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Abstract: The automatic dependent surveillance broadcast (ADS-B) system is one of the key compo-
nents of the next generation air transportation system (NextGen). ADS-B messages are transmitted
in unencrypted plain text. This, however, causes significant security vulnerabilities, leaving the
system open to various types of wireless attacks. In particular, the attacks can be intensified by
simple hardware, like a software-defined radio (SDR). In order to provide high security against
such attacks, radio frequency fingerprinting (RFF) approaches offer reasonable solutions. In this
study, an RFF method is proposed for aircraft identification based on ADS-B transmissions. Initially,
3480 ADS-B samples were collected by an SDR from eight aircrafts. The power spectral density (PSD)
features were then extracted from the filtered and normalized samples. Furthermore, the support
vector machine (SVM) with three kernels (linear, polynomial, and radial basis function) was used to
identify the aircraft. Moreover, the classification accuracy was demonstrated via varying channel
signal-to-noise ratio (SNR) levels (10–30 dB). With a minimum accuracy of 92% achieved at lower
SNR levels (10 dB), the proposed method based on SVM with a polynomial kernel offers an acceptable
performance. The promising performance achieved with even a small dataset also suggests that the
proposed method is implementable in real-world applications.

Keywords: automatic dependent surveillance-broadcast; deep learning; radio frequency fingerprinting;
wireless security

1. Introduction

Due to the unprecedented growth in the number of passengers traveling via commer-
cial aviation, it is expected by the Federal Aviation Administration (FAA) that the airspace
will be more crowded in the near future [1]. In order to balance aviation growth with
flight safety, the FAA launched the Next Generation Air Transportation System (NextGen)
project [2]. The project aims at transforming the radar network-based Air Traffic Control
(ATC) system into a satellite-based navigation system. One of the key components of the
NextGen system is known as the Automatic Dependent Surveillance Broadcast (ADS-B)
system. The main responsibility of the ADS-B system is to enhance crowded airspace safety.
In a typical ADS-B system infrastructure, simple and low-cost radio stations are used for
surveillance. This considerably enables the reduction of the operating and maintenance
costs of the ATC system. Currently, most commercial aircrafts are equipped with the ADS-B
system [3].

The ADS-B system automatically broadcasts the Civil Aviation Organization (ICAO)
address (a unique identifier of the aircraft) and status data (position, speed, altitude, rate of
descent or climb, and others) of the aircraft. ADS-B messages are sent in unencrypted plain
text. This, in fact, causes significant security vulnerabilities to various types of wireless
attacks, such as eavesdropping, jamming, message injection (spoofing), message deletion,
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and message modification (integrity) [4]. Therefore, many solutions have been proposed to
secure ADS-B communications. These security solutions can be grouped into two main
categories as follows: (a) broadcast authentication and (b) location verification [5]. It is
important to note that the recent developments of securing communication protocols in
wireless sensor networks offer great research opportunities to enhance broadcast authenti-
cation solutions for ADS-B security.

The main purpose of broadcast authentication solutions is to ensure that the messages
transmitted from an authenticated source are not manipulated during transmission. The
broadcast authentication solutions can be categorized into two schemes: (a) cryptographic
solutions and (b) non-cryptographic solutions. Cryptographic solutions are difficult to im-
plement due to their incompatibility with the ADS-B infrastructure, where key distribution
and management are the major requirements. However, in non-cryptographic solutions,
the key distribution and management issues are avoided via exploiting radio frequency
fingerprinting (RFF) and spread-spectrum approaches. Nevertheless, spread-spectrum
approaches are also incompatible with the ADS-B infrastructure. They are very difficult to
employ due to the limitations of the ADS-B protocol. On the other hand, RFF approaches
can offer reasonable high security solutions against attacks [6].

In general, RFF is a wireless device authentication technique, used for physical layer
security. In an RFF technique, there are three main stages: signal capturing, feature
extraction, and the classification or identification of the devices. Typically, the unique
fingerprints (features) in the electromagnetic waves emitted by wireless devices are used to
distinguish the identification of wireless devices in order to avoid attacks on the wireless
network. The unique features are extracted from imperfections in the analog components
of wireless devices that occur during the manufacturing process. Until now, many RFF
methods have been explored in the literature [7,8]. In order to evaluate these methods,
various wireless devices have been used, e.g., Wi-Fi [9], Bluetooth [10–14], RFID [15], and
internet-of-things (IoT) transmitters [16,17]. Moreover, RFF methods have also been used
for aircraft identification based on ADS-B signals in several studies [18–24], where the
efficiency of RFF in boosting the security of ADS-B systems has been proven.

On the other hand, attacks on ADS-B devices can be intensified using simple hardware,
like software-defined radios (SDRs). As discussed in [25–28], it is very easy to launch such
attacks for an attacker with an SDR. Therefore, due to the advent of SDR technology, it
is essential to take precautions against attacks from low-cost and widely available SDRs.
Here, RFF methods could be an efficient means to protect ADS-B devices against such
attacks. Thus, in recent years, researchers have started to investigate the potential of the
RFF in their work using ADS-B signals collected from SDRs [29–34]. However, large-scale
datasets composed of ADS-B signals collected from a large number of transmitters are
needed for their implementation. Thus, the feasibility of these methods remains challenging
and questionable within realistic settings due to the requirement of higher computational
resources. Moreover, although spectral fingerprints have been used in several studies for
RFF of wireless devices in the literature [9], their usage with ADS-B signals has not been
scrutinized thus far.

In this study, it is aimed at proposing a real-time implementable RFF-based aircraft
identification method with a small dataset consisting of ADS-B signals. For this purpose,
firstly, 3480 ADS-B samples were collected by a SDR from eight aircrafts. A moving average
filter was then used to filter the samples, followed by the normalization process. Next,
the power spectral density (PSD) features were extracted from the filtered and normalized
samples. The support vector machine (SVM) with three main kernels (linear, polynomial,
and radial basis function) was used for the identification of the aircraft at various channel
signal-to-noise ratio (SNR) levels (10–30 dB). The results show that SVMs with a polynomial
kernel classifier provided better classification performances at each SNR level. Overall,
the classification performance results verify the applicability of the PSD features of the
ADS-B signals in the RFF of aircrafts, even when a small-sized dataset is used. The main
contributions can be summarized as follows:
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• The applicability and efficiency of PSD features extracted from ADS-B signals in the
RFF of aircrafts are evaluated for the first time in the literature.

• The proposed method is shown to achieve acceptable performance levels, even when a
small dataset is used. Therefore, it is expected that the proposed method could operate
effectively in real-world applications with low computational resources.

The structure of this paper is as follows: The relevant works presented in the literature
are discussed in the next section. In Section 3, the ADS-B system is briefly overviewed.
Then, in Section 4, the proposed RFF method is described. Next, experiments performed to
assess the efficiency of the proposed method are presented in Section 5. Furthermore, the
experimental results are discussed in Section 6. The paper is concluded in Section 7.

2. Related Work

In the literature, several RFF-based methods have been proposed using ADS-B signals
collected by SDRs [29–34], as mentioned in the previous section. This section is devoted
to discussing these methods in order to address the novelty of the work presented in this
article.

In [29], an RFF-based method is proposed to identify an intrusion on a Mode S channel
using features, such as a carrier phase and carrier frequency features, extracted from the
signals transmitted from the aircraft. The performance is evaluated via a measurement
campaign where a receiver consisting of an SDR running over a Raspberry Pi equipped with
a modified digital video broadcasting terrestrial (DVB-T) dongle and an omnidirectional
ADS-B antenna have been used to collect around 45 million messages from 2942 aircrafts.
The evaluation has been carried out under various values of sliding window sizes and the
k parameter in the k-Nearest Neighbors (KNN) algorithm.

In [30], an RFF method is proposed to recognize ADS-B signals for aircraft identifi-
cation. The method is based on the use of convolutional neural network (CNN)-based
models, namely AlexNet and GoogleNet, to classify the contour stellar images of ADS-B
signals at different SNR levels (20–30 dB). For the evaluation of the proposed method,
2500 signals from five aircrafts have been collected by a SDR. The highest classification
accuracy is obtained at around 95% when the SNR is greater than 28 dB.

Another method is proposed in [31] for the fingerprinting of ADS-B messages based
on physical characteristics, such as the preamble phase and phase patterns. In order to
identify the aircraft, a CNN classifier has been used. In data acquisition, multiple ground
stations have been used. Each ground station consists of an SDR running over a Raspberry
Pi 3. Thus, around 3 million messages from 274 aircrafts have been collected to be used in
the performance evaluation. Experimental results show that aircraft identification can be
achieved with an accuracy of 41.9%.

An RFF method for aircraft identification using a complex-valued CNN model is
proposed in [32]. In order to evaluate its performance, the data from both ADS-B and
VDL2 messages are collected from 50 aircrafts over multiple days by means of RTL-SDR
hardware. The robustness of the model is assessed in terms of many aspects, such as
various noise levels, different population sizes, hardware similarities, channel effects, and
message injections. To test the effects of noise on the RFF performance, the messages
collected from 50 aircrafts are exposed to a 10 dB SNR level. The accuracy of the proposed
model is then found to be 44%.

A recurrent deep complex-valued network (RDCN) is proposed to fingerprint devices
using raw I/Q data from Wi-Fi and ADS-B signals [33]. For its performance evaluation,
ADS-B signals are captured using an SDR under various channel environments and SNR
levels (2–5 dB). Experiments show that the RDCN network is able to achieve almost 100%
accuracy at all SNR levels.

In [34], a baseline model inspired by AlexNet and a ResNet-50-1D model based
on Residual Network (ResNet) are comprehensively investigated for RFF under various
scenarios, including the effect of the channel, number of devices, SNR levels, and dataset
size. The effects of different SNR levels (−13.3–15.3 dB) on the accuracy of the models are
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evaluated using a dataset of 120000 ADS-B transmissions, collected from 100 devices. The
highest accuracy is found to be 92.5% by the baseline model, when the raw I/Q data of
ADS-B signals is trained with a low SNR (−13.3–1.9 dB) and tested at a medium SNR level
(5–2 dB).

Overall, relevant works are summarized in Table 1. As can be seen from the table,
none of the works have considered the use of spectral fingerprints with the ADS-B signals.
Furthermore, only the works presented in [30,32–34] investigate the effects of noise on the
RFF performance. Additionally, instead of [30], large-scale datasets composed of ADS-
B signals collected from a large number of transmitters (≥50 transmitters) are used to
evaluate the RFF performance. However, the RFF method proposed in [30] is based on
image recognition, which differs from the scope of our work. On the other hand, this work
attempts to show that RFF-based aircraft identification using PSD fingerprints is possible,
even with a small dataset containing ADS-B signals captured from eight transmitters under
different SNR levels.

Table 1. A summary of relevant works.

Ref. Feature/Information Classifier/Process Number of Transmitters SNR Accuracy

[29] Carrier phase and
frequency features

Sliding Window Size
and KNN 2942 - -

[30] Contour stellar images CNN 5 20–30 dB ~95%

[31] Preamble phase and phase
patterns CNN 274 - 41.9%

[32] Preamble and bit
synchronization Complex-valued CNN 50 10 dB 44%

[33] Raw I/Q data RDCN 100 2–5 dB 100%

[34] Raw I/Q data Baseline and
ResNet-50-1D 100 −13.3–15.3

dB 92.5%

3. A Brief Overview of ADS-B System

The main components of the ADS-B system are depicted in Figure 1. As shown in the
figure, the position of the aircraft is first determined by means of GPS. Using the ADS-B (Mode
S) transponder on the aircraft, the position data along with the identity and status data are
then broadcast. Both ADS-B ground stations and other aircrafts receive the broadcasts.

Aerospace 2024, 11, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 1. Main components and signal flow of the ADS-B system. 

A 1090ES message format is shown in Figure 2. A message structure consists of 8µsec 

preamble for synchronization and a 112-bit data block. The data block contains the down-

link format (DF), transponder capability (CA), aircraft address, ADS-B data, and parity 

check sub blocks. The DF block is 5 bits long, which contains the type of message. The CA 

is 3 bits long and provides the communication capability of the transponder (additional 

identifier). The 24 bit aircraft address is a unique identifier assigned to each aircraft by the 

ICAO. The following ADS-B data is 56 bits long and contains the surveillance data, in-

cluding identification, velocity, position, and urgency codes. A 24 bit parity check is the 

last field, which is used by receivers in order to validate the preceding message. It is also 

worth noting that the pulse position modulation scheme is used to transmit the ADS-B 

messages.  

 

Figure 2. Message format of ADS-B 1090ES. 

4. The Proposed Method 

The proposed RFF-based aircraft identification method mainly involves ADS-B sig-

nal acquisition, data preprocessing, feature extraction, and classification stages. The over-

all process is illustrated in Figure 3. In the following sections, each stage is described in 

detail. 

 

Figure 3. Operational diagram of the proposed RFF method (on the ground station). 

 

 

 

Figure 1. Main components and signal flow of the ADS-B system.



Aerospace 2024, 11, 235 5 of 15

ADS-B has two forms, namely ADS-B Out (transmitter) and ADS-B In (receiver).
ADS-B Out devices are used to transmit broadcasts to ADS-B receivers, whereas ADS-B In
devices are used to receive broadcasts. The 1090 MHz Extended Squitter (1090ES) and the
987 MHz Universal Access Transceiver (UAT) are the data link standards for the ADS-B
system. However, the ADS-B system uses the 1090ES protocol in commercial applications.
In this study, we concentrate on the 1090ES data link.

A 1090ES message format is shown in Figure 2. A message structure consists of 8µsec
preamble for synchronization and a 112-bit data block. The data block contains the downlink
format (DF), transponder capability (CA), aircraft address, ADS-B data, and parity check
sub blocks. The DF block is 5 bits long, which contains the type of message. The CA
is 3 bits long and provides the communication capability of the transponder (additional
identifier). The 24 bit aircraft address is a unique identifier assigned to each aircraft by the
ICAO. The following ADS-B data is 56 bits long and contains the surveillance data, including
identification, velocity, position, and urgency codes. A 24 bit parity check is the last field,
which is used by receivers in order to validate the preceding message. It is also worth noting
that the pulse position modulation scheme is used to transmit the ADS-B messages.
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4. The Proposed Method

The proposed RFF-based aircraft identification method mainly involves ADS-B signal
acquisition, data preprocessing, feature extraction, and classification stages. The overall
process is illustrated in Figure 3. In the following sections, each stage is described in detail.
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4.1. ADS-B Signal Acquisition and Preprocessing

As shown in Figure 3, signal acquisition is the first phase of the proposed method,
where SDR hardware is used to collect ADS-B transmissions. A direct-conversion architec-
ture of a typical SDR receiver is shown in Figure 4.
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In a typical SDR receiver, the collected ADS-B signal (x(t)) is separated by the in-phase
(I) channel (cos(2π fct)) and the quadrature (Q) channel (sin(2π fct)). Both have a center
frequency ( fc) of the ADS-B signal being sampled, which equals 1090 MHz. After the
sampling process, an analytic signal provided by the SDR can be expressed as

x[n] = I[n] + jQ[n]. (1)

The analytic signal may contain several unique distinctive features, or so-called “RF
fingerprints”. Before extracting these features, various transformation or filtering tech-
niques are employed to detect the signal of interest from the background. In this context,
firstly, a moving average filter, which is the most common filter in DSP, is used to improve
the SNR of the received signal. In general, the moving average filter produces each point
in the output signal by averaging a number of points from the input signal. It can be
mathematically represented by [35]

x[j] =
1

NP∑NP−1
k=0 x[j + k], (2)

where x[ ] is the output (filtered) signal, x[ ] is the input signal provided in (1), and NP
is the number of points used in the moving average. As we look into distinct features in
the signals for a given hardware and sampling rate, which together represent the spectral
characteristics of background noise, NP should be carefully determined. We have chosen the
number of data points after a careful investigation of how distinctive features are unaffected
by diverse values of data points on several records for both the targeted hardware and
sampling rate. For the collected signals, the maximum value of NP is considered to be
40 in order to preserve the distinctive features of the signals. As an illustration, the input
signal (x[ ]) and the output signal obtained after applying the moving average filter (x[ ])
are shown in Figure 5a,b.

The next step in the filtering phase is data normalization. For this purpose, z-score
normalization is used to complete the data preprocessing phase. A set of N normalized
signals, each denoted by xn, can be normalized as [36]

yn =
xn − E

s
, (3)

where E is the mean value of xn, which can be expressed as

E =
∑N

n=1 xn

N
, (4)

and s is the standard deviation of xn, which can be calculated using

s =

√
∑(xn − E)2

N − 1
. (5)
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4.2. Feature Extraction

In the proposed RFF method, it is necessary to extract the distinctive features (fingerprints)
from the ADS-B signals to classify the authorized aircraft. Although various types of features
have been proposed in the literature to be used in RFF, spectral fingerprints are still very
useful for classifying wireless devices [9]. The methods of spectrum estimation can mainly be
categorized into three main categories: non-parametric methods, parametric methods, and
subspace methods. Among these methods, non-parametric methods are easy to use due to
the fact that power spectral density can be directly estimated from the signal itself. One of the
well-known non-parametric methods is the Welch method [37], which reduces noise in the
estimated power spectrum in return for a lower frequency resolution. Therefore, the noise
reduction provided by the Welch method is largely desired in practical applications.

On the other hand, there has been no published work on the use of spectral fingerprints
with ADS-B signals. Thus, in the proposed method, the Welch method is applied to the
PSD of the normalized signals, to then be used as fingerprints in the classification phase.
Describing the Welch method mathematically is straightforward [38]. In the Welch method,
the data sequences yj(n) are allowed to be overlapped, and a data window w(n) is allowed
to be applied. Here, w(n) is the Hann windowing function, which can be expressed in the
following form [39]:

w(n) =
1
2

(
1 − cos

(
2πn

N − 1

))
, (6)
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where N is the length of window. Then, a set of modified periodograms is produced, which
will be averaged. If successive sequences are offset by D points and each sequence is L
points long, the jth sequence is expressed by

yi(n) = y(n + iD), n = 0, . . . , L − 1. (7)

Thus, the quantity of overlap between yi(n) and yi+1(n) can be defined by L − D
points. In the case that K sequences cover the whole N data points, then

N = L + D(K − 1). (8)

Next, the Welch estimate of PSD can be expressed in terms of y(n) as follows:

P̂W

(
ejω

)
=

1
KLU ∑K−1

i=0

∣∣∣∑L−1
n=0 w(n)x(n + iD)e−jnω

∣∣∣2, (9)

where U is constant, which can be defined by

U =
1
N ∑N−1

n=0 |w(n)|2. (10)

4.3. Classification

Today, continuous advancements in ML techniques offer efficient means to solve
complex issues in various fields. Particularly, specialized ML techniques may increase
the performance by learning the intricate hidden traits of the system. Essentially, ML
uses real-world data to train an ML solution in order to capture the complex relationships
between the input data (features) and the output values (labels).

It is important to note that ML techniques like deep and reinforcement learning often
undergo testing, followed by rigorous training on gigantic quantities of data that are descrip-
tive enough for the targeted system to properly construct a working model. This, in turn,
enables the performance analysis of the trained and tested model. However, these methods
may require significantly higher computational resources in comparison to conventional ML
techniques [40]. Therefore, employing one of the conventional ML techniques or classifiers
could be a reasonable choice to train relatively small quantities of data [41].

In the literature, the support vector machine (SVM) is considered one of the best
known conventional ML classifiers due to its strong regularization properties, which refer
to the generalization of the model to new data [42,43]. This has been shown to be an
effective method for solving practical binary classification problems [44]. Moreover, in the
development of an RFF method, using the SVM classifier provides acceptable classification
accuracies with smaller datasets [10–14].

As outlined in the previous sections, this study proposes an RFF-based aircraft identi-
fication method using ADS-B transmissions. Our aim is to develop a method that operates
effectively in real-world applications with limited computational resources and smaller
datasets. To achieve this, a practical ML classifier is needed to classify ADS-B signals. Be-
cause each aircraft already transmits a unique ADS-B signal, the most practical classification
approach is to determine whether a signal originates from the correct aircraft. Thus, binary
classification (classifying whether a reported ADS-B signal belongs to its claimed source)
can be employed for aircraft identification [45]. The SVM classifier offers advantages in
binary classification and achieves higher accuracies when used in RFF implementations
with smaller datasets. Therefore, we have selected it for the classification of ADS-B signals
in the proposed method.

5. Experiments

Experiments were performed to assess the efficiency of the proposed method. In this
section, firstly, the whole process followed to create the datasets used in the experiments is
provided. Then, the results obtained from the experiments are discussed.
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5.1. Dataset Description

Before creating the datasets, ADS-B signals were collected from the aircraft. As
shown in Figure 6, ADS-B signals transmitted from the aircraft were captured through an
Adalm-Pluto SDR (PlutoSDR), connected to a computer where MATLAB (communications
toolbox support package for PlutoSDR) was used to process the received signals. In data
acquisition, the signals sent from eight aircrafts at 1090 MHz were sampled at 12 MSPS.
After the decoding process, the I/Q samples of each signal were generated. This was
followed by the data preprocessing phase, where each sample was filtered and normalized
as described in Section 4.1. In this way, a dataset consisting of eight aircrafts with 435 I/Q
records of ADS-B signals for each was created.
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Figure 6. Data acquisition system.

On the other hand, to investigate the noise performance of the proposed method,
noisy samples at different SNR levels were generated. Similar to previous works [10–14],
different levels of channel noise captured during data collection were randomly added to
the samples which were initially captured at high SNR as follows:

SNR = 10log
(

S
N

− 1
)

(11)

where S is the average energy of a noisy sample and N is the average energy of a sample.
Hence, five different datasets were created with the following SNR levels: (a) 10 dB, (b) 15
dB, (c) 20 dB, (d) 25 dB, and (e) 30 dB. As an example, Figure 7 shows the samples of four
different aircrafts at 30 dB SNR level.
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5.2. Implementation

As described previously, the proposed RFF method relies on extracting and utilizing
the distinctive features, also known as fingerprints, of ADS-B signals for aircraft classifi-
cation. As detailed in Section 4.2, the PSD of each signal sample was estimated for use in
fingerprinting. Before applying the Welch method to the PSD of the normalized signals,
the length of the window and the number of overlapped points were chosen to be 2048 and
1024, respectively. Following this, the unique features extracted from the PSD were labeled
with the corresponding ICAO code of the originating aircraft. Following the discussion
provided in Section 4.3, SVM with three kernels, namely linear, polynomial, and radial
basis function (RBF), was employed for the binary classification of the aircrafts. To achieve
this, different SVM models were trained, where each model treats the targeted aircraft as
a single class, while the remaining seven aircrafts collectively represent the other class.
Simply, SVM models were created to predict whether the ADS-B signal originated from
the targeted aircraft. Thus, based on the literature focusing on binary classification with
SVM, 90% of the sample was used for training, while 10% of the sample was used for
testing. On the other hand, a significant concern is the potential for overfitting, which
can lead to poor generalization due to the limited size of the dataset. This means that the
model might perform well on the data it was trained on, but fail to accurately classify new,
unseen data. While the literature on SVM binary classification suggests that 435 records per
aircraft might be sufficient, we acknowledge the potential risks in our case. As an attempt
to mitigate this risk, we have implemented 10-fold cross-validation.

For the implementation, MATLAB tools were used. The configuration parameters are
listed in Table 2.
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Table 2. The configuration parameters used in the implementation.

Parameter Value

Kernel Scale Parameter Auto
Standardize True

Box Constraint 1
Polynomial Kernel Function Auto

Optimization Solver Iterative Single Data Algorithm (ISDA)
Cache Size 1000
ClipAlphas True

Nu (v parameter for one-class learning) 0.5
NumPrint 1000

OutlierFraction, Verbose 0
RemoveDuplicates False

5.3. Results

The classification accuracies of SVM with polynomial, linear, and RBF kernels at
different SNR levels are listed in Table 3, Table 4, and Table 5, respectively. As can be seen
from Table 3, the overall classification accuracy of SVM with a polynomial kernel classifier
is 92.07%, 93.16%, 93.53%, 93.73%, and 93.91% at 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB SNR,
respectively. From Table 4, it can be observed that the overall classification accuracy of
SVM with a linear kernel classifier is 91.27%, 92.12%, 92.18%, 92.19%, and 93.33% at 10 dB,
15 dB, 20 dB, 25 dB, and 30 dB SNR, respectively. Furthermore, it can be seen from Table 5
that the overall classification accuracy of SVM with an RBF classifier is 90.14%, 90.64%,
90.58%, 90.63%, and 90.85% at 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB SNR, respectively.

Table 3. The classification accuracies (%) under different SNR levels (SVM with polynomial kernel).

SNR (dB) Aircraft 1 Aircraft 2 Aircraft 3 Aircraft 4 Aircraft 5 Aircraft 6 Aircraft 7 Aircraft 8 Overall

10 99.23 88.97 88.37 90.54 90.78 90.54 91.58 96.56 92.07

15 99.47 90.14 89.71 91.24 92.28 91.68 93.36 97.39 93.16

20 99.35 90.74 90.09 91.77 92.56 91.91 94.20 97.64 93.53

25 99.31 90.91 90.46 92.26 92.60 92.27 94.27 97.79 93.73

30 99.46 91.24 90.76 92.02 93.05 92.41 94.43 97.92 93.91

Table 4. The classification accuracies (%) under different SNR levels (SVM with linear kernel).

SNR (dB) Aircraft 1 Aircraft 2 Aircraft 3 Aircraft 4 Aircraft 5 Aircraft 6 Aircraft 7 Aircraft 8 Overall

10 99.28 87.97 87.603 89.49 89.68 90.01 90.73 95.41 91.27

15 99.08 88.70 88.02 90.06 91.09 91.06 92.55 96.43 92.12

20 98.65 88.83 88.259 90.05 91.24 91.36 92.69 96.39 92.18

25 98.57 88.87 88.417 90.06 91.29 91.12 92.72 96.42 92.19

30 98.70 88.93 88.724 90.26 91.46 91.44 92.73 96.38 93.33

Table 5. The classification accuracies (%) under different SNR levels (SVM with RBF).

SNR (dB) Aircraft 1 Aircraft 2 Aircraft 3 Aircraft 4 Aircraft 5 Aircraft 6 Aircraft 7 Aircraft 8 Overall

10 97.41 87.61 87.50 89.13 87.98 88.65 89.20 93.63 90.14

15 97.81 87.79 87.53 89.50 88.63 89.30 90.09 94.47 90.64

20 97.55 87.84 87.58 89.70 88.65 89.29 89.86 94.16 90.58

25 97.31 88.03 87.62 89.89 88.79 89.48 89.76 94.14 90.63

30 97.43 88.38 87.60 90.11 89.19 89.82 90.02 94.28 90.85
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The overall accuracy results are shown in Figure 8. It is clear that SVM with a polyno-
mial kernel classifier provided better classification performance, while SVM with an RBF
kernel classifier provided relatively lower classification performances at every SNR level.
This is an interesting result, since RBF is known as one of the most popular SVM kernels in
the literature due to its efficiency in classification tasks.
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Figure 8. Overall classification accuracies of SVM with polynomial, linear, and RBF kernels at different
SNR levels.

Moreover, the results achieved from the experiments reveal that SVM with an RBF
kernel has a strong tolerance to noise. As shown in Table 5, it is obvious that there is only
an increase of 0.7% in the classification performance when the overall accuracies obtained
at 10 dB (minimum) and 30 dB (maximum) SNR levels are considered. However, when the
overall accuracies of SVM with polynomial and linear kernels are examined for the same SNR
levels, an increase of around 2% in the classification performance can be clearly observed.

As a summary, the minimum classification accuracy of 90.14% achieved from the
experiments suggests that the proposed RFF method can use the PSD of the ADS-B signals
as features to classify the aircraft. This has implications for the applicability of the proposed
method in practice at various SNR levels. Nevertheless, it is worth noting that using SVM
with a polynomial kernel could be a better choice to classify the aircraft due to its higher
classification performance on the created dataset when compared to SVM with linear and
RBF kernel functions.

6. Discussion

As mentioned in [6], RFF provides high security at the expense of higher implementa-
tion costs in general. The implementation cost increases, especially when there is a large
amount of data collected from many transmitters. This may also adversely affect the real-
time implementation of an RFF method, which leads to a significant concern in practice,
owing to the requirement of higher computational resources. In this context, this study
aims at proposing a real-time implementable RFF method for aircraft identification using
a small dataset consisting of ADS-B signals. The results obtained from the experiments
conducted to evaluate the efficiency of the proposed method under different SNR levels
verify that the proposed method based on SVM with a polynomial kernel can work well to
classify aircrafts, even with a small dataset.

To quantify the efficiency of the proposed method, its performance can be compared
with the existing RFF methods that utilize ADS-B signals collected by SDRs under different
SNRs [32–34]. As summarized in Table 1, the accuracy of the model proposed in [32] is
found to be 44% at the 10 dB SNR level. Obviously, with more than 90% classification
accuracy, the proposed method provides a better performance at the same SNR level,
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despite the small dataset size. The method presented in [33] provides almost 100% accuracy
for the SNR levels between 2 dB and 5 dB. Moreover, in [34], the highest accuracy is found to
be 92.5% when the I/Q samples of ADS-B signals are trained with a low SNR (−13.3–1.9 dB)
and tested at a medium SNR level (5–2 dB). However, the results achieved from this study
are incomparable with the results obtained in [34] because of the inconsistent SNR levels.
Furthermore, the methods proposed in [33,34] are based on DL models, where the size of the
datasets is significantly higher than the size of the dataset created in this study. Nevertheless,
with around 92% accuracy achieved at 10 dB SNR, the proposed method offers a promising
and acceptable performance, even when a small dataset is used. Therefore, it is believed
that the proposed model could operate effectively in real-world applications with low
computational resources.

On the other hand, there is still room to improve the classification accuracy of the
proposed model, especially at lower SNRs (≤10 dB) by employing or developing an efficient
classifier. For this purpose, using DL approaches based on CNNs could be a feasible option,
due to their efficiency in classification tasks [46]. However, to provide an implementable
RFF method in real-world settings, the CNN-based model (as a classifier) needs to be
simple and efficient, even with a small dataset size. Currently, the authors are already
working on the development of such simple CNN-based models to be used in various
fields [47,48].

7. Conclusions

In this study, an RFF-based aircraft identification method is proposed. The proposed
method utilizes the PSD of ADS-B signals as a distinctive feature for RFF implementa-
tion. The SVM with three kernels (polynomial, linear, and RBF kernels) is used to identify
aircrafts at different SNR levels (10–30 dB). According to the results obtained from the
experiments, a higher classification performance is achieved using SVM with a polynomial
kernel classifier. More precisely, the overall classification accuracy of SVM with a polyno-
mial kernel classifier is found to be 92.07%, 93.16%, 93.53%, 93.73%, and 93.91% at 10 dB,
15 dB, 20 dB, 25 dB, and 30 dB SNR, respectively.

The results obtained from the experiments also show that SVM with an RBF kernel
exhibits strong noise tolerance, with only a 0.7% increase in classification performance at
10 dB and 30 dB SNR levels, in comparison to SVM with a polynomial and linear kernel.
Nevertheless, a classification accuracy of 90.14% achieved from the experiments verifies
that the PSD of the ADS-B signals can be used as features to classify the aircraft in RFF
implementation. Furthermore, it is shown that RFF-based aircraft identification is possible,
even with a small dataset containing ADS-B signals, collected by a low-cost and widely
available SDR. As a future work, our purpose is to propose an RFF method based on DL
approaches. Our intention is to develop a simple CNN-based classifier for the identification
of aircrafts at lower SNRs (≤10 dB).

Author Contributions: Data curation, software, G.G.; formal analysis, investigation, G.G. and Y.D.;
writing—original draft preparation, Y.D.; conceptualization, validation, supervision, writing—review
and editing, A.K. and M.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. FAA Aerospace Forecast: Fiscal Years 2013–2033|Federal Aviation Administration. Available online: https://rosap.ntl.bts.gov/

view/dot/59850 (accessed on 1 November 2023).
2. Next Generation Air Transportation System (NextGen)|Federal Aviation Administration. Available online: https://www.faa.

gov/nextgen (accessed on 1 November 2023).

https://rosap.ntl.bts.gov/view/dot/59850
https://rosap.ntl.bts.gov/view/dot/59850
https://www.faa.gov/nextgen
https://www.faa.gov/nextgen


Aerospace 2024, 11, 235 14 of 15

3. Strohmeier, M. Large-Scale Analysis of Aircraft Transponder Data. IEEE Aerosp. Electron. Syst. Mag. 2017, 32, 42–44.
4. Wu, Z.; Shang, T.; Guo, A. Security Issues in Automatic Dependent Surveillance-Broadcast (ADS-B): A Survey. IEEE Access 2020,

8, 122147–122167. [CrossRef]
5. Strohmeier, M.; Lenders, V.; Martinovic, I. On the Security of the Automatic Dependent Surveillance-Broadcast Protocol. IEEE

Commun. Surv. Tutor. 2014, 17, 1066–1087. [CrossRef]
6. Manesh, M.R.; Kaabouch, N. Analysis of Vulnerabilities, Attacks, Countermeasures and Overall Risk of the Automatic Dependent

Surveillance-Broadcast (ADS-B) System. Int. J. Crit. Infrastruct. Prot. 2017, 19, 16–31. [CrossRef]
7. Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A Review of Radio Frequency Fingerprinting Techniques. IEEE J. Radio Freq.

Identif. 2020, 4, 222–233. [CrossRef]
8. Jagannath, A.; Jagannath, J.; Kumar, P.S.P.V. A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional

Approaches, Deep Learning, and Open Challenges. Comput. Netw. 2022, 219, 109455. [CrossRef]
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