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Abstract: Eddy-viscosity-based turbulence models provide the most commonly used modeling
approach for computational fluid dynamics simulations in the aerospace industry. These models
are very accurate at a relatively low cost for many cases but lack accuracy in the case of highly
rotational leading edge vortex flows for mid to low aspect-ratio wings. An enhanced adaptive
turbulence model based on the one-equation Spalart–Allmaras turbulence model is fundamental
to this work. This model employs several additional coefficients and source terms, specifically
targeting vortex-dominated flow regions, where these coefficients can be calibrated by an optimization
procedure based on experimental or high-fidelity numerical data. To extend the usability of the
model from single or cluster-wise calibrated cases, this work presents a preconditioning approach
of the turbulence model via a neural network. The neural network provides a case-unspecific
calibration approach, enabling the use of the model for many known or unknown cases. This
extension enables aircraft design teams to perform low-cost Reynolds-averaged Navier–Stokes
simulations with increased accuracy instead of complex and costly high-fidelity simulations.

Keywords: turbulence modeling; vortex flows; multiple swept delta wings; machine learning;
neural networks

1. Introduction

Reynolds Averaged Navier–Stokes Equation (RANS) equations, in combination with
eddy viscosity turbulence models based on the Boussinesq assumption, build the foun-
dation of computational fluid dynamics simulations in aircraft development. On the one
hand, these simulations can predict aerodynamic behavior at satisfactory accuracy levels for
most investigated configurations while providing comparatively low costs and robustness.
On the other hand, the models lack accuracy at higher angles of attack for leading-edge
vortex flow systems of mid to low aspect-ratio delta wing configurations since they cannot
represent the effects on streamline curvature and system rotation. Shur et al., introduced a
streamline curvature correction (SARC) approach by multiplying the production term in
the original Spalart–Allmaras (SA) turbulence model by a rotation function [1]. Further, this
modification has been implemented to the Shear Stress Transport (SST) turbulence model
of Menter [2,3]. Two approaches to account for the effects of rotation and curvature are
explored by Arolla et al. [4]. The ”Modified coefficients approach” aims to alter the growth
rate of the turbulent kinetic energy, whereas the “Bifurcation approach” adjusts the eddy
viscosity coefficient such that the equilibrium solution bifurcates from healthy to decaying
solutions. While most of the available turbulence model corrections for this type of flow aim
at maintaining the globality of the fundamental turbulence model, Moioli et al., developed
an adaptive turbulence model based on the one-equation SA turbulence model [5,6]. Moioli
et al., introduced additional source terms controlled by model coefficients and a switch
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factor (i–vii in Equation (1)), which is only effective in vortex-dominated flow regions and
switches off the added source terms in unaffected regions of the flow.
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The model coefficients can be set via a gradient descent approach optimization pro-
cedure based on experimental or high-fidelity simulation data. Further, in the field of
turbulence modeling, Duraisamy et al., pointed out the expanding importance of data-
driven models and techniques in computational fluid dynamics (CFD) [7]. The increase
in computational power, e.g., on the side of graphical processing units, leads to the de-
velopment of new machine learning algorithms and enables the usage of existing ones,
taking advantage of the vast amount of available data from experimental and numerical
studies. Deep learning architectures have been shown to represent high-level abstractions
in various fields [8]. Sabater et al., develop three fast prediction tools to predict aircraft
surface pressure distribution using different machine learning techniques [9]. Their study
shows that deep-learning methods outperform others by accurately predicting shock wave
locations and strength in transonic flows. The characteristics of transonic buffet are pre-
dicted by a reduced-order modeling (ROM) framework based on a long short-term memory
(LSTM) neural network in the work of Zahn et al. [10]. Zhang et al., used convolutional
neural network (CNN) architectures to predict lift coefficient based on airfoil shape and
flow conditions.

The objective of this work is to develop a data-driven methodology for the precondi-
tioning of the enhanced SA turbulence model (Equation (1)) by Moioli et al., and highlight
the benefits of a low-cost preconditioning framework [5]. While the enhanced model is
specially tailored for leading-edge vortex flows of mid to low aspect-ratio delta wings, the
framework shall be independent of the aircraft configuration. The predictive capabilities
are discussed for a generic triple delta wing test case in Section 7.

2. Test Cases: Generic Multiple Swept Delta Wings

This study considers generic wing-fuselage configurations in the form of triple and
double delta wing configurations with varying leading-edge sweep angles. The wind
tunnel models consist of a fuselage and interchangeable flat plate wings with sharp leading-
edges. Each configuration type is also equipped with deflectable control surfaces, e.g.,
levcons for triple delta wings and slats for double and triple delta wings.

These geometries were and are subject to a common research program in cooperation
with Airbus Defence and Space and the German Aerospace Center and are further embed-
ded in the NATO AVT-316 task group [11]. Various experimental and numerical studies
have been performed for a range of configurations [12–15]. Table 1 lists the most important
geometrical parameters of the two configuration types. An overview of the two different
types is also depicted in Figure 1a,b. For this study, five triple and five double delta wing
plan forms serve as training datasets for the machine learning framework. Further, the
designation of different configurations follows the initial convention developed by Airbus
Defence and Space. E.g., the platform F3 607060 STLong LV00 SL00 FL00 describes a triple
delta wing (F3) with a 60◦ levcon sweep angle φ1, a 70◦ strake sweep angle φ2, and a
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main wing sweep angle of φ3 = 60◦. STLong designates the long strake section of the
two possible values for l2 in Table 1, whereas STShort would designate the shorter version.
The abbreviations LV, SL, and FL, followed by the number 00, describe the zero deflection
angles for the different available control surfaces levcon (LV), slat (SL), and flap (FL).

Table 1. Geometrical properties for the generic double and triple delta wing configurations (Figure 1).

Double Delta Triple Delta

cr [m] 0.58–0.8 0.65–0.83
s [m] 0.29–0.468 0.32–0.53

Sre f [m2] 0.25–0.35 0.29–0.43
Λ [−] 1.34–2.62 1.4–2.74

ltot [m] 1.16 1.16
lµ [m] 0.395–0.54 0.44–0.565

l1/cr [−] 0.125 -
l2/cr [−] 0.375/0.475 0.25/0.35
l3/cr [−] 0.35 0.35

φ1 [
◦] - 45–60

φ2 [
◦] 70–75 70–75

φ3 [
◦] 45–60 45–60

(a) (b)
Figure 1. Generic multiple swept delta wing planforms with corresponding geometrical properties
listed in Table 1. (a) Generic double delta wing. (b) Generic triple delta wing.

3. Numerical Setup

The TAU-Code (triangular adaptive upwind) developed by DLR is used as the fun-
damental flow solver. The DLR TAU-Code is widely accepted in the aviation industry
and provides a tool to run complex flow simulations on structured and unstructured hy-
brid grids. It represents not one simple code but a modern software system to compute
inviscid and viscous flows at various flow velocities for simple and complex geometries.
The TAU system is composed of different modules and libraries to allow for the easier
development, maintenance, and reuse of the code or parts of it. Single modules can be
used as stand-alone tools with a specific file I/O or in combination with a Python scripting
framework, allowing inter-module communication and enabling interaction with a started
simulation [16]. The flow calculations are based on the dual grid approach, which gives
good results for three-dimensional hybrid grids. The Runge–Kutta dual time stepping
method or a backward Euler implicit scheme are used as a time-marching method to solve
three-dimensional Navier–Stokes equations with LU-SGS (lower-upper symmetric Gauss-
Seidel) or SGS iterations. The optimization process described in Section 5 is coupled with
TAU via a Python framework (Python 3.8.16).

All simulations have been performed at a Mach number M∞ = 0.15 and a Reynolds
number Re = 3 · 106 to resemble the experiments conducted in the wind tunnel of the
Chair of Aerodynamics and Fluid Mechanics at the Technical University of Munich by
Pfnür et al. [12]. The CENTAUR meshing software has been used to create numerical grids
as hybrid unstructured grids with prism layers and tetraeders. A grid study has been
performed for the generic double delta wing with a strake sweep angle of φ2 = 75◦ and
a main wing sweep angle of φ3 = 52.5◦. Figure 2 presents the results of the conducted
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gridstudy. For each of the five different grid resolutions, a simulation at the angle of attack
α = [8◦; 16◦; 24◦; 32◦] has been performed. The lift coefficient results in the left part of
Figure 2 show that all grid resolutions represent the experimentally obtained lift coefficient
rather well. The results of the pitching moment coefficient in the right hand of Figure 2
show that all grid resolutions deviate from the experimental value. The results show that
there is no improvement in accuracy from the fine grid level to the very fine grid level.

Considering the results of the grid study and the high number of simulations needed
to generate the training dataset, the medium grid resolution has been selected. This grid
level has ≈ 22 · 106 elements, and the numerical grids of all different configurations have
been kept as similar as possible. Figure 3 shows a sample of the medium-sized double delta
wing grid.

Figure 2. Gridstudy of an generic double delta wing. Lift coefficient CL and pitching moment
coefficient CM for five grid resolution at angles of attack α = [8◦; 16◦; 24◦; 32◦]. Grid levels: vc—very
coarse; c—coarse; m—medium; f—fine; and vf—very fine.

Figure 3. Three-dimensional isometric view of the medium-sized mesh of a double delta wing.

4. Adaptive Turbulence Model

The additional source terms of the adaptive turbulence model in Equation (1) are
controlled via corresponding additional turbulence model coefficients and other flow
quantities, limiting the added terms’ influence region to vortex-dominated flow regions
only. Thus, the vortex identifier ξ is the most important control quantity. Based on the
works of Truesdell and Jeong et al., Moioli et al., implemented the vortex identifier quantity
based on the definition that a vortex can be defined as the region where the kinematic
vorticity number Nk is greater than one [17,18]. From the definition Nk = ω/S, the vortex
identifier is defined as,

ξ = max
[((

ω

S + ϵ

)
− cvl

)
, 0.0

]
; cvl = 1, (2)
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where ϵ is a small number to avoid numerical overflow in the case the strain rate takes on
values close to zero [5]. The offset by the cvl coefficient is needed to remove the influence of
terms multiplied by ξ in the boundary layer.

This work will focus on the terms i, v, and vi in Equation (1), which will be introduced
in detail in the following. cbν1 is the first added source term, which is only influenced
by the vortex identifier and is the most similar one to the original SA source term cb1S̃ν̃.
Secondly, the coefficient cbνh1 is multiplied by ξ and the normalized helicity H̃. The Helicity
H = V · ω expresses the alignment of velocity and vorticity vectors. The unburst part of
a vortex shows high axial and rotational velocities, where the vorticity is increased along
axial direction [19]. Thus, the source term cbνh1ξH̃ν̃ acts in regions of fully developed
healthy vortices. To prevent the turbulence model from acting differently for right and
left-rotating vortices, it is important to use the absolute value of the helicity since the
quantity also considers the vortex’s chirality. In order to non-dimensionalize all added
quantities, the absolute value of helicity is normalized by the free-stream velocity, resulting
in a final non-dimensional helicity H̃ = (V · ω)/U∞. The flow regions downstream of
vortex breakdown are influenced by an inverted helicity-based term and the coefficient
cbνh2. Caused by abrupt changes in rotational and axial velocities, vortex breakdown can be
enclosed by regions of high-velocity gradients. Thus, the coefficient cbνb, combined with the
velocity gradient tensor and the vorticity direction, mainly influences regions near vortex
breakdown. Figure 4 shows the influence of three additional turbulence model coefficients
for an exemplary double delta wing configuration.

(a) (b) (c)
Figure 4. Influence regions of the additional turbulence model coefficients. (a) cbνh1 acts on fully
developed vortices upstream of vortex breakdown. (b) cbνh2 influences mainly regions downstream
of the vortex breakdown. (c) cbνb acts in proximity the vortex breakdown.

5. Optimization of Additional Turbulence Model Coefficients

The coefficients of the additional source terms can be determined by an optimization
scheme based on gradient descent optimization [5]. The iterative algorithm minimizes
the objective function E(x), which is defined as the L-1 norm between numerical and
experimental data and is defined as:

E(x) =
∑k

i=1 ∑l
j=1

[
ε
(i,j)
exp w(i)

dp

]
mn

(
∑m

i=1 w(i)
dp

) (3)

where k is the number of design points, e.g., angles of attack, and l is the number of
experimental coefficients, e.g., the lift coefficient CL and pitching moment coefficient CM.
The importance of experimental reference values can be adjusted by weighting factors w(i)

dp .

ε
(i,j)
exp itself is the deviation of numerical from experimental coefficients.

Figure 5 depicts the optimization process flowchart, where a case is started by selecting
a set of starting values x⃗0.
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Start

Numerical simulations with selected starting values
of the coefficients x⃗(0) = x⃗0

Definition of increments ∆x⃗ and relaxation factor α

Restart of all simulations with
x⃗(i) (base) and

x⃗(i) + ∆x⃗ (incremental)

Errors between numerical and experimental data
ε(i)(x⃗) and ε(i)(x⃗ + ∆x⃗)

Estimation of the gradients and descent directions

∆ε(i)(x⃗) =
ε(i)(xj+∆xj)− ε(i)(xj)

∆xj

Computation of new set of coefficients
x⃗(i+1) = x⃗(i) + α∆ε(i)(x⃗)

converged?

Optimised set of turbulence model coefficients x⃗

End

yes

no

Figure 5. Flowchart of the coefficient optimization procedure.

Further, different increments ∆x⃗ for each coefficient and an overall relaxation factor α
need to be defined. Based on the initial settings, a series of numerical simulations is started,
where a base simulation with the currently defined turbulence model coefficients is executed
first. After this first base simulation is finished, the so-called incremental simulations are
started, where for each included turbulence model coefficient a simulation is started after
the predefined increment alters the base coefficient. A second base simulation continues
the first base simulation to keep a consistent base solution throughout the process. Once
the second base and all incremental simulations have finished, the errors concerning the
linked experimental reference values can be computed. Experimental values can consist of
aerodynamic coefficients, integral forces, surface pressure distributions from time-resolved
pressure sensitive paint (iPSP) or pressure tabs. Due to the availability of aerodynamic
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coefficients for several configurations included in the generic wing-body platform described
in Section 2, this type of reference value has been chosen.

From the computed errors, the gradients and descent directions can be computed.
Finally, a new updated set of turbulence model coefficients is defined by:

x⃗(i+1) = x⃗(i) + α∆ε(i)(x⃗) (4)

where α is the defined relaxation factor to avoid overshooting during the optimization
procedure, which is set at α = 0.5 for this study. Once the new set of coefficients has
been defined, it needs to be checked if the results have converged. If a satisfying level
of convergence is reached, the optimization is ended with the set of turbulence model
coefficients. If no convergence is reached, the optimization loop is restarted with the new
set of coefficients serving as the new base. Since the gradient descent approach is inherently
local and converges to local minima, cases with different starting points x0 should be run
to increase the likelihood of finding a global optimum [5]. Figure 6 depicts a sample of an
optimization run. The objective function E(x) is plotted versus the optimization iterations
in the top part of the figure. The three additional turbulence values used are plotted against
the corresponding iterations in the lower part.

Figure 6. Sample optimization results. In the top part, the objective function E(x) (Equation (5))
versus optimization iterations is shown. In the lower part, the corresponding turbulence model
coefficients are plotted.

6. Hybrid Neural Network

The ultimate goal of this study is to implement a machine learning framework that
can predict the additional turbulence model coefficients based on a small number of inputs
rather than rely on the optimization procedure described in Section 5. Moioli et al., showed
that an optimized set of turbulence model coefficients for one configuration case is not
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necessarily beneficial for a similar problem [20]. Further, experimental reference values
for the needed or selected design points are not always available. Thus, the optimization
routine is not applicable if the enhanced turbulence model should be deployed in large-
scale production or applied for many different cases, e.g., in an early aircraft design phase
with new configuration types.

The basic idea is to design a machine learning framework to predict selected additional
turbulence model coefficients. This data model outputs the proper set of coefficients based
on the geometrical properties of the configuration under investigation, flow, or flight
parameters. The proposed hybrid neural network (HNN) is depicted in Figure 7. The
neural network consists of a CNN segment, a fully connected layer with additional inputs,
and an attached feed-forward neural network part.

α
Λ

E(x)
εCL
εCM

cbν1

cbνh1

cbνh2

input planform

convolutional neural network

additional input

fully-connected
layers

output

Figure 7. Schematic chart of the HNN.

A CNN is used for the geometry recognition and feature extraction to achieve max-
imum flexibility with respect to the input geometry. CNNs are known for their vast
capabilities in image and pattern recognition, which enables the prediction framework to
be independent of the input configuration. Rather than hard-coded input neurons for differ-
ent geometric properties, a simple graphic of the wing-body plan form of the configuration
is read in and propagated through several convolutional layers, including max-pooling
and layer normalization. This architecture allows one network to be used for all thinkable
cases since, e.g., a single delta wing configuration would have only one leading-edge sweep
angle as a parameter, whereas in contrast, a triple delta wing configuration would have
three distinct leading-edge sweep angles as input. Although high-aspect ratio wings are
not part of the intended use cases, the implemented network could be fed with a plan form
of the NASA Common Research Model (CRM). In the fully connected layer, the output of
the CNN is combined with additional inputs. These inputs include the angle of attack α
and the Mach number M∞, and since the graphics of the input plan forms are not in scale,
the aspect ratio Λ is added. Due to the relatively small training data set, each iteration of
each case optimization serves as a data point. To differentiate between proper coefficients
and unwanted sets of coefficients during training, the objective function E(x) as well as
the errors between numerical and experimental aerodynamic coefficients εCL and εCM are
added as inputs. The turbulence model coefficients are predicted in the final output layer
after a series of hidden layers in a feed-forward neural network segment.

Hyperparameter Optimization and Training

The hyperparameter optimization is realized using the Optuna framework [21]. As
a define-by-run optimization framework, Optuna has been mainly developed for the
hyperparameter optimization of neural networks. The efficient implementation and the
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versatile architecture, which enable an easy setup of the optimization runs, are critical
elements of the software. The framework implements a Tree-structured Parzen Estimator
(TPE) algorithm with an additional pruning mechanism. Pruning itself can be seen as an
early-stopping method, where the algorithm detects automatically if the current trial shows
promising results compared to a set of earlier trials or if the current trial should be canceled
and another trial with a new set of hyperparameters should be started [21]. Table 2 lists the
most important hyperparameters of the HNN.

Table 2. Overview of HNN hyperparameters.

Hyperparameter

Initial learning rate 0.001
Batch size 4

Convolutional layers 3
Number of conv channels 8

Dimension fully connected layer 2367
Hidden layers 4

The available trainings dataset was obtained by conducting coefficient optimizations
(Section 5) for different configurations of the introduced generic planforms in Section 2.
For a total number of five double and five triple delta wings, the additional turbulence
model coefficients have been obtained by optimization for the two design points α = 24◦

and α = 32◦. The final dataset included ≈ 800 datapoints and was split into 90% training
and 10% validation during runtime.

Prior to the start of the training process, all data concerning the generic triple delta
wing designated by F3 527552 STLong LV00 SL00 FL00 are excluded from the dataset and
used for testing after finished training. The results for this configuration will be shown and
discussed in Section 7.

7. Results

The results of the preconditioning performance and the corresponding CFD results
are discussed in the following. The generic triple delta wing planform F3 527552 STLong
LV00 SL00 FL00 has been excluded from the training and validation sets for the proposed
HNN. It is, therefore, implemented as the final test case.

Table 3 lists the predicted turbulence model coefficient of the HNN for the triple delta
wing. The optimized type refers to the original turbulence model coefficients resulting
from the optimization procedure (Section 5) and the augmented type to the HNN predicted
coefficients. Comparing the listed coefficients in Table 3, it can be seen that for the angle
of attack, α = 24◦, all three additional turbulence model coefficients are predicted rather
well. cbν1 matches nearly perfectly, where the coefficients cbνh1 and cbνh2 show minor
deviations from the optimized values. For the angle of attack, α = 32◦ cbνh2 is predicted
almost perfectly, where now cbν1 experiences a slight under-prediction when compared
to the optimized coefficient. For this angle of attack, the coefficient cbνh1 is mispredicted
and exceeds the optimized value by more than double the valuation. Despite various
attempts at additional hyperparameter tuning, neural network training runs, and detailed
dataset analysis, it was impossible to find a setting where some of the coefficients were not
noticeable off the target value. The cause of these mispredictions has not been identified
yet and will be subject to future work.

The integral aerodynamic coefficients for wind tunnel experiments and the CFD
simulations with the standard SA model and the augmented enhanced SA model are
listed in Table 4. Additionally, for the numerical results, the percentile deviation from the
corresponding experimental coefficient is listed.
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Table 3. Predictions of additional turbulence model coefficients.

Type cbν1 cbνh1 cbνh2

α = 24◦ optimized 0.2 0.14 0.17
augmented 0.21 0.11 0.14

α = 32◦ optimized 0.16 0.07 0.16
augmented 0.135 0.175 0.15

For α = 24◦, the lift coefficient CL is already resolved very well by the standard
SA model, with a slight error of −1.6%. The augmented model underestimated the lift
coefficient by −2.3%, which is still in excellent agreement. Due to the complex vortex
flows, the pitching moment coefficient CM is especially difficult to correctly resolve with
standardized RANS models since it also relies on the spatial resolution of the surface
pressure distribution. This difficulty can also be seen in Table 4, where the standard SA
model overestimates the pitching moment coefficient by 15%. The augmented SA version
cuts the pitching moment error nearly in half compared to the standard model, resulting in
a lower deviation of 8.8%.

The results for the angle of attack α = 32◦ show that the augmented turbulence model
underestimates the lift coefficient by −4.7% compared to a 0.7% overestimation by the
original turbulence model. On the other hand, the pitching moment coefficient error is cut
nearly in half by the augmented model. The original model results in a 28.5% deviation,
whereas the augmented model reduces this error to 15.9%.

Table 4. Comparison of the aerodynamic coefficients of experimental and numerical data.

CL ∆CL[%] CM ∆CM [%]

α = 24◦
experimental 1.28 - 0.114 -
standard SA 1.26 − 1.6 0.131 15

augmented SA 1.25 −2.3 0.124 8.8

α = 32◦
experimental 1.5 - 0.151 -
standard SA 1.51 0.7 0.194 28.5

augmented SA 1.43 −4.7 0.175 15.9

7.1. Pressure Distribution

The pressure distribution on the wing suction side for the triple delta wing F3 527552
STLong LV00 SL00 FL00 is depicted in Figure 8 for the angle of attack α = 24◦ and in Figure 9
for α = 32◦. The numerical result corresponding to the original SA model is on the left side of
the figures. In the middle subfigure, the results of the augmented enhanced SA model are
depicted in the right-hand subfigure numerical results of a high-fidelity delayed Detached
Eddy Simulation (DDES) and are shown for reference.

Comparing the two RANS models (Figure 8a,b), some small changes in the suction
peak distribution on the main wing can be seen. The enhanced turbulence model shows
lower pressure coefficient values in the front section of the main wing, similar to the
high-fidelity DDES results. Looking at Figure 8c as a reference, the standard turbulence
model underestimates the pressure coefficient in the rear part of the main wing, whereas
the enhanced turbulence model shows a little higher pressure distribution in this area.
Further, the low-pressure area on the strake section caused by the formation of the inboard
vortex (IBV) shows a similar downstream distribution for the enhanced model and the
DDES, whereas the suction peak for the standard model is further extended downstream
from the strake section. The results for α = 32◦ in Figure 9 show more differences for
the different RANS turbulence model than for α = 24◦ in Figure 8. While the pressure
distribution for the standard model in Figure 9a is very homogenous, the results for the
enhanced turbulence model in Figure 9b display some irregular patterns, with several
distinct suction peaks distributed over the whole wing surface. This behavior can also
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be seen in the high-fidelity DDES result in Figure 9c. The pressure distribution over the
strake section is similar for the enhanced model and the DDES results, where the enhanced
turbulence model underestimates the pressure coefficient in the rear part of the strake
section before the kink to the main wing section. The DDES result shows only a moderate
suction peak in this area, whereas the enhanced turbulence model shows high negative
CP values. Comparing the main wing section between these two models, the enhanced
turbulence model better represents the pressure distribution and the suction peak. While
the suction peak is located slightly upstream of the main wing compared to the DDES
result, strength, resolution, and distribution are quite similar between the RANS model and
the high-fidelity simulation. The different pressure distributions show that the enhanced
turbulence model results in a more detailed resolution than the original SA model. While
the plots of α = 24◦ in Figure 8 show slight differences, the plots in Figure 9 for α = 32◦

show significant differences in pressure distribution over the wing surface. The improved
results for the pitching moment coefficient introduced in Section 7 (Table 4) are rooted in
the enhanced resolution of the adaptive turbulence model.

(a) (b) (c)
Figure 8. Surface pressure distribution by the means of pressure coefficient CP at Mach number
M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack α = 24◦, for different numerical
turbulence models. (a) Original SA model with Edwards-modification. (b) Enhanced SA model with
augmented model coefficients (Table 3). (c) High-fidelty DDES reference simulation.

(a) (b) (c)
Figure 9. Surface pressure distribution by the means of pressure coefficient CP at Mach number
M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack α = 32◦, for different numerical
turbulence models. (a) Original SA model with Edwards-modification. (b) Enhanced SA model with
augmented model coefficients (Table 3). (c) High-fidelty DDES reference simulation.
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7.2. Total Pressure Loss

In this subsection, the vortical flow field is analyzed utilizing an isosurface of 2% total
pressure loss (pt − pt,∞)/pt,∞ depicted in Figure 10 for the angle of attack α = 24◦ and for
α = 32◦ in Figure 11. The isosurface is colored in the non-dimensional axial velocity profile
u/U∞, and stagnating or reversed flow is highlighted by a black isosurface representing areas
of u/U∞ ≤ 0. As in Section 7.1, results for the numerical results based on the standard SA
turbulence model are shown in the left-hand subfigures, and high-fidelity DDES reference
results are shown in the right-hand subfigures. The results of the augmented enhanced
turbulence model are depicted in the middle subfigures of Figures 10 and 11.

Comparing the RANS models in Figure 10a,b, it can be seen that the adaptive turbu-
lence model shows some vortical flow structure, whereas the standard turbulence model
results in a straight smooth isosurface for the total pressure loss. The original turbulence
model shows a slightly wider cross-section area of the isosurface over the rear part of the
main wing, meaning more total pressure is dissipated by the turbulence model in the flow
field compared to the other two models. Focusing on the red spots representing maxima of
the non-dimensional axial velocity, it can also be seen that the enhanced turbulence model
transports these maxima further downstream, sustaining more energy in the flow field.
Although the DDES result in Figure 10c contains a more detailed resolution, the enhanced
turbulence model shows an almost similar distribution of the total pressure loss.

(a) (b) (c)
Figure 10. Flow field visualization by an isosurface of 2% total pressure loss (pt − pt,∞)/pt,∞ at
Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack α = 24◦, for different
numerical turbulence models. The isosurface is colorized by the non-dimensional axial velocity
u/U∞. (a) Original SA model with Edwards-modification. (b) Enhanced SA model with augmented
model coefficients (Table 3). (c) High-fidelty DDES reference simulation.

At α = 32◦ the results in Figure 11 highlight the differences between original and
enhanced turbulence models. Neglecting the resolution differences, Figure 11b shows
nearly the same total pressure loss distribution as the high-fidelity DDES result in Figure 11c.
The vortical flow structure and the distribution of the non-dimensional axial velocity are
more or less identical, whereas the maxima of non-dimensional axial velocity depicted in
red are dissipated approximately at the exact location downstream of the kink between
the strake and main wing sections. Vortex breakdown and the irregular flow field are
visible over the main wing section for the enhanced turbulence model. The original
turbulence model shows a smooth, straight isosurface with no vortical flow structures
present. Additionally, it can be seen that the maxima of the non-dimensional axial velocity
is dissipated further upstream compared to the other two numerical model.

The results of total pressure loss highlight the different capabilities of vortical flow
representation between the original turbulence model and the enhanced turbulence model
with additional source terms.
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(a) (b) (c)
Figure 11. Flow field visualization by an isosurface of 2% total pressure loss (pt − pt,∞)/pt,∞ at
Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack α = 32◦, for different
numerical turbulence models. The isosurface is colorized by the non-dimensional axial velocity
u/U∞. (a) Original SA model with Edwards-modification. (b) Enhanced SA model with augmented
model coefficients (Table 3). (c) High-fidelty DDES reference simulation.

7.3. Normalized Q-Criteria

Another possibility to visualize the rotational flow field is to plot the isosurface of the
Q-criterion. A vortex can be defined as a connected fluid region with a positive second
invariant of the velocity gradient [22,23]. Following Equation (5):

Q =
1
2

(
u2

i,i − ui,juj,i

)
= −1

2
ui,juj,i =

1
2

(
||Ω||2 − ||S||2

)
(5)

it defines the regions where the vorticity magnitude exceeds the strain-rate magnitude. In
Figures 12 and 13, the isosurface of the normalized Q-criterion Q∗ = (Q · l2

µ)/U∞ = 50
colorized by the means of total pressure ratio pt/pt,∞ is shown for the angles of attack
α = 24◦ and α = 32◦, respectively, where lµ is defined as the mean aerodynamic chord.
Additionally, regions of stagnating or reversed flow are marked by a black isosurface
representing u/U∞ ≤ 0.

Comparison of the RANS turbulence models in Figure 12a,b shows that the normalized
Q-criterion for enhanced turbulence model resolves more vortical structures similar to the
high-fidelity DDES results in Figure 12c than the original model. The outboard region of
the main wing section especially experiences no vortex flow with the standard turbulence
model. Another sign of the improved turbulent diffusion of the enhanced turbulence model
is the distribution of the inboard nose vortex. While the nose vortex of the original model
is dissolved in the strake section, the nose vortex for the enhanced model extends further
downstream and connects with the IBV over the main wing, which can also be seen in the
high-fidelity data.

At α = 32◦ in Figure 13, vortex breakdown is already present, and the standard SA
turbulence model fails to resolve any vortical structure exceeding the break-up of the IBV
over the strake section. Comparing the three subfigures, it is noticeable that the enhanced
turbulence model in Figure 13b is far more similar to the high-fidelity DDES result in
Figure 13c than to the result of the standard turbulence model. Although vortex breakdown
is present, the additional source terms (especially cbνh2) enable the turbulence model to
resolve the vortex structures in more detail. At this angle of attack, the leading-edge vortex’s
strong formation can be seen through a spiral-type vortical structure. High energetic flow,
which can be identified by pt/pt,∞ ≥ 1, is transported further downstream by the enhanced
turbulence model. Downstream of vortex breakdown, the RANS model still shows more
dissipation, and the vortical structures dissolve totally over the main wing. In contrast, the
DDES suggests that the structures exceed the trailing edge.
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(a) (b) (c)
Figure 12. Visualization of vortical structures by an isosurface of the normalized Q-criterion
Q∗ = (Q · l2

µ)/U∞ at Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of
attack α = 24◦, for different numerical turbulence models. The isosurface is colorized by the total
pressure ratio pt/pt,∞. (a) Original SA model with Edwards-modification. (b) Enhanced SA model
with augmented model coefficients (Table 3). (c) High-fidelty DDES reference simulation.

(a) (b) (c)
Figure 13. Visualization of vortical structures by an isosurface of the normalized Q-criterion
Q∗ = (Q · l2

µ)/U∞ at Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of
attack α = 32◦, for different numerical turbulence models. The isosurface is colorized by the total
pressure ratio pt/pt,∞. (a) Original SA model with Edwards-modification. (b) Enhanced SA model
with augmented model coefficients (Table 3). (c) High-fidelty DDES reference simulation.

7.4. Vortex Bursting

The accurate prediction of vortex breakdown and vortex breakdown positions is directly
linked to the adverse pressure gradient handling of the turbulence model. Leading-edge
vortices experience breakdown at high angles of attack due to the stagnation of the axial core
flow caused by the adverse pressure gradient along the vortex core axis [24]. In the following,
the comparison of reversed flow profiles for the three different numerical methods is discussed.
In Figure 14, the results for the angle of attack α = 24◦ are presented, and in Figure 15, the
results for α = 32◦, respectively. The reversed flow characteristic is analyzed using an
isosurface representing regions, where the non-dimensional axial velocity u/U∞ ≤ −0.1. The
surface distribution for the total pressure ratio pt/pt,∞ is shown.

Compared to the isosurface of the high-fidelity numerical result in Figure 14c, it
is obvious that the standard SA turbulence model is unable to resolve reversed flow
(Figure 14a). On the other hand, the enhanced turbulence model shows similar reverse
flow behavior like the DDES data. Especially the on-set position and downstream extent
match the high-fidelity data nearly perfectly.
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(a) (b) (c)
Figure 14. Reverse flow regions by an isosurface of the non-dimensional axial velocity u/U∞ ≤ −0.1
at Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack α = 24◦, for different
numerical turbulence models. Additionally, the surface total pressure ratio distribution pt/pt,∞ is
shown. (a) Original SA model with Edwards-modification. (b) Enhanced SA model with augmented
model coefficients (Table 3). (c) High-fidelty DDES reference simulation.

The same analyses can be carried out for the angle of attack α = 32◦. Figure 15
shows that the original turbulence model resolves no reversed flow, while the enhanced
turbulence matches the flow characteristics of the high-fidelity results. Although the
downstream variation of the isosurfaces cross-section varies differently between these two
numerical models, the extent over the whole wing area is present for both models. To better
understand the capabilities of the enhanced SA turbulence model, the isosurface of the
non-dimensional axial velocity u/U∞ ≤ −0.6 is shown in Figure 16 for the angle of attack
α = 32◦. Since in Figure 15 it is already presented that the original SA model is not capable
of resolving this flow characteristic, only the results for the enhanced model and the DDES
simulation are presented. u/U∞ ≤ −0.6 represents regions with strong reversed flow.
Comparing the two different numerical approaches, it can be seen that at this magnitude,
the RANS model does not represent similar reverse flow structures like the DDES model.
This means that the enhanced model shows better resolution capabilities when compared
to the original turbulence model but still embodies a higher numerical dissipation than the
high-fidelity simulation approach.

(a) (b) (c)
Figure 15. Reverse flow regions by an isosurface of the non-dimensional axial velocity u/U∞ ≤ −0.1
at Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack α = 32◦, for different
numerical turbulence models. Additionally, the surface total pressure ratio distribution pt/pt,∞ is
shown. (a) Original SA model with Edwards-modification. (b) Enhanced SA model with augmented
model coefficients (Table 3). (c) High-fidelty DDES reference simulation.
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(a) (b)
Figure 16. Detailed reverse flow regions by an isosurface of the non-dimensional axial velocity
u/U∞ ≤ −0.6 at Mach number M∞ = 0.15, Reynolds number Re = 3 · 106, and angle of attack
α = 32◦, for different numerical turbulence models. Additionally, the surface total pressure ratio
distribution pt/pt,∞ is shown. (a) Enhanced SA model with augmented model coefficients (Table 3).
(b) High-fidelty DDES reference simulation.

In summary, the enhanced turbulence model shows the improved capabilities of
reversed flow prediction due to the additional source terms. The proper resolution of this
flow feature is important to define the vortex breakdown position and thus properly predict
pressure distributions and, as a result, the pitching moment coefficient.

8. Conclusions and Outlook

This study presented the preconditioning capabilities of an HNN framework con-
cerning an adaptive turbulence model based on the standard SA turbulence model. The
enhanced turbulence model includes additional source terms linked to a so-called vortex
identifier quantity to affect vortex-dominated flow regions only. Model coefficients like
those in the original SA model further control the additional source terms. An optimal set
of these coefficients can be obtained through an automated optimization process, which
needs corresponding computational effort due to the high number of necessary CFD simu-
lations. This work describes the possibility of preconditioning this turbulence model via
a machine learning framework rather than relying on the costly optimization procedure.
The neural network itself is independent of the underlying input configuration. While the
adaptive turbulence model was designed with special emphasis on leading-edge vortex
flow systems of medium to low aspect ratio delta wings, the neural network can be fed
with any configuration.

The results of the network tests show that the proposed architecture can predict a proper
turbulence model coefficient set quite accurately. Most predicted turbulence coefficients are
close to their true values, defined by an out-of-the-loop optimization run. The test run also
showed that due to the currently available small dataset, the neural network sometimes
off-predicts one of the three tested turbulence model coefficients. The reason for this selective
misprediction has yet to be found and will be included in future works.

The assessment of improvement is presented employing a comparison of CFD simula-
tion results based on the original SA model, the enhanced SA model, and a high-fidelity
DDES simulation. The comparison shows that the enhanced turbulence model with aug-
mented model coefficients improves the resolution of the flow field. Vortical structures,
pressure distribution, and reversed flow characteristics are resolved in more detail than
for the original turbulence model. The results for the aerodynamic coefficients show that
especially the pitching moment coefficient is computed with higher precision due to the
improved accuracy in the surface pressure distribution.
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In future works, the accuracy of prediction and preconditioning shall be improved by
increasing the available training dataset. The dataset and preconditioning framework shall
also be tested for different Mach numbers and configurations outside of this work using a
generic multiple-swept delta wing platform.
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