radiometer placement on
the model accuracy was also analyzed. The results show that for the continuous flight of 40 days, the
online learning model can achieve an accuracy of 88% after training with 10 days of flight data and
the accuracy basically reaches its highest level after 20 days. In addition, placing the radiometers
at the four corners of the array can achieve a higher prediction accuracy of 95%. The online model
can also accurately identify and reflect the effect of module efficiency attenuation or damage and
maintain high accuracy.

Keywords: stratospheric airship; solar array; output power; surrogate model; online learning

1. Introduction

Stratospheric airships are a type of high-altitude aerostat that uses lighter-than-air gas
as a lifting source and will drift with local wind or must expend energy to fight it. Strato-
spheric airships use a cyclic energy system, which primarily consists of a photovoltaic (PV)
array, a DC/DC converter with maximum power point tracking (MPPT) functionality, and
energy storage batteries to provide the energy required for flight, and can fly continuously
for months or even years. Stratospheric airships have a high flight altitude, long float
time, wide coverage, and monitoring range. Thus, they can be used for broad applica-
tions, such as communication relay, meteorological observation, and disaster warning [1–3].
Stratospheric airships can also be used to form intelligent networked unmanned systems,
further expanding their application range [4]. Many technological powerhouses around the
world are actively promoting the research and verification of stratospheric airship-related
technologies [5–8].

Due to the current low conversion efficiency of solar cells and the low energy density
of energy storage batteries, the energy balance of stratospheric airships during flight can
only be maintained weakly and is easily broken, which is also the main challenge faced by
stratospheric airships during long-term flight. Since the solar array provides all the energy
required for airship flight, accurately and quickly predicting the output power of the array
is critical to maintaining the energy balance of the airship.

In the initial research on the output characteristics of solar arrays, some scholars only
focused on the influence of irradiation distribution on the output power of the solar array.
For instance, Wang et al. [9] and Shi et al. [10] initially proposed a numerical computational
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method for assessing the solar radiation distribution on the PV array of a stratospheric
airship. However, as research has increased in intensity, many studies have established
high-precision simulation models for calculating the output power of stratospheric airship
solar arrays. Sun et al. [11] discussed existing photovoltaic modeling methods and divided
them into circuit models, engineering models, and fitting models, providing a reference for
selecting appropriate modeling methods based on the requirements for model accuracy
and application scenarios. Pande et al. [12] analyzed the impact of solar cell output
characteristics and operating conditions of different material systems on the size of solar
non-rigid airships. Tang et al. [13] discussed the numerical calculation method for the
output power of solar cell arrays in the optimization process of stratospheric airships. Song
et al. [14] considered the output characteristics of solar arrays under non- maximum power
point tracking (MPPT) mode, which further improved the accuracy of the array power
generation model. Liu et al. [15] calculated the non-uniform irradiation and temperature
in the solar array of a stratospheric airship and established a simulation model to analyze
the mismatch loss of the array under different flight conditions. Shan et al. [16] found that
changes in the yaw and pitch angles of stratosphere airships are the main cause of solar
array mismatch loss. In addition to reducing the maximum output power, mismatch losses
can also mislead the MPPT process, further reducing the actual output power. Liu et al. [17]
proposed a solar array output power model that includes the insulation layer structure
and analyzed the relationship between the thickness of the insulation layer and the array
output power. Zhu et al. [18] studied the effect of thermal effects on the output energy
of the solar array on stratosphere airships and found that the temperature difference of
photovoltaic modules at different positions in the array is significant, and the output power
is significantly reduced compared with that without thermal effects.

In order to further enhance the energy acquisition during the operation of airships,
some researchers are focusing on the design of flight strategies and attitude planning.
Zhang et al. [19] proposed an attitude angle planning strategy that integrates roll, yaw, and
pitch controls to enhance the energy production of PV arrays and the wind resistance of
airships. In addition, another factor cannot be ignored—namely shading (which is due to
the installation of the top equipment or the flight attitude of the platform). Some existing
research findings can serve as references for analyzing this issue. Belhachat et al. [20]
conducted a comprehensive analysis of the output characteristics of solar arrays under
shading conditions, summarized the reconstruction strategies of photovoltaic arrays, and
evaluated the advantages and disadvantages of different methods. Venkateswari et al. [21]
further tested and verified various shading situations by building a testing device.

For the application of traditional simulation models mentioned above, in order to
improve model accuracy, it is necessary to consider more influencing factors during the
modeling process and add more components according to the actual situation. This will
inevitably increase the complexity of the model, leading to higher computational resource
consumption. In recent years, data-driven surrogate modeling methods have been used
more and more frequently. Surrogate models are machine learning methods that use sensor
datasets to obtain a corresponding relationship through a certain learning method. The
models are trained using only input–output data and do not involve calculating parameters,
thereby greatly reducing run time. Surrogate models include two forms of offline learning
and online learning. Offline learning divides the dataset into training and testing sets and
obtains a model for prediction after training and testing. After the training is completed,
the parameters in the model will be fixed. If new data types appear, the dataset needs
to be imported to retrain the model. Online learning uses streaming data for training.
By continuously sending newly generated data for training, the model is continuously
refined, and the relevant parameters can be continuously updated. Currently, many
studies use online learning models to solve real-time prediction problems in many fields.
Luo et al. [22] applied online incremental learning methods to precipitation nowcasting
to adapt to real-time changes in precipitation data. Wu et al. [23] proposed an online
adaptation framework based on surrogate learning to deal with concept drift problems



Aerospace 2024, 11, 232 3 of 13

in time series prediction in the energy field. Compared with offline models, the accuracy
was improved by more than 50%. Lu et al. [24] proposed a flight training data prediction
model based on incremental learning, which also provided high prediction accuracy and
exceptional real-time performance. Liu et al. [25] used online learning methods to update
model parameters in the prediction of solar power generation, thereby avoiding the need
for the entire retraining process and having the ability to maintain and enhance accuracy.
Kraemer et al. [26] used online machine learning methods to predict indoor photovoltaic
energy within 24 h and found that simple machine learning methods are much better
than persistence predictors. Puah et al. [27] used a regression unsupervised incremental
learning algorithm to predict solar irradiance, and incremental learning enables the model
to address climate change and has good long-term predictive performance.

Regarding the solar array of a stratospheric airship, during its flight, the solar cells
may experience attenuation or damage due to continuous exposure to sunlight, the aging of
the film, hot spots, or wind vibration, which can lead to a decrease in conversion efficiency.
If the model is not corrected to a certain extent, such errors will continue to accumulate
and affect the prediction accuracy of the model. Online learning methods can effectively
avoid this issue.

This paper proposes a surrogate modeling method based on online learning to predict
the output power of the solar array on a stratospheric airship during flight. All the data
required for training come from sensors mounted on the stratospheric airship itself, and the
trained model can accurately predict the output power and adapt to abnormal states such
as photovoltaic module attenuation or damage. Moreover, since the model consumes fewer
computational resources, it can run on the stratospheric airship computers and provide
guidance for autonomous flight. Section 1 introduces the relevant background. Section 2
introduces the online learning model and derives the relevant formulas. Section 3 describes
the process of training the online model, including specific parameters and data processing.
Section 4 presents the results and analyzes. Section 5 is the conclusion.

2. Model Derivation

Considering that the online learning process is carried out on airship computers
with limited computational resources, classification and regression models with lower
complexity are needed to reduce power consumption. After comparing multiple models,
the use of Naive Bayes classifiers and linear regression models balanced the prediction
accuracy and complexity of the surrogate model in a better manner.

2.1. Gaussian Naive Bayes Classifier

The Naive Bayes classifier is a statistical generative model whose parameter estimation
process is based on frequency statistics. It classifies data by Bayesian probability estimation
and only needs to calculate the conditional probability distribution of the sample set to
make predictions. It does not involve loss function optimization. The Naive Bayes classifier
assumes that each feature is independent. Its advantages are fast training and good
performance for high-dimensional and large-scale datasets. It has been proven to perform
surprisingly well with very little training data [28], while most other classifiers, especially
artificial neural networks, find these data insufficient. For problems with continuous
variable features, Gaussian Naive Bayes classifiers can be used, which assume that the
feature distribution follows a Gaussian distribution. The mean and variance are calculated
over the entire training set. When using Gaussian Naive Bayes classifiers for prediction,
the model uses these parameters to estimate the conditional probability.

The idea of the Naive Bayes classifier is to calculate the posterior probability of each
response category under the current input feature conditions. The largest one is used as the
predicted category. The specific process is as follows:

Suppose a classification problem contains n features and m categories.

X = (X1, X2, · · · , Xn) (1)
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y = {y1, y2, · · · , ym} (2)

According to Bayesian theory, the posterior probability of a feature is represented by
the following equation:

P(y|X ) =
P(X|y )P(y)

P(X)
(3)

Due to the prior assumption that the features are independent of each other, the above
equation can be written as:

P(y|X ) =
P(X1, X2, · · · , Xn|y )P(y)

P(X1, X2, · · · , Xn)
=

P(y)
n
∏
i=1

P(Xi|y )
n
∏
i=1

P(Xi)
(4)

where the denominator involves only the features of the input and is independent of the
class, which can be simplified to mean that the final class output only needs to compare the
size of the numerator. Thus, the expression for the result of the classification prediction is

ŷ = argmax
y

P(y)
n

∏
i=1

P(Xi|y ) (5)

In a Gaussian plain Bayes classifier, the conditional probability of each feature is
assumed to follow a Gaussian distribution.

P(Xi|y ) ∼ G(µy, σ2
y ) (6)

Its greatest likelihood estimate is:

P(Xi|y ) =
1√

2πσ2
y

exp

(
−
(Xi − µy)

2

2σ2
y

)
(7)

The mean and variance in the above equation are obtained by counting the data
corresponding to the training set.

It should be noted that for online learning, since training and prediction are continu-
ously performed, the mean and variance are dynamically calculated as the training samples
flow in.

2.2. Linear Regression Model

The idea of the linear regression model is to use a linear function to describe the
relationship between the independent variable and the dependent variable. Then, according
to the error between the predicted value and the actual value, the loss function is defined,
and the weights in the function are calculated by minimizing the loss function.

It is assumed that the response to a regression problem consists of two parts. One part
is affected by the features and the other part is affected by other factors, which can be
considered as a kind of random error. Therefore, the model can be expressed as:

ŷ = f (x1, x2 · · · xn) + b (8)

Linear regression models consider the relationship between features and response as a
linear function.

ŷ = w0 + w1x1 + · · ·+ wnxn + b =
n

∑
i=1

wixi + b = wT ·x + b (9)
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In fact, the random error term can be merged into the zero-weight term. Thus, the loss
function is defined as:

L(w) =
1
2
(ŷ − y)2 =

1
2

(
wT ·x + b − y

)2
(10)

The weights are calculated as:

w = argmin
w

L(w) = argmin
w

1
2

(
wT ·x + b − y

)2
(11)

It should be noted that the formulas above are applicable to online learning, and
only the current input sample is used to calculate the loss function, without retaining
previous sample information. This form can be conveniently used to calculate weights
using stochastic gradient descent. The weights are updated by continuously receiving
individual new samples from the data stream, which can be understood as dividing the
entire optimization problem into several independent sub-problems and combining the
optimal solution of each sub-problem to obtain the optimal solution of the entire problem.

2.3. Online Learning Model

Online learning models are implemented using the River library in Python, which is a
Python framework specifically designed for online incremental learning. It can handle data
streams and dynamically train machine learning models. The established online learning
model includes steps of data preprocessing, feature engineering, and parameter updating.

Data preprocessing: Since the relevant features and responses for training online
models are collected through sensors arranged on the stratosphere airship, there may be
problems such as abnormal, missing, or duplicate data. It is necessary to perform data
cleaning on the training samples in advance to ensure the accuracy and consistency of
the data.

Feature engineering: Feature engineering refers to the process of transforming or
selecting original collected samples. Its purpose is to remove redundant features with low
impact to improve model performance. In general, many factors will affect the response
that needs to be predicted, and there are complex coupling effects between each factor.
If all influencing factors are sent to the model for training, it will inevitably increase the
complexity of the model and consume more computing resources. In addition, too many
features will increase the risk of overfitting. When the number of features exceeds the actual
information, the model may learn noise or irrelevant features in the data. This will cause
the model to have high accuracy in the training set but poor accuracy in the new data.

Parameter updating: Unlike offline learning models, online learning models use data
streams for training. This means that only one set of samples will be sent to the training
model at the same time. The model uses this sample for incremental learning instead of
learning on the entire dataset. After the parameter is updated, the next set of samples
is sent in. The sample collection and model training are synchronized, and each set of
samples will be discarded after training and not stored in the memory. This significantly
reduces the consumption of computing resources.

Figure 1 shows the online learning process of training a solar array output power
prediction model using data streams during stratospheric airship flight.
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3. Research Sample

Due to the long flight test cycle and high cost, high-precision simulation models are
used as research objects. As shown in Figure 2, the airship adopts the National Physics Lab-
oratory (NPL) configuration, and the photovoltaic modules use SunPower’s E20_245 [29].
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The specific parameters of the airship and array in the simulation model are shown in
Table 1.

Table 1. Design parameters of stratospheric airship.

Design Parameter Value

Airship length (m) 100
Airship maximum diameter (m) 27.5

Airship volume (m3) 39,434
Solar array length (m) 39
Solar array width (m) 4.8

Photovoltaic module length (m) 1.558
Photovoltaic module width (m) 0.798

Module nominal power (W) 245

The output of the solar array is related to the received radiation intensity and temper-
ature, and solar radiation intensity is the main influencing parameter. Radiation sensors
are placed near the array to obtain radiation data. In addition, the solar panel array laid
on the stratospheric airship has a large area. Due to the influence of the surface curvature
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of the airship, the positions of the photovoltaic modules on the airship are different, and
the received radiation intensity is also different. Compared with uniform radiation, the
total output power of the array will decrease, which is called mismatch loss [30]. Therefore,
a single radiation sensor may not accurately reflect the overall radiation received by the
array, and it is necessary to arrange multiple sensors to collect radiation data.

Assuming that the radiation intensity at the very top of the airship is obtained, the
direct radiation intensity received by the radiation meter arranged on the surface of the
airship can be calculated using the following formula:

Ii = Ih cos θi = Ih

→
ni·

→
ns∣∣∣→ni

∣∣∣∣∣∣→ns

∣∣∣ = Ih(xixs + yiys + zizs) = Ih[xi, yi, zi]

 xs
ys
zs

 (12)

where Ii is the radiation intensity received by radiation sensor, Ih is the radiation intensity at
the flight height,

→
ns is the incident light vector, and

→
ni is the normal vector of radiation sensor.

The Ih can be solved using three different positions of the radiometer. xs Ih
ys Ih
zs Ih

 =

x1 y1 z1
x2 y2 z2
x3 y3 z3

−1 I1
I2
I3

 (13)

Figure 3 shows the location of the sensors as they are arranged on the airship (although
the No. 3 irradiation meter in the middle is not actually used, a position is still reserved
for it here). Eight irradiation meters are located around the perimeter of the solar array to
reflect the intensity of irradiation at each photovoltaic module in the array without affecting
the operation of the solar array.
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numbers in the figure represent the corresponding numbered irradiation meter).

During the prediction process, after the flight mission of the airship is given, the
radiation meter index at any time can be calculated by the solar radiation model and
the geometric model of the airship and then input into the online model to predict the
output power.

In order to facilitate a systematic analysis of the above design scheme, a ground
physical principle verification system was constructed based on the correlation diagram in
Figure 4 (which is based on future data acquisition, analysis, and transmission scenarios),
as shown in Figure 5.
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Figure 5. Flight control computer simulation workbench.

Assuming a flight mission for monitoring Australian wildfires, the airship will perform
regional monitoring flight at a height of 20,000 m above Australia, with a flight radius of
900 km. The flight period is 40 days, from 31 January to 11 March. Samples are collected
every hour, including sensor values and output power of solar array. To reflect the temporal
characteristics and improve the prediction accuracy, in addition to using radiation values as
input features, the output power and its first-order difference of the previous moment are
also used. The performance indicator is evaluated using mean absolute error (MAE), which
is consistent with the deviation of the actual output power in terms of order of magnitude.

MAE =
1
n

n

∑
i=1

|ŷi − yi| (14)



Aerospace 2024, 11, 232 9 of 13

4. Results and Discussion
4.1. Predictive Performance of Online Models

Figure 6 shows the array output power predicted by the online learning model trained
using a single radiation count value. In the first 10 days of the flight, the online model had
not learned all the features due to the small number of training samples, and the accuracy
was low. After 20 days, the online model had obtained enough samples, and the accuracy
was improved. As the flight continued, the online model prediction accuracy remained
basically unchanged, and the training reached saturation. In addition, it can be seen that
the points far from the diagonal are concentrated near the x-axis, which indicates that the
sample points with actual output power are predicted by the online model as having no
output. This error is mainly caused by the classifier. Using a better-performing classifier
can further improve the model’s accuracy.
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Table 2 shows the specific prediction errors of the online model during the flights.
After 20 days of flight data input into the training model, the prediction accuracy of the
online model was reduced to half of its accuracy after 10 days and remained essentially
unchanged for the remainder of the time. The final prediction percentage error over the
entire flight period was 8.18%.

Table 2. Prediction accuracy during different flight period.

Flight Period (day) MAE Root Mean Square Error
(RMSE) Actual Mean Output Power (kW) Percentage Error (%)

1–10 1.76 3.61 14.12 12.48
11–20 0.87 1.67 13.35 6.49
21–30 0.90 1.67 13.17 6.82
31–40 0.82 1.56 12.52 6.54
total 1.09 2.29 13.29 8.18
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4.2. Effect of Irradiator Arrangement on Prediction Accuracy

Figure 7 shows the effect of different radiation meter placement methods on the
prediction accuracy of the online learning model. From top to bottom, it represents the
situation where 4 irradiation meters/3 irradiation meters/2 irradiation meters are placed
around the solar array on the top of the stratospheric airship. So, it should be noted that the
data displayed above the three graphs represent the actual corresponding irradiation meter
numbers for the curve. For example, “4567” in the topmost graph represents the positions
of the four irradiation meters, corresponding to the positions of irradiation meter 4, 5, 6,
and 7 in Figure 3. The meanings represented by other numbers can be inferred according
to the above rules.
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Figure 7. Prediction error of online model under different radiometer arrangements.

From the trend of data changes in Figure 7, it can be seen that for all placement
schemes, the prediction error was large and fluctuated in the first five days. As flight
time increased, more samples were sent for training, and the prediction error of the model
continued to decrease. After completing 40 days of flight, the predicted error-accumulated
loss power was reduced to between 600 W and 800 W. In the radiation meter placement
scheme, the more radiation meters, the lower the prediction error. When the same number
of radiation meters are used, placing the radiation meters at the corners of the array
instead of the midpoint of each side will result in lower prediction errors. When using
four radiation meters, the lowest error, which was 0.64 kW, was obtained by placing them
at the four corners of the array.

4.3. Online Prediction Considering Attenuation and Damage

Stratospheric airships fly at an altitude of about 20,000 m, where the air is thin and
the air pressure is low. During the flight, due to the alternation of day and night, the
temperature swing of the photovoltaic modules can be 100 ◦C, which may cause damage
and affect the output power of the array. In addition, the encapsulation film will also
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age under sunlight, reducing its transmittance capability and thus affect the conversion
efficiency of the photovoltaic modules. The solar cells in the photovoltaic modules may
crack due to the influence of wind gusts, which will also significantly affect the output
power [31].

Figures 8 and 9 show the output power prediction results considering potential module
attenuation and damage. Assuming that the conversion efficiency of the modules decreases
by 1% after every day–night cycle, three adjacent modules in the solar array are damaged
and stop working on the 20th day of the flight. Figure 8 shows the real output power and
the predicted output power. Except for the first few days of the flight when the model
had not yet fully learned, the predicted power is very close to the actual power for the
rest of the time, and the predicted output is fully reflected the attenuation of the efficiency.
Figure 9 shows that after the photovoltaic modules are damaged, the predicted error does
not show significant fluctuations, and the online model quickly discovers the damage to
the modules and adjusts the prediction results.
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Figure 8. Comparison of actual and predicted output power.
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Figure 9. Comparison of current and accumulated loss power.

5. Conclusions

This paper proposes an online learning model for predicting the output power of a
stratospheric airship solar array. The relevant parameters in the model can be continuously
updated during the flight process, which can be used for the real-time prediction of the
output power during continuous flight of the airship and can be used to guide autonomous
flight. The model has the characteristics of low computational resource consumption and
high accuracy, and the performance of the online model was verified by simulating a
continuous flight process. The specific conclusions are as follows.

For a continuous flight of 40 days, the average prediction accuracy of the online model
for output power can reach 92%. Indeed, the accuracy already meets the requirements by
the 20th day. Increasing the number of radiometers can yield more illumination details
for training the online model, thereby improving its accuracy. For the same number of
radiometers, the accuracy is higher when they are arranged at the corners of the array
than when they are arranged at the center of each side. The highest accuracy appears
when four radiometers are, respectively, arranged at the four corners of the array, and the
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prediction accuracy is 95%. The proposed online learning model can also deal with the
effect of potential modules attenuation or damage on the predicted output.
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