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Abstract: Aircraft propellers produce relatively large in-plane loads, called propeller 1P loads, during
maneuvers such as turning, diving, and lifting, and these loads can negatively affect the flight and
control of the aircraft. In order to study the change rule of 1P aerodynamic loads, in this paper,
a mathematical model of the propeller 1P aerodynamic loads has been developed based on the
blade element momentum theory. This mathematical model was then corrected using the Pitt–Peters
incoming flow correction method, the Prandtl tip correction method, and the propeller root flow
correction method. Based on this mathematical model, a calculation procedure for the propeller 1P
aerodynamic loads was developed using MATLAB software, and the accuracy of the procedure was
verified by comparing the results with CFD simulation results. Numerical simulations show that the
results calculated based on the proposed mathematical model for the coefficients of thrust, power,
bending moment, and the tangential force of the propeller have an error of less than ±6.00% compared
to the CFD simulation results. For a small inflow angle, the coefficients of bending moment and
tangential force of the whole propeller fluctuate in a small range. But, as the inflow angle increases,
the fluctuation range of the aerodynamic characteristic parameters of the propeller increases and
the fluctuation becomes more complicated. Through numerical calculations, it has been shown that
the mathematical model presented herein is reliable and accurate. In addition, it greatly shortens
the calculation time and improves the calculation efficiency. It is expected that the proposed model
can provide a certain help for the strength design of the propeller structure and the study of the
aerodynamic performance of the whole aircraft.

Keywords: propeller; 1P aerodynamic loads; blade element momentum theory; numerical calculation;
CFD simulation

1. Introduction

Propeller aircrafts offer good economics, which makes them still important in the
current air transportation sector. However, when the inflow is not uniform or is not aligned
with the propeller rotating axis, the propeller may produce relatively large in-plane cyclic
aerodynamic loads, known as 1P loads. The 1P load can adversely affect the maneuvering
stability characteristics of the aircraft; for example, it may cause the aircraft to pitch up,
head up, or head down, or even cause the aircraft to yaw. Therefore, the propeller 1P load
has a non-negligible effect on the aerodynamic performance of the aircraft. In addition, the
1P load can reduce the service life of the propeller hub and bearings. Thus, the accurate
prediction of the 1P load is also necessary for the structural design of the propeller. Under
normal flight conditions, the aircraft is required to maintain its original flight attitude as
much as possible during the flight process. But the posture of the aircraft in the air may
change under the influence of the propeller 1P load, so the accurate calculation of the
propeller 1P load is significant for the design and control of the aircraft [1,2].

In order to study the propeller 1P loads, a great deal of research has been conducted on
propellers affected by oblique inflow. For instance, Gonzalez-Martino et al. [3] developed
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a comprehensive HOST (Helicopter Overall Simulation Tool) code for the aeromechanic
simulation of helicopters based on the lifting-line theory. They then implemented an
unsteady airfoil model in the code and evaluated the overall performance of the AI-PX7
rotor, 1P loads, and blade loading distribution. Kim et al. [4] developed a propeller model
to predict isolated propeller performances under steady flight conditions, in which the
vortex lattice method was used to compute the induced velocities while the strip theory was
employed to calculate the forces and moments produced by the propeller. Dorfling et al. [5]
developed a nonlinear aerodynamic model of the airfoil that can be used in conjunction
with the blade element method to enhance the prediction of propeller performance over a
wide range of forward ratios. Kolaei et al. [6] studied the performance characteristics of a
rotor, typically used in small unmanned aerial vehicles (UAVs), in a series of wind tunnel
tests for a wide range of advance ratios and inflow angles. Theys et al. [7] conducted wind
tunnel tests on a small rotor blade of a UAV to investigate the changes in propeller torque
under different operating conditions. Zarev and Green [8] performed an experimental
investigation to measure the inflow of a two-bladed propeller. The research was conducted
over a range of advance ratios (J = 0.36 to 1.54) and yaw angles (γ = 0 to 20◦) at a Reynolds
number of Re ≈ 111,000, based on the chord length and advancing blade resultant velocity
at the 70% spanwise position. Higgins et al. [9] conducted experimental and numerical
studies to investigate the effect of yaw on the inflow of a 4-bladed propeller. Cerny and
Breitsamter [10] investigated the influence of non-axial inflow conditions on a small-scale
propeller by measuring the aerodynamic force at different inflow angles. They also made a
comparison between open impeller and ducted impeller configurations, focusing mainly
on their individual behavior under non-axial inflow conditions. Park et al. [11] conducted
the design, wind tunnel test, computational fluid dynamics (CFD) analysis, and flight test
data analysis for the propeller of EAV-3. In their study, the blade element momentum
theory in conjunction with minimum induced loss was used as a basic design method, and
the reliability of the method was confirmed by comparing the calculated results with the
experimental data. Garcia and Barakos [12] presented a high-fidelity CFD method and
investigated its ability to predict air loads on a model-scale ERICA tiltrotor in various
flight configurations. Brandt and Selig [13] conducted experiments on propellers applicable
to UAVs and quantified the propeller efficiency at low Reynolds numbers. Their results
indicated that the proper selection of propeller for UAVs can have a significant effect on the
performance of the aircraft. Silvestre et al. [14] developed a code for the design and analysis
of propellers, called JBLADE, which was capable of estimating the performance curves
of a given design for use in off-design evaluation. McCrink and Gregory [15] presented
a model for the propulsion mechanism of a small-scale electric unmanned aerial system.
The model was based on a blade element momentum (BEM) model of the propeller, with
corrections for tip losses, Mach effects, three-dimensional flow components, and Reynolds
scaling. Khan and Nahon [16] developed a physics-based model for UAV propellers that
was able to predict all aerodynamic forces and moments in any general forward flight
condition such as no flow, pure axial flow, and pure side flow. Yang et al. [17] developed
a fast computational procedure based on the blade element theory (BET) to predict the
propeller characteristics of a vertical/short take-off and landing (V/STOL) aircraft during
hovering, cruising, and transitional states. Zhang et al. [18] used the strain method to
directly measure the 1P load at the engine propeller shaft, and obtained the distribution of
the propeller shaft 1P load under different flight conditions through experiments.

From the review of the existing literature, it is found that although various numerical
or experimental methods have been proposed to calculate the 1P propeller load, most
of these methods are either expensive or often require high execution time. Numerical
simulation methods based on CFD have been more popular in recent years. But each of
these methods has its own limitations. For instance, the traditional CFD methods often
require a large number of grids to model the problem domain, which can significantly
increase the calculation time. By balancing the computational cost and numerical accuracy,
this paper establishes a mathematical model of propeller 1P aerodynamic loads based on
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the blade element momentum theory. The proposed mathematical model is then corrected
using the Pitt–Peters inflow correction method, the Prandtl tip correction method, and
the propeller root flow correction method. Based on the newly developed model, a fast
calculation procedure for the propeller 1P aerodynamic load is presented using MATLAB
software MATLAB 9.12.0 (R2022a). The calculation procedure of the propeller 1P aerody-
namic load is then verified by means of CFD simulation. Also, several propeller cases with
different inflow angles are considered and analyzed using the proposed procedure. Finally,
using the proposed model, the aerodynamic performance of the propeller is analyzed and
the 1P load change law on the propeller is determined. It is expected that the proposed
model can provide a certain help for the strength design of the propeller structure and the
aerodynamic performance study of the whole aircraft.

2. Mathematical Model and Calculation Method

In this paper, the propeller 1P aerodynamic load is mathematically modeled based
on the blade element momentum theory. A calculation procedure is then developed based
on the established mathematical model using the MATLAB software [19]. The procedure
enables the fast and accurate calculation of the propeller 1P aerodynamic loads under any
inclined inflow.

2.1. Mathematical Model

As we mentioned earlier, the mathematical modeling of the propeller 1P aerodynamic
loads with inclined inflow is performed here based on the blade element momentum theory.
The blade element momentum (BEM) method is a classical method for the rapid calculation
of propeller aerodynamic forces, which has good reliability and at the same time has a
small amount of calculation. Compared with other methods, this method can significantly
reduce the numerical calculation time, and provides a means to quickly evaluate the initial
design of the propeller, thereby speeding up the overall propeller design process.

In the BEM theory, the blade aerodynamic forces are calculated by the blade element
theory while the induced velocities are calculated using the momentum theory. The
combined theoretical velocity diagram is shown in Figure 1 [20–22]. The inflow velocity is
V0, the angle of attack is α, the propeller blade angle is β, and the airflow angle is ϕ.
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The inflow velocity increment is Va, and the axial velocity V of the blade element
relative to the airflow is:

V = V0 + Va (1)

The angle ϕ between the axial velocity and the plane of rotation is:

ϕ = arctan
(

V0 + Va

2πnr

)
(2)

The angle of attack α is:
α = β − ϕ (3)
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The blade element thrust force, tangential force, torque, and bending moment are:

dT =
1
2

ρV2 cos(ϕ + γ)
CLb

sin2 ϕ cos γ
dr (4)

dF =
1
2

ρV2 sin(ϕ + γ)
CLb

sin2 ϕ cos γ
dr (5)

dQ = rdF =
1
2

ρV2 sin(ϕ + γ)
CLb

sin2 ϕ cos γ
rdr (6)

dB = rdT =
1
2

ρV2 cos(ϕ + γ)
CLb

sin2 ϕ cos γ
rdr (7)

where b denotes the chord length, n denotes the propeller rotation speed, the tangential
velocity of the blade is 2πnr, γ denotes the angle of resistance to lift for blade element, CL
is the lift coefficient, and r denotes the radius of the propeller at any position.

Figure 2 shows the coordinate system of each velocity component of the propeller,
where the direction perpendicular to the direction of the propeller disc is considered as
the X-axis. In addition, the plane in which the propeller disc is located is defined as the
YZ-plane, and φ denotes the angle between the inflow velocity V and the X-axis of the
rotational axis of the propeller disc. Therefore, the incoming velocity V can be decomposed
into the axial component VX and the tangential component of the propeller disc VYZ, given
in Equations (9) and (10), respectively.

VX = V × cos φ (8)

VYZ = V × sin φ (9)
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A further decomposition of the tangential component VYZ yields VYZ⊥ perpendicular
to the leading edge of the blade and VYZ∥ parallel to the radial direction of the blade:

VYZ⊥(ψ) = VYZ × sin ψ (10)

VYZ ∥(ψ) = VYZ × cos ψ (11)

where ψ denotes the azimuth angle of the propeller blade.
According to the blade element theory, the lift resistance and the relative velocity

produced by the blade element are shown in Figure 3. In Figure 3, α is the angle of
attack, β is the propeller blade angle, ϕ is the airflow angle, and ω is the angular velocity.
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The expression for the relative velocity VR produced by the airflow relative to the blade
element is:

VR =

√
(VX + Via)

2 + (ωr + VYZ⊥)
2 (12)

where Via denotes the axial induced velocity of each segment of the propeller blade, dL
denotes the instantaneous lift perpendicular to the relative velocity VR, and dD denotes the
drag along VR.
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The instantaneous thrust force generated by the blades of the propeller is different at
different moments during the rotation cycle due to the different azimuth angles at which
the blades are located. But the average thrust force generated by the blades is the same. For
N propeller blades, the average thrust force and the torque generated by the rotation for
one cycle are:

dT =
N
4π

ρb
∫ 2π

ψ=0
V2

R(CL cos ϕ − CD sin ϕ)dψdr (13)

dQ =
N
4π

ρbr
∫ 2π

ψ=0
V2

R(CL sin ϕ + CD cos ϕ)dψdr (14)

where CL is the lift coefficient, CD is the drag coefficient, b is the chord length, and r is the
radius of the propeller at any position.

Based on momentum theory along with Bernoulli’s equation and the conservation of
momentum theorem, thrust and torque equations are obtained as follows:

dT = 2ρr
∫ 2π

ψ=0
ViaVdiscdψdr (15)

dQ = 2r2ρ
∫ 2π

ψ=0
(ωr + VYZ⊥)Vdiscdψdr (16)

where Vdisc denotes the resultant flow velocity through the propeller. This velocity varies
with azimuth, and can be expressed as:

Vdisc =

√
(VX + Via)

2 + (VYZ − sin ψ(ωr + VYZ⊥))
2 (17)

In the case of zero inflow angle, the resulting equations (i.e., Equations (13)–(16)) can be
solved by means of iterative solution. This is because the unknown axial induced velocity
Via is constant for the same position of the blade, and thus the joint Equations (13)–(16)
can only be solved by means of iterative algorithms. But, otherwise, the axial induced
velocity Via is a function of the azimuth angle. Therefore, it is necessary to introduce the



Aerospace 2024, 11, 332 6 of 19

inlet model developed by Peters and Pitt [23,24] to describe the relationship between the
induced velocity Via and the azimuth angle. The expression according to this model is:

Via = Via,0

(
1 +

15π

32
tan

(χ

2

) r
R

cos ψ

)
(18)

where Via,0 is the induced velocity at the center of the propeller on the propeller plane, and
R denotes the total radius of the propeller. Figure 4 is a schematic diagram of the propeller
wake deflection, χ is the wake skew angle given by:

χ = arctan
(

VYZ
VX + Via,0

)
(19)
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The tangential force is given by:

dF =
dQ
r

(20)

The bending moment is given by:

dB = dT × r (21)

To determine the unknown induced velocities Via,0, Equations (18) and (19) are first
substituted into Equations (12)–(16). Then, Equations (13)–(16) are joined and solved
iteratively for unknowns. Subsequently, the thrust force dT and the overcoming torque
dQ are determined. The above calculation steps can then be repeated for each position of
blade extension, and the thrust force dT and the torque dQ can be integrated to obtain the
aerodynamic performance parameters of the propeller in the case of an inflow angle.

By making the aerodynamic parameters of the propeller dimensionless, the following
equations are obtained:

Thrust coefficient CT:

CT =
T

ρn2D4 (22)

Power coefficient CP:

CP =
P

ρn3D5 (23)

P = Q × ω (24)
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Tangential force coefficient CF:

CF =
F

ρn2D4 (25)

Bending moment coefficient CB:

CB =
B

ρn2D5 (26)

where D is the diameter of the propeller.

2.2. Mathematical Model Correction
2.2.1. Tip Correction

The Prandtl tip correction model, which was introduced in reference [9], is used to
simulate the phenomenon of lift reduction to zero at the tip of the propeller. The reason
for this phenomenon is that there is no barrier on the outside of the blade tip. The tip
airfoil accelerates the airflow over the upper airfoil, thereby increasing the static pressure
difference with the lower airfoil. But the airflow escapes from the lower airfoil to the
upper airfoil along the tip, creating a tip vortex and a static pressure difference. This is the
reason why there is a sudden drop in tip lift. This phenomenon also spreads to some blade
elements near the tip of the propeller and the degree of lift attenuation is greatly increased.
The Prandtl tip correction model describes the distribution of the correction coefficient
Fprandtl at the propeller blade spanwise.

Fprandtl =
2
π

arccose(−N× R−r
R sin (φ(r)) ) (27)

where N denotes the number of propeller blades, φ denotes the inlet angle of the airfoil, R
denotes the complete radius of the propeller, and r denotes the radius of the propeller at
any position.

2.2.2. Root Flow Correction

When the propeller moves, the fluid is influenced especially near the root of the
propeller. Flow separation at the root of the propeller means the loss of connection between
the fluid and the impeller in this area. Flow separation at the root of the propeller can lead
to performance issues such as reduced efficiency, increased noise, and vibration. A possible
cause of this phenomenon may be that the propeller, under the conditions of oblique inflow,
experiences excessive angles of attack. This may lead to the inability of the fluid to properly
adhere to the surface of the blade, resulting in separation at the root of the propeller.

To accurately simulate such a flow separation phenomenon, the main correction was
carried out at the propeller root. According to our research experiences, it is suggested to
define a function Fcl as follows:

Fcl = 1 − 12 × e(−35×r) (28)

where r denotes the radius at any position of the propeller. Figure 5 is a function diagram
of Fcl. The horizontal coordinate represents the position of blade extension (r/R), and the
longitudinal coordinate is the function value of the corresponding position. The value of
the function closer to the root is smaller, the corresponding correction at the root of the
propeller is larger, the value of the function closer to the tip is closer to 1, and the correction
at the tip is smaller.
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The corrected lift coefficients (CL correct) are then obtained by multiplying both Fprandtl
and Fcl by the corresponding wing lift coefficients (CL). All subsequent calculations will be
performed using the corrected lift coefficients.

CL correct = CL × Fprandtl × Fcl (29)

2.3. Implementation of Calculation Method Based on MATLAB

The procedure for calculating the propeller 1P load is described in Figure 6. In the
first step, we start by defining the basic parameters of the propeller such as the number
of propeller blades, radius, hub radius, blade chord length, and twist distribution. In the
second step, the calculation conditions such as inflow angle, inflow velocity, and other
operating conditions are specified. In the third step, Xfoil V6.94 is used to generate a
database of lift and drag coefficients for the airfoil and import them into the MATLAB
procedure. Next, the inflow model established by Peters and Pitt is introduced and the
resulting equations are solved iteratively for the induced velocity distribution on the
propeller disc. In the fifth step, the interpolation of the solution gives parameters such
as chord length and blade angle at any radius of the propeller blade. Next, the lift drag
coefficients are called from the database and interpolated to solve for the lift drag coefficients
at each position of the propeller airfoil. Then, the Prandtl tip correction model is applied to
correct at the propeller blade tip, and also correct at the propeller root based on Fcl due to
separation flow at the root. The correction coefficients at different radii are multiplied by
the corresponding lift coefficients to obtain the corrected lift coefficients. In the final step,
the inflow velocity is decomposed and iteratively solved for aerodynamic performance
parameters such as propeller blade bending moment and tangential force based on the
blade element momentum theory.
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3. Validation of the CFD Calculation Method

To validate the accuracy and reliability of the proposed procedure, a CFD simulation is
also conducted for the propeller. The results of the proposed procedure are then compared
with the CFD simulation results to verify the accuracy of the developed procedure.

Based on Equation (30), the Reynolds number is in the range of 3 × 105–5 × 105 from
root to tip. This is a typical turbulent flow, and the turbulence model is introduced to
CFD calculations.

Re =
ρUL

µ
(30)

In Equation (30), U is the fluid velocity, L is the characteristic length, and µ is the
fluid viscosity.

The flow of the fluid is assumed to be governed by the Favre-averaged Navier–Stokes
(N-S) equations. In the Cartesian coordinate system, the differential forms of the continuity
equation, momentum equation, and energy equation are given by:

∂ρ

∂t
+

∂ρui
∂xi

= 0 (31)

∂ρuj

∂t
+

∂

∂xi

(
ρujui + pδij − τij

)
= 0 (32)

∂ρE
∂t

+
∂

∂xi

[
(ρE + p)ui + qi − uiτij

]
= 0 (33)

where u, p, ρ, E, τ, t, xi, and qi are velocity, pressure, density, total energy, stress, time,
spatial coordinates, and heat flux, respectively. Furthermore, δij is the Kronecker symbol
that is 1 when i = j and 0 otherwise.

The turbulence model used in this paper is the two-equation SST k-ω model. The SST
k-ω model is a combination of k-ω and k-ε models. The k-ω model is used in the near-wall
boundary layer region, which does not require the wall attenuation function and does not
produce rigidity in the numerical solution. Also, it has the Reynolds shear stress transport
property in the inner layer of the boundary layer. On the other hand, the k-ε model is used
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in the region outside the boundary layer, which is able to provide a better adaptation to the
free shear flow. The model is described by the following differential equations:

Dρk
Dt

= τij
∂ui
∂xj

− β∗ρωk +
∂

∂xj

[
(µ + σkµi)

∂k
∂xj

]
(34)

βρω2 +
∂

∂xj

[
(µ + σωµi)

∂ω

∂xj

]
+ 2ρ(1 − F1)σω2

1
ω

∂k
∂xj

∂ω

∂xj
(35)

νt =
a1k

max(a1ω; ΩF2)
(36)

where Ω is the vorticity. In addition, F1 and F2 are mixing functions, related to the distance
from the point to the wall, where the role of the mixing function F1 is to complete the
transition from the k-ω model near the wall to the k-ε model far from the wall. More details
can be found in references [25,26].

The propeller model used in this paper is shown in Figure 7. The model includes a
three-bladed propeller with a propeller radius of 0.525 m, a hub radius of 0.606 m, and a
pitch angle of 56◦ at the 70% radius position. Figure 8 shows the grid of propeller. The
geometric model of the propeller is meshed using Pointwise V18.5R1 software based on
the unstructured mesh generation method. Also, the T-Rex technique was used to generate
a high-quality boundary layer mesh with a maximum Y+ less than 1.0 near the wall. The
computational domain was divided into two parts: the inner part, which is the rotating
region with the propeller, and the outer part, which is the non-rotating constant far-field
region. CFD numerical calculations were performed using Ansys CFX software version
19.1 [27], based on the slip mesh method, with an interface between the rotating and non-
rotating regions for the interpolation and exchange of data, using the transient rotor-stator
setup method and the convective terms in high-resolution scheme. Boundary conditions
included inflow conditions, far-field conditions, and solid-wall boundary conditions. Inlet
conditions were determined based on flight altitude and velocity, considering total tem-
perature and total pressure. The inflow direction made an angle with the inlet boundary.
Far-field boundary conditions were set as open, with the turbulence intensity set to zero
gradient. The propeller blades and hub were set as no-slip adiabatic wall conditions, and
the initial field was set as a uniform inflow.
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kg/m3, and the inflow wind speed was set at 82 m/s. In addition, the diameter of the rotor 
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In order to minimize the influence of the mesh on the computational results, the mesh-
independence of the propeller was first verified. Three different sets of grids were generated
with 0.89 million, 1.36 million, and 2.71 million grids. Figure 9 shows the variation in power
coefficients with rotational speed for different grids. It can be seen from Figure 9 that the
calculation results with different grids are basically consistent at low RPM. However, as the
speed increases, some slight differences are observed between the calculated results. Also,
at a constant rotational speed, the power coefficient decreases with the increase in the grid
number. When the number of grids reaches 2.71 million, the calculation results are almost
the same as the 1.36 million grids, which indicates that the 1.36 million grids have reached
the grid-independence requirements. Thus, the grid number 1.36 million is subsequently
used for the calculation, taking into account the calculation time and calculation efficiency.
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In this paper, wind tunnel experiments were used to verify the accuracy of the CFD
method. The tests were based on a single-rotor propeller test platform in a low-speed
wind tunnel. The test equipment was placed in the air outlet of the wind tunnel. The
absolute pressure of the experimental environment was 103,474 pa, the density of air was
1.17 kg/m3, and the inflow wind speed was set at 82 m/s. In addition, the diameter of the
rotor propeller was 1.05m. The experimental data are shown in Table 1.



Aerospace 2024, 11, 332 12 of 19

Table 1. Experimental values of CT and CP.

RPM CT CP

1309.7 0.0340 0.2623
1396.9 0.0661 0.3441
1496.8 0.0995 0.4053
1602.6 0.1297 0.4443
1694.3 0.1511 0.4705
1797.3 0.1704 0.4956

Figure 10 shows the variation in thrust coefficient CT and power coefficient CP with
propeller speed for axial incoming flow, in which “Exp.” represents the experimental value
while “Cal.” represents the CFD calculated value. It can be seen that the calculated and
experimental values are relatively close to each other. The average error of CT is 5.50%,
while that of CP is 6.80%. Since the accuracy of the CFD simulation results is very good,
they can be used to validate the results of the procedure developed in this paper. Figure 11
shows the static pressure contour and the streamline distribution of the propeller under the
conditions of a rotational speed of 1396.9 min−1, and an axial inflow speed of 82 m/s. From
Figure 11, one can see the distribution characteristics of the low-pressure area of the suction
surface and the high-pressure area of the pressure surface as well as the characteristics of
the streamline distribution in the vicinity of the propeller.
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4. Analysis of Calculation Results

The propeller 1P loads were calculated at different inflow angles to verify the accuracy
of the procedure using the CFD calculation data as a reference. The thrust coefficient
(CT), power coefficient (CP), blade bending moment coefficient (CB), and tangential force
coefficient (CF) of individual propeller blades were calculated for inflow angles of 9◦, 12◦,
and 15◦ to characterize the load distribution of each blade of the propeller and the aerody-
namic performance of the whole propeller with blade azimuthal angle. The equation for
calculating the deviation between the CFD calculation results and the procedure calculation
results is as follows:

e =
WPro. − WCal.

M
(37)

where e represents the deviation between the results of the proposed procedure and the CFD
simulation results, and WPro. represents the value calculated using the proposed procedure,
including CB Pro., which represents the bending moment coefficient calculated using the
proposed procedure; CF Pro., which represents the tangential force coefficient calculated
using the proposed procedure; CT Pro., which represents the thrust coefficient calculated
using the proposed procedure; and CP Pro., which represents the power coefficient calculated
using the proposed procedure. Furthermore, WCal. represents the value calculated using
the CFD simulation, including CB Cal., which represents the bending moment coefficient
calculated using CFD simulation; CF Cal., which represents the tangential force coefficient
calculated using CFD simulation; CT Cal., which represents the thrust coefficient calculated
using CFD simulation; and CP Cal., which represents the power coefficient calculated using
CFD simulation. In addition, M represents the amount of pulsation of the CFD calculated
value, i.e., the difference between the peaks and troughs of the CFD calculated value.

Figure 12 shows a schematic diagram of the direction of propeller rotation (ω), the
relative position of the propeller blades, and the azimuth angle (ψ) in the CFD numeri-
cal calculation.
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Figure 13 shows a comparison between the results of the proposed procedure and the
values calculated using the CFD simulation for a propeller blade with an inflow angle of 9◦.
It can be seen that in the case of oblique inflow, the aerodynamic parameters of individual
blades of the propeller show regular pulsating periodic changes with blade azimuthal
angle. Also, the maximum value of the 1P load occurs near 90◦ while the minimum value
occurs near 270◦, which is in line with the actual force situation of the propeller. In addition,
the predicted values of the procedure are close to the CFD calculated values. Figure 14
shows the variation in the deviation (defined in Equation (37)) with azimuth. We found
that the maximum deviation of the CB is −2.30%, the maximum deviation of the CF is
−4.85%, the maximum deviation of the CT is 5.00%, and the maximum deviation of the CP
is −4.50% during one cycle of propeller blade rotation. This implies that the error value of
the proposed procedure is in a small range. In addition, the peak valley pattern predicted
using the proposed procedure is also very consistent with the CFD calculation results,
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indicating that the mathematical model proposed in this paper can well reflect the actual
physical flow of the propeller.
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those of CFD simulation for an inflow angle of 12◦. Figure 16 shows the variation in the
deviation with azimuth. It is found that the maximum deviation of CB during one propeller
rotation cycle is −3.89%, the maximum deviation of CF is −5.56%, the maximum deviation
of CT is 6.00%, and the maximum deviation of CP is −5.70%, all of which are relatively small
deviations. Moreover, the change rule of the 1P load here is the same as that of the inflow
angle of 9◦, but the pulsation of the aerodynamic parameters of the propeller increases.
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To compare the results of the proposed method with the results of the CFD simula-
tion, the values of CB and CF of the whole propeller were calculated for different angles of 
the inflow, and the results are shown in Figure 19. It is noted that to study the effect of 1P 
aerodynamic load on the whole propeller, we have to consider three blades together. Fig-
ure 19a–c show the results for the CB and CF of the entire propeller at different inflow 
angles of 9°, 12°, and 15°, respectively. It can be seen that the results of the proposed 
method are in good agreement with the CFD simulation results, and, as expected, the 
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Figure 17 shows a comparison of the results when the inflow angle is 15◦. Figure 18
shows the variation in the deviation with azimuth. In this case, the maximum deviation of
the CB during one circle of propeller rotation is 3.90%, the maximum deviation of the CF is
−5.40%, the maximum deviation of the CT is −5.70%, and the maximum deviation of the
CP is −6.00%. The 1P load also shows a periodic variation, which increases in magnitude
in comparison to the flow angle of 12◦ and 9◦.
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To compare the results of the proposed method with the results of the CFD simulation,
the values of CB and CF of the whole propeller were calculated for different angles of
the inflow, and the results are shown in Figure 19. It is noted that to study the effect of
1P aerodynamic load on the whole propeller, we have to consider three blades together.
Figure 19a–c show the results for the CB and CF of the entire propeller at different inflow
angles of 9◦, 12◦, and 15◦, respectively. It can be seen that the results of the proposed method
are in good agreement with the CFD simulation results, and, as expected, the results of CB
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are in better agreement. On the other hand, it is observed that the total bending moment
and the total tangential force increase with the increase in the inflow angle.
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The above results clearly show the accuracy of the proposed procedure, which was
also found to have the advantages of being fast and efficient throughout the study. Under
the condition of using the computing node configuration of Intel (R) Xeon (R) Platinum
9242 CPU @ 2.30 GHz with 90 supercomputer cores, it takes about 6h to calculate a certain
working condition of an unsteady propeller flow by means of CFD simulation. This is not
only slow, but also computationally expensive and requires a great deal of configuration of
the operating environment. But the time required to calculate the same working condition
of the propeller by means of the proposed procedure is <1 s, which has high computational
efficiency and requires less operating environment.

The calculation results in Figures 13–19 also confirm the accuracy and reliability of
the proposed method. Next, the procedure was used to calculate the variation in the CB
and CF of the whole propeller with the azimuthal angle of the blade at larger inflow angles.
In addition, the distribution of the CB and CF of the whole propeller was further studied
under different advance ratios. Figure 20 shows the variation in the CB and CF of the whole
propeller with blade azimuthal angle for large inflow angles of the propeller (20◦, 40◦, 50◦,
and 60◦). It can be seen from Figure 20 that the range of fluctuations in the CB and CF of the
propeller first increases and then decreases from the inflow angle of 20◦ to the inflow angle
of 60◦. Also, they all have clear variation patterns with different inflow angles. This is
because in the case of a small inflow angle, the fluid flows through the propeller at a lower
speed on the rotating surface of the propeller, which results in a lower bending moment
and tangential force. Also, as the inflow angle increases, more force is required to push
the fluid. But when the inflow angle is too large, it leads to severe separation and fluid
stagnation, which then reduces the overall propeller bending moment and tangential force.
On the other hand, in the case of a large inflow angle, the fluid forms non-uniform flows
near the propeller. These irregular flows then cause the propeller to be subjected to highly
unstable forces, which result in irregular fluctuations.
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advance ratios of the propeller. In the case of an inflow angle of 10°, the maximum CB 
occurs on a blade with an advance ratio of about 2.5, the CF suffered by a blade does not 
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is relatively stable. When the inflow angle is 20° or 25°, the maximum CB and the maxi-
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Figure 21a shows the variation in maximum CB and CF of an individual propeller
blade at a rotational speed of 1396.9 min−1, inflow angles of 10◦, 20◦, and 25◦, and different
advance ratios of the propeller. In the case of an inflow angle of 10◦, the maximum CB
occurs on a blade with an advance ratio of about 2.5, the CF suffered by a blade does not
greatly change with the increase in the advance ratio after it reaches 150N, and the value is
relatively stable. When the inflow angle is 20◦ or 25◦, the maximum CB and the maximum
CF of a blade increase with the increase in the propeller advance ratio. In addition, a
larger inflow angle corresponds to a larger CB and CF, which is in line with the basic
working characteristics of the propeller. The greater the angle of inflow, the greater the
1P aerodynamic load on the propeller and the more unfavorable it is for the performance
of the propeller. Figure 21b shows the variation in the maximum CB and maximum CF of
the whole propeller with advance ratio. It can be seen that in the range of advance ratios
calculated in this paper, there is an extreme value of the maximum CB and maximum CF
of the whole propeller for inflow angles of 10◦ and 20◦. This extreme value of the 1P load
is the most unfavorable factor for the propeller. When the inflow angle is 25◦, the CB will
remain basically unchanged after reaching a certain value, and the CF will slightly increase
with the increase in the advance ratio. This also indicates that a larger inflow angle will lead
to a more complicated flow and more severe propeller working conditions. Through the
analysis of 1P aerodynamic loads of a single blade and the whole propeller, it can be seen
that the procedure developed in this paper can effectively predict the maximum bending
moment and tangential force of the propeller blade. Therefore, the proposed procedure is
expected to provide some guidance for the strength design of propeller structures.
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5. Conclusions

In this paper, a mathematical model of propeller 1P aerodynamic loads was established
based on the theory of blade element momentum, and a fast calculation procedure of
propeller 1P aerodynamic loads was developed. According to the presented results, the
following conclusions can be drawn:
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(1) Under conditions of non-axial inflow, the flow field surrounding the propeller becomes
even more complex, thereby posing substantial challenges in accurately and efficiently
predicting its aerodynamic performance. The implement of the inflow model proposed
by Peters and Pitt, in conjunction with Prandtl’s blade tip correction and our novel
propeller root flow correction method, has significantly enhanced the precision of the
blade element momentum theory in predicting the aerodynamic loads of the propeller.

(2) By comparing the results of the proposed procedure with those of the CFD simulation
at different inflow angles, it was found that the deviation of the results of the pro-
posed method and CFD simulation results for the blade aerodynamic characteristic
parameters is in a small range of ±6.00%. This confirms the applicability and accuracy
of the proposed procedure for predicting the propeller 1P loads. On the other hand,
the proposed procedure has the advantage of low computational cost, and is therefore
an efficient method to calculate the propeller 1P loads.

(3) Through the calculation of the propeller 1P loads, the variation in propeller CB and
CF with the blade azimuth angle was studied. It was found that the values of the
aerodynamic characteristic parameters of the individual propeller blade show obvious
periodic changes with azimuth angle. Also, the maximum value of the individual
propeller blade 1P load occurs near 90◦ while the minimum value occurs near 270◦. In
addition, the overall aerodynamic characteristic parameter of the propeller fluctuates
with the inflow angle in a certain range, the fluctuation is also smaller, and as the
angle of inflow increases, the fluctuation is more complex.

(4) Through the analysis of the calculation results of the maximum CB and CF of the
propeller blade with the variation in advance ratio, it was found that the calculation
procedure developed herein can effectively predict the maximum bending moment
and tangential force of the propeller blade. It is expected that this method can provide
a certain guidance for the successful design and reliable operation of propellers.
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