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Abstract: Flight simulation training is one of the most important methods in early-stage civil aviation
flight training. In this regard, flight simulation competitions are effective tools for evaluating the
flight skills of trainees. In this study, a model is developed for evaluating the flight skills of trainees by
integrating GBDT (Gradient Boosting Decision Tree), PSO (Particle Swarm Optimization), and CNNs
(Convolutional Neural Networks). Flight data from simulations is employed for model training.
Initially, performance data and scores are gathered from a simulated flight competition platform. The
GBDT algorithm is then applied to filter and identify essential flight parameters from the collected
data. Subsequently, the PSO-CNN model is utilized to train on the extracted flight parameters. The
proposed GBDT-PSO-CNN model achieves a recognition rate of 93.8% on the test dataset. This
assessment system is of significant importance for improving the specific maneuvering skill level of
flight trainees.

Keywords: flight simulation; flight skills; GBDT; PSO-CNN

1. Introduction

With the rapid advancement of the civil aviation industry, there is a growing demand
for expert pilots who bear significant responsibility for ensuring safety [1,2]. Flight trainees,
in their early stage of learning to fly, require training to develop their flying skills. The
conventional approach to flight training involves utilizing flight simulators for simula-
tion training. Therefore, accurate and efficient evaluation of flight trainees during flight
simulation is of significant importance.

Reviewing the literature indicates that numerous investigations have been conducted
in the field of flight training using flight data [3,4]. For instance, Kim et al. [5] proposed
an improved algorithm for quick access recorder (QAR) data recording and decoding,
covering the entire process of conversion, design, development, and validation of data.
Cohen et al. [6] proposed a risk evaluation model for aircraft performance that integrates
exceedance information, environmental information, and expert experience to assess daily
flight performance. Moreover, Wang et al. [7] utilized QAR data and the Analytic Hierarchy
Process TOPSIS (AHP-TOPSIS) method to calculate subjective and objective weights to
effectively overcome the challenges of incorporating expert knowledge and experience in
flight quality evaluation. Gorinevsky et al. [8] applied data mining techniques to distributed
fleet monitoring (DFM) and Flight Operations Quality Assurance (FOQA) data collected
from a commercial fleet to detect anomalies in aircraft data such as weight and angle of
attack, as well as faults and deviations. Gómez et al. [9] introduced an integrated flight
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data recorder analysis tool, FRiiDA, for military transport aircraft. This tool provides an
integrated flight data recorder enabling preventive measures to ensure the quality and
safety of aircraft. Yao [10] designed an assessment index system using pilot physiological
signals and flight operation parameters. In this regard, a pilot flight training quality
assessment model was developed based on the backpropagation (BP) neural network, and
the influence of each index on the assessment score was analyzed through the weight
distribution of the trained network. The reliability of the model was verified through
mathematical analysis. Zhang [11] proposed a BP neural network assessment method for
objectively evaluating test pilot piloting skills. The results demonstrated that the BP neural
network method improves assessment accuracy and resolves the subjectivity issues of
conventional assessment models. Yang [12] established a pilot safety performance indicator
preference model for flight school pilots based on grey entropy correlation analysis. The
model was applied to analyze the impact of overrun events on safety performance and
identify the main factors affecting pilot safety performance indicators.

In terms of flight safety evaluation based on data, numerous studies have been con-
ducted worldwide. For instance, the U.S. Department of Defense [13] established a system
for assessing the operational quality of military pilots, based on established rules and
standards. Furthermore, Malhotra [14] presented the concept of clearing the Control Laws
(CLAW) by Handling Qualities (HQ) assessment using a simulator, discussing challenges
and the outcome based on flight test results of the actual air-to-air refueling (AAR) task.
Sun [15] demonstrated that the evaluation of flight maneuvering quality level is a crucial
metric for the development of civil aircraft flight control systems. Cooper and Harper [16]
introduced the Cooper–Harper aircraft handling qualities scale, which rates the operational
skills of pilots based on the mastery of operational control and stability. Among various
indicators for assessing the handling skills of pilots, this scale focuses on the optimal choices
chosen by pilots. Payne and Harris [17] selected 12 key technical indicators and developed
a pilot operational skill evaluation system to evaluate pilot operational skills in five aspects,
including lift control, tilt control, balance ability, yaw control, and speed control. Finally,
the system generates a 10-level skill rating for evaluating behavioral parameters at the
operational level. You Xuqun et al. [18] analyzed the requirements for pilot work, proposed
a hypothetical model for evaluating the technical skills of pilots, validated the proposed
model, and finally derived a four-dimensional evaluation model for airline flight skills to
comprehensively evaluate the operational skills of pilots. Liu Zhongqi [19] utilized pilot
eye movement data to develop a BP neural network model for predicting and evaluating
the flight performance of pilots with different skill levels during training and simulation.
Mickael Rey et al. [20] proposed a data-driven approach for classifying the safety or risk of
civil aviation flights using data analysis methods and machine learning tools.

The performed literature survey indicates that most investigations in this field have
focused on flight data, pilot physiological [21,22] and subjective data, and objective scales
to assess the flight quality of civil aviation pilots. However, there is no comprehensive
understanding of the flight quality of civil aviation pilots during the initial stages of
flight training. This issue is particularly more pronounced during flight simulation. The
present study introduces a novel approach to evaluating flight performance utilizing GBDT-
PSO-CNN. The assessment is based on scoring data from simulated flights, integrated
with real-time flight data. This combined approach ensures a precise evaluation of the
pilot’s maneuvering performance, contributing to the enhancement of flight skill levels
among trainees.

The terminology used in the literature in the introduction section is shown in the
Table 1 below:
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Table 1. Nomenclature of introductory terms.

Nomenclature

QAR Quick access recorder, used to record various parameters during
aircraft flight.

AHP-TOPSIS An AHP-TOPSIS integrated evaluation method
DFM Distributed fleet monitoring

FOQA Flight Operations Quality Assurance

BP Backpropagation, this is a feedforward neural network based on
the error backpropagation algorithm.

CLAW Control Laws
HQ Handling Qualities

AAR Air-to-Air Refueling

2. Methods and Materials

The experimental process involves the utilization of a flight simulation trainer to
provide a training experience for flight trainees. Data collected from the flight simulation
trainer was utilized to organize the National Collegiate Flight Simulation Championship,
encompassing a wide range of challenging scenarios. This championship provides a
platform for students specializing in flight techniques to enhance their technical proficiency
and gain practical experience in performing complex flight operations. Moreover, it offers
participants a valuable opportunity to develop essential practical skills that are crucial to
their future careers in aviation.

2.1. Participants

In this research, a total of forty male students who are pursuing a degree in flight
technology from the College of General Aviation and Flight at Nanjing University of
Aeronautics and Astronautics (NUAA) participated in the tests. Participants were aged
from 20 to 22 years, with a mean of 21.2 years (SD = 0.68). The flight trainees participating
in the experiment were members of the school’s flight simulation team, each with prior
experience of over 40 h in flight simulation training. Additionally, these trainees were
familiar with simulation software such as P3D and Xplane. All participants received
training before the flight simulation.

The flight trainees admitted to the Flight Technology Program at NUAA undergo a
rigorous selection process. They are admitted based on a physical examination conducted
by the Civil Aviation Administration of China (CAAC) and the examination of higher
education institutions. Upon admission, a flight trainee must progress through three key
stages to become a civilian pilot as follows:

(1) Theoretical study phase at Nanjing University of Aeronautics and Astronautics;
(2) Sending pilot trainees to CCAR-141 flight schools approved or recognized by the

Civil Aviation Administration of China for flight license training;
(3) After completing their flight license training, flight trainees return to the university

to continue their relevant course work, theoretical training, and examination for the Airline
Transport Pilot License, and defend their undergraduate graduation design (thesis).

After completing the aforementioned stages, the flight trainees are eligible to join
corresponding airlines as official civil aviation pilots. Those who fulfill the graduation
requirements receive an undergraduate diploma and bachelor’s degree certificate in flight
technology from NUAA.

2.2. Simulator and Scenarios
2.2.1. Experimental Equipment

The flight trainer is equipped with several advanced features, including a mechanical
joystick and foot rudder, providing a realistic and tactile flight control experience. Moreover,
it consists of a flight operation panel that integrates various components such as the ignition
key, light switch panel, throttle lever, fuel–air mixing lever, leveling wheels, flaps, and fuel
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tank selector switch. These components control the simulated flight operations, ensuring
a comprehensive and immersive training experience for trainees. The flight simulation
equipment is depicted in Figure 1.
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Figure 1. Flight simulation equipment.

Additionally, the simulation flight trainer is equipped with an integrated avionics
system (GARMIN 1000, Kansas City, MO, USA) and a primary flight display (PFD) panel.
This avionics system can accurately monitor instruments and navigation data during the
flight simulation. The designed avionics system helps flight trainees in developing their
skills during simulated flight scenarios. Overall, the incorporation of these advanced
features within the flight trainer enables trainees to acquire hands-on experience with the
operational aspects of flight controls and avionics systems typically used in aircraft.

2.2.2. Experimental Flight Subject

Based on the comprehensive literature survey and consultation with senior flight
instructors, this project selected airfield traffic patterns for flight simulation. It is worth
noting that the airfield traffic pattern is a vital component of pilot training, as it involves
flying maneuvers around airports. In this training scenario, pilots acquire skills such as
takeoff, climb, turning, leveling off, descent, and landing. Figure 2 illustrates the schematic
of an airfield traffic pattern.
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In order to evaluate the operational accuracy of the flight simulation, the operational
accuracy score of each pilot throughout the flight was obtained based on the simulated
airfield traffic pattern rating scale, with a full item score of 98. This score not only reflects
the pilot’s operational level for given scenarios of a flight but also enables training focusing
on the weak points.
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2.3. Procedure

The experiment was conducted using a Cessna C172SP Skyhawk airplane. The tests
were carried out on runway 19 at Beijing Capital International Airport. During the tests,
the sky was clear with increasing side winds between the ground and 3000 feet, ranging
from 5 to 15 knots. To prevent competitors from using abnormal operational methods, the
following actions should be implemented: disabling the auto rudder in hard mode (which
controls the course), enabling the display flight tips, activating the auto mixer (to adjust
the mixture ratio of oil and gas), and enabling the spiral effect (which is a side effect of the
propeller, causing left yaw moment due to the propeller turning to the right, particularly
noticeable at low speed). Other options and functions were disabled during the test. With
the evaluation software turned on, the pilot flew the airplane through an airfield traffic
pattern to the left before landing and stopping on the runway. The maximum flight time
was 12 min, and the scoring software discarded the results if the flight time was exceeded
or if pilots slipped off the runway. If the system determined that the aircraft was damaged,
or it could not operate normally due to structural damage, the competition result was
discarded and a score of 0 points was recorded. The scoring items and codes are presented
in Table 2.

Table 2. Airfield traffic pattern scoring items.

Project Code Project Name Standard
Values Unit Score

A Track deviation on upwind ≤1 ◦ 5
B Lift wheel gauge speed 55 knots 5
C Maximum climbing rate on upwind ≤500 ft 5
D First turn height ≥800 ft 5
E First turn gradient ≤30 ◦ 5
F Track deviation on crosswind 0 ◦ 5
G Second turn slope ≤30 ◦ 5
H Track deviation on downwind 0 ◦ 5
I Height deviation on downwind 0 ft 5
J Third turn gradient ≤30 ◦ 5
K Fourth turn gradient ≤30 ◦ 5

L Approach to the maximum rate
of decline ≥−500 ft 5

M Approach track deviation ≤50 m 6
N Runway entrance height (radio height) ≤50 ft 6
O Ground position deviation 0 m −10
P Grounding rate ≥−40 ft 8
Q Grounding overload ≤1.2 G 6

R Distance between landing glide
and centerline ≤0.2 m 6

S Maximum flight overload ≤1.5 G 6

3. Methodology

The present study proposes a new hybrid algorithm for the feature selection of civil
aviation flight training, which incorporates the gradient boosting decision tree and multi-
layer perceptron. First, the training data are screened to select feature importance using the
gradient boosting decision tree (GBDT) model. Then, the screened features are introduced
to the multilayer perceptron model for training. Finally, flight training data are classified
for each trainee.

3.1. Gradient Boosting Decision Tree Algorithm

GBDT is an integrated learning model, which is classified as a decision tree algorithm
based on iterative accumulation. This model constructs a set of weak learning trees and
accumulates the results of multiple decision trees as the final prediction result. The role
of integrated learning is to enhance these multiple weak learners into one strong learner
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to minimize error rates. A weak learner typically refers to a single decision tree model
constructed in each iteration, while a strong learner refers to the decision tree model
constructed at each stage. The model structure of integrated learning is shown in Figure 3:
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When establishing a GBDT model, an initialized regression tree is initially trained
on the training dataset, and more regression trees are generated by iterating on this base.
Finally, all data are combined into a strong learner.

The main steps of the GBDT model construction are as follows:

(1) Weak learner initialization

f0(x) = argminc

N

∑
i=1

L(yi, c) (1)

(2) Calculate the negative gradient for each sample

rim = −∂L(yi, f (xi))

∂ f (xi)
, i = 1, 2, 3, . . . , N (2)

(3) The negative gradient obtained in step (2) is used as the new true value of the sample,
and (xi, rim), i = 1, 2, 3, . . . , N is used as the training data for the next tree. Then,
a new regression tree fm(x) is obtained and its corresponding leaf node region is
Rjm, j = 1, 2, 3, . . . , J, where J is the number of leaf nodes of regression tree t.

(4) Calculate the best-fit value for the leaf region

gjm = argming ∑
xi∈Rjm

L(yi, fm−1(xi) + g) (3)

(5) Update to the strong learner

fm(x) = fm−1(x) +
J

∑
j=1

gjm I(x ∈ Rjm) (4)

(6) Finally, obtain a strong learner

f (x) = fM(x) = f0(x) +
M

∑
m=1

J

∑
j=1

gjm I(x ∈ Rjm) (5)

3.2. PSO-CNN Model
3.2.1. Particle Swarm Optimization

Particle swarm optimization (PSO) originates from the observation of bird flock feed-
ing behavior, and its main idea involves seeking the optimal solution through collaboration
and information sharing among individuals within a group. The initial state of PSO is a
group of random particles. Through iterative processes, the algorithm refines and converges
towards the optimal solution. PSO can be mathematically expressed in the form below:
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vi = vi + c1 × rand( )× (pbesti − xi)
+c2 × rand( )× (gbesti − xi)

(6)

xi = xi + vi (7)

where i = 1,2,3. . .N, N is the total number of particles; vi is the velocity of the particle; rand()
is a random number between (0,1); xi is the current position of the particle; c1 and c2 are the
learning factors, which are usually set to 2 [21]; and pbest and gbest are the two extremes
that the particle needs to track.

The particle determines its next movement based on its individual experience and
insights gained from the best-performing peers. The combination of these principles
constitutes the standard form of PSO.

3.2.2. Convolutional Neural Network

A convolutional neural network is a type of feedforward neural network with a
network computing function, which mainly comprises the convolutional layer, pooling
layer, and fully connected layer.

3.3. GBDT-PSO-CNN Model

The present study performs feature selection on flight training data using the GBDT-
PSO-CNN hybrid model. In the model, the important features in flight training data by
GBDT are trained and predicted by PSO-CNN. The structure of the model is presented in
Figure 4.
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In the GBDT-PSO-CNN model, feature importance selection is initially performed
using the GBDT model through the following steps:

(1) Calculate the reduction in weighted impurity of all non-leaf nodes at splitting. The
higher the reduction degree, the higher the importance of the feature.

(2) The reduction in weighted impurity is the gain of that node for this split. Therefore,
the greater the benefit of node splitting, the higher the importance of the corresponding
characteristics of the node.

After selecting the important features, they are trained using a PSO-CNN model. The
convolutional layer contains multiple convolutional kernels, which cover an area called
the “sensory field”; the pooling layer is used for feature selection to reduce the number
of features in the input data; and the fully connected layer is used to nonlinearly fit the
extracted features to the output.

In summary, the model introduced in this study initially filters out the important
features of the data using the GBDT algorithm and subsequently employs a convolutional
neural network optimized by the PSO algorithm to classify the target values. Applying
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the GBDT-PSO-CNN hybrid model effectively reduces the number of features of the data,
thereby improving faster training and more accurate predictions.

4. Analysis
4.1. Raw Data

During the tests, each participant undertook three airfield traffic pattern experiments.
Prior to the experiments, participants received a verbal explanation regarding the study’s
purpose, as well as an introduction to the nature, objectives, and relevant flight rules of the
experiment.

Forty trainees participated in the experiments and a total of 114 pieces of appropriate
data was gathered. It should be indicated that inappropriate data were mainly generated
in experiments, in which the aircraft crashed, ran off the runway, and timeouts occurred.
Among the recorded data, the highest and lowest total scores, and standard deviation were
89.1, 42.2, and 11.15, respectively. A portion of the collected data is presented in Table 3.

Table 3. A portion of raw data.

No. A B C D E F G H I J

1 4.64 55.15 496.97 794.39 26.89 7.45 18.43 9.11 63.32 13.09
2 5.09 55.93 623.55 797.55 16.36 7.11 22.44 5.84 48.23 21.58
3 18.15 54.09 343.57 819.12 36.71 19.67 27.99 10.64 53.14 13.97
4 3.09 56.22 394.92 804.03 34.54 24.33 13.89 6.43 62.12 20.98
5 6.07 57.79 379.96 791.29 25.12 5.87 17.40 7.06 63.97 17.75

No. K L M N O P Q R S total
points

1 10.96 −622.61 44.62 28.64 218.20 −245.06 1.07 5.29 1.40 77.4
2 32.76 −403.50 15.14 33.38 18.12 −124.04 1.25 8.56 1.88 78
3 16.64 −742.02 162.90 68.45 32.71 −403.13 2.72 2.78 1.59 86.9
4 19.85 −1028.97132.73 37.67 13.27 −403.41 1.15 5.81 1.48 76
5 14.68 −571.95 94.66 64.91 12.06 −111.29 1.34 2.72 1.78 72.8

The units for the various data categories in Table 3 are listed in Table 2.

4.2. Data Pre-Processing
Data Analysis

The initial analysis of the collected raw flight data and scores is essential to examine
the correlation between various types of flight data and the overall scores.

In order to better analyze the correlation between the data, a correlation analysis was
performed on airfield traffic pattern data. Figure 5 shows a correlation coefficient, which is
a measure that falls within the range of (−1, 1).

In the correlation graph, the lighter the color, the stronger the positive correlation
between the two pieces of data, while a darker color reflects a stronger negative correlation.
The last row shows the correlation between each score and the total score. It is observed
that the total score has the strongest positive correlation with I, L, M, N, and O.

The 114 pieces of raw data had a wide range of total scores. In order to better use the
hybrid model for processing and prediction, it is necessary to classify the data according
to the total score. Experiments reveal that in the simulated airfield traffic pattern test, a
total score of 65 points is an important threshold for distinguishing between acceptable and
non-acceptable levels of skills. The conclusions are derived from simulating the training
process of the flying team and the selection of new members. Additionally, this scoring
system helps to distribute the data evenly. It is worth noting that the higher the overall
score, the more skillful the flight student. Meanwhile, a score of 75 points is the median
value of the collected data, which is a crucial index in training and prediction.
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4.3. Data Analysis Using the GBDT-PSO-CNN Hybrid Model
4.3.1. Software Environment

The training process of the network model utilizes the Keras architecture based on the
TensorFlow deep learning framework to establish a runtime environment. The parameters
for the experimental setup are specified as follows: CPU, Intel i5-10400f 3.2 GHz; operating
system, Win10 64-bit; programming language, Python 3.7.7; deep learning architecture,
TensorFlow 2.3.0 and Keras 2.4.3.

4.3.2. Data Training and Prediction

The hybrid model initially derives feature importance indicators through a GBDT, and
indicators are ranked according to importance in Table 4:

Table 4. Importance ranking of scoring indicators.

Order of Importance Project Code Project Name

1 M Approach track deviation
2 O Ground position deviation
3 L Approach to the maximum rate of decline
4 C Maximum climbing rate on upwind
5 A Track deviation on upwind

The top three rows are indicators with feature importance values higher than 0.1.
Accordingly, M, O, and L are selected as the feature indicators for the next input in the
hybrid model.

In this article, the PSO-CNN network undergoes a sequence of four convolutional
and pooling operations. To prevent overfitting, a Dropout layer is incorporated. The final
architecture includes three fully connected layers (Dense) to produce the model output. The
activation function for each convolutional layer and the first two fully connected layers is
ReLU, while the activation function of the last fully connected layer is Softmax. Meanwhile,
the number of neurons in the second fully connected layer is optimized using PSO to obtain
the optimal model parameters.

In the PSO optimization process, the optimal neuron interval is set to [32, 64], with
a maximum of 1 iteration, 2 particles, and 300 training cycles during the optimization.
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Following 4 optimization cycles, the optimal number of neurons in the second fully con-
nected layer is determined to be 38. The structure and parameters of the whole network
are detailed in Table 5.

Table 5. PSO-CNN model parameters.

Layers Output Size Parameters

Conv1D (None, 3, 64) 768
Conv1D (None, 3, 64) 45,120

MaxPooling (None, 1, 64) 0
Dropout (None, 1, 64) 0
Conv1D (None, 1, 128) 90,240
Conv1D (None, 1, 128) 180,352

MaxPooling (None, 1, 128) 0
Dropout (None, 1, 128) 0
Conv1D (None, 1, 256) 360,704
Conv1D (None, 1, 256) 721,152

MaxPooling (None, 1, 256) 0
Dropout (None, 1, 256) 0
Conv1D (None, 1, 512) 1,442,304
Conv1D (None, 1, 512) 2,884,096
Dropout (None, 1, 512) 0

Global average pooling (None, 512) 0
Dropout (None, 512) 0

Dense (None, 256) 131,328
Dropout (None, 256) 0

Dense (None, 38) 9766
Dense (None, 3) 117
Total / 5,865,947

Figure 6 illustrates the model structure.
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Figure 6. Definition of the hybrid model.

The model utilizes the RMSprop optimized function and the hyperparameters are
set as follows: learning rate = 0.001, batch = 16, and epochs = 300. Meanwhile, the model
divides the dataset into training and test datasets with a ratio of 4:1. Figure 7 shows
the accuracy of the GBDT-PSO-CNN model and the GBDT-CNN model on the train and
test datasets.
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Figure 8 reveals that the GBDT-PSO-CNN model has a higher recognition rate on the
test set compared with the GBTD-CNN algorithm; the highest recognition rates of the two
models are 93.8% and 88.5%, respectively. It is observed that the GBDT-PSO-CNN model
has higher recognition accuracy.
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4.3.3. Analysis of Other Algorithms

To verify the reliability of the hybrid model, the random forest algorithm and the
support vector machine (SVM) algorithm, which are two widely used machine learning
algorithms, were selected for comparative validation. These algorithms were used to train
and predict data after a 10-time binary classification process. Figure 9 shows the prediction
accuracy of these models.

The comparison results of each algorithm are presented in the following Table 6.
It is observed that the prediction accuracy of the random forest algorithm ranges

from 72.9% to 86.7% with an average accuracy of 82%. On the other hand, the prediction
accuracy of the support vector machine algorithm is maintained at 84.7%. The results
demonstrate that both algorithms exhibit high prediction accuracy on the prepared dataset.
In comparison, the hybrid model proposed in this paper has higher recognition accuracy.
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Table 6. Comparison of algorithms.

Algorithms Maximum Accuracy

GBDT-PSO-CNN 93.8%
GBDT-CNN 88.5%

Random Forest 86.7%
SVM 84.7%

4.3.4. Verification and Validation of Hybrid Model

In order to deeply verify the accuracy of the model, we collected some additional data
to verify and validate the model. We searched for five flight trainees majoring in flight
technology according to the same criteria, and also recruited five graduate students in
transportation engineering from the College of General Aviation and Flight. Participants
were aged from 20 to 26 years, with a mean of 22.6 years (SD = 1.86). Following five hours
of flight simulation training, all of the graduate students included in the experiment were
able to successfully complete the simulated flights in accordance with the requirements.
Each of the 10 subjects performed two complete simulated flights and collected flight data
and scoring data. After the extraction of the key indicators from the 20 flight datasets, the
flight scoring data were processed accordingly, and some flight characteristics data are
shown in Table 7:

Table 7. Partial flight characterization data.

No. A C L M O Total

1 5.575437 439.1993 −1565.07 56.84234 389.4412 53.5
2 2.635527 518.8191 −849.453 45.70391 696.9078 50.7
3 5.990701 492.3047 −657.651 38.27551 689.6252 66.2
4 6.137057 450.0083 −1097.32 156.3077 320.2329 68.4
5 2.929803 512.7805 −530.846 35.36362 398.5504 73.1

The flight data that were processed were inputted into the hybrid model proposed in
this study for prediction, resulting in the acquisition of the confusion matrix depicted in
Figure 9.

The results of the confusion matrix show that the recognition accuracy of the hybrid
model on the new data reaches 90%, which can effectively screen out the flight trainees
who meet the requirements, and verifies the reliability and accuracy of the proposed model.

Meanwhile, statistical analysis was performed on the significant indicators found in
the individuals’ flight data, and the statistical results shown in Table 8 were obtained:
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Table 8. Statistics on key flight indicators.

Category Statistical
Term A C L M O

Qualified
subjects

Mean 4.017794 492.3807 −623.144 122.6385 379.2011
Max 6.137057 609.8047 −459.882 228.3594 689.6252
Min 1.877831 424.8352 −1097.32 16.09314 304.8896

Unqualified
subjects

Mean 7.037137 521.1375 −997.435 591.6879 689.0239
Max 24.14047 760.1803 −545.219 5001.496 2526.933
Min 2.458178 410.5572 −2255.74 16.37023 293.9267

Through statistical analysis, it can be found that qualified and unqualified subjects
have significant differences in the flight data of important features, thus verifying the
accuracy of this paper for flight data feature extraction. Additionally, the deficiencies of
the subjects may be more precisely ascertained by identifying subpar individuals and
integrating this with the flight data.

Overall, for flight trainees participating in flight simulation competitions, they can be
evaluated faster through important flight characteristics by using the hybrid model pro-
posed in this paper. At the same time, when the result of a particular flight simulation is not
satisfactory, the weak flight link can be found and targeted for training and development.

5. Conclusions

In this research, a hybrid GBDT-PSO-CNN model is proposed. Initially, the GBDT
algorithm was employed to extract features from the flight data related to the airport traffic
patterns in simulated flights. By analyzing 114 simulated flight data points, crucial features
of the airport traffic patterns were identified. Subsequently, a convolutional neural network
optimized by the PSO algorithm was used to train the processed data. The recognition
accuracy on the test dataset was 93.9% after 300 training cycles on the training set. This
performance outperforms similar algorithms in terms of recognition accuracy and resilience,
effectively assessing the trainees’ flight simulation competency. The model proposed in
this paper mainly implements the following features:

(1) The model has the ability to evaluate the flying performance of flight trainees
using flight data with significant features, allowing for the rapid and accurate selection of
appropriate flight trainees.

(2) The study’s findings offer empirical evidence to improve trainees’ simulated flight
training, and by using the methodology proposed in this study, weaknesses in flight can be
quickly and effectively identified for targeted training.

The hybrid model proposed in this study exhibits promising performance for ef-
fectively screening suitable flight trainees such as recruiting new members for a flight
simulation team or selecting participants for flight simulation competitions. Through
the proposed method, flight trainees’ simulation performance weaknesses may be found,
enabling more focused instruction. This identification approach effectively evaluates the
flight skills of trainees, which in turn guarantees the security and dependability of their
subsequent flights.
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