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Abstract: This study addresses the flight-path planning problem for multirotor aerial 

vehicles (AVs). We consider the specific features and requirements of real-time flight-path 

planning and develop a rapidly-exploring random tree (RRT) algorithm to determine a 

preliminary flight path in three-dimensional space. Since the path obtained by the RRT may 

not be optimal due to the existence of redundant waypoints. To reduce the cost of energy 

during AV’s flight, the excessive waypoints need to be refined. We revise the A-star 

algorithm by adopting the heading of the AV as the key indices while calculating the cost. 

Bezier curves are finally proposed to smooth the flight path, making it applicable for  

real-world flight. 

Keywords: flight path planning; rapidly-exploring random tree algorithm; A-star algorithm; 

three-dimensional space 

 

1. Introduction 

A multirotor unmanned aerial vehicle (UAV) is a rotorcraft with more than two rotors to enhance 

payload capability and endurance. UAVs are widely used in military strategy, disaster relief, exploration, 
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and topographic reconnaissance. The advantages of UAVs are their higher mobility and lower 

manufacturing costs compared with conventional aircraft. 

There are many methods published in the literature for path planning, such as artificial potential  

field [1,2], A-star algorithm [3,4], fuzzy logic [5,6], genetic algorithm [7,8] and free floating [9].  

Sampling-based algorithms have been developed for solving the path-planning problem in  

high-dimensional environments [10,11] or complex environments [12,13]. Path planning for UAVs in a 

three-dimensional (3D) environment, divided into several grids, is presented in [14–16]. The asymptotic 

optimality properties of the standard rapidly-exploring random tree* (RRT*) algorithm is given in [17]. 

Numerical optimization techniques can be applied to refine the output of RRT* until a locally optimal 

solution is found [18]. 

Sampling-based algorithms for path planning, such as the standard RRT [19,20] and probabilistic 

roadmaps (PRM) [11], can resolve the difficulty of computational complexity in real-time settings. 

Obstacle detection and avoidance for UAVs has been widely studied with a number of techniques 

presented [21–23]. However, there is still a lack of path planners, especially those tailored to 

multirotor UAVs in 3D environment. 

While RRT algorithms can quickly and efficiently find available flight path candidates and avoid 

collisions, the outcomes may not be optimal, which might lead to a costly flight path. To address this 

issue, an A-star algorithm for path refinement is used to improve the preliminary solution of path 

planning generated by a RRT algorithm. Cost-based motion planners are usually limited to  

low-dimensional problems in relatively small-sized workspaces. To overcome these limitations, variants 

and extensions of RRT have been developed, and comparisons with similar algorithms have been 

conducted previously [24]. 

The A-star algorithm, a heuristic algorithm is based on the Dijkstra algorithm [25,26] and Best-First 

Search (BFS) [27]. The Dijkstra algorithm, a graph search algorithm, is used to find the shortest path 

between the starting and goal nodes. The two algorithms differ in the specifications of their cost indices. 

The A-star algorithm finds the minimum cost path via the BFS, whereas the Dijkstra algorithm finds the 

minimum cost path from the starting node to all intermediate nodes. 

Bezier curves [28,29] are commonly used in computer graphics and related fields. We extend the 

concept to the 3D environment suitable for our multirotor UAV flight planning. RRT* is an optimal 

extension to the standard RRT algorithm [17]. Path planning of UAVs in a 3D environment with the 

evolutionary algorithm (EA)-based controllers is presented in [30–32] using the B-spline curve-based 

path representation. However, the results ignored obstacle avoidance. To combine the advantages of 

both approaches, we introduce Bezier curves to reshape the flight path developed in the preliminary 

design phase by adopting a set of straight-line segments from the A-star algorithm. We define the control 

nodes of the Bezier curve so that the curve is able to avoid collision with obstacles. We verify the 

proposed path planning method has been verified via a variety of scenarios. We demonstrate 

computational efficiency of the proposed approach, which overtakes the integrated RRT and Dijkstra 

algorithms [28]. Our simulation results validate the proposed method. 
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2. Descriptions of Multirotor 

Unlike traditional UAVs, a multirotor is a rotorcraft possessing more than two rotors, which can 

access hard to reach places and, in addition, fly both outdoors and indoors. A helicopter is controlled 

by changing the angle-of-attack of the propeller, whereas a multirotor is controlled by tuning the speed 

of different propellers. Multirotors use fixed-pitch blades that means its rotor pitch does not vary as the 

blades rotate, and control of the vehicle motion is achieved by changing relative speed of each rotor to 

adjust the thrust and torque produced by each rotor. 

Multirotor, usually referred to quadrotor, hexarotor and octorotor, is 4-, 6- and 8-propeller 

helicopter, respectively. The quadrotor, for instance, has four propellers with hovering capabilities, 

two pairs of counter-rotating, and fixed-pitch blades located at four corners. Multirotors are capable of 

generating greater thrust than conventional helicopters and possess better stability during flight. Each 

propeller produces both thrust and torque about its center of rotation, in the direction opposite to drag. 

The four propellers are cross-allocated (see Figure 1a); propeller_1 and propeller_3 share the same 

rotational direction and propeller_2 and propeller_4 share the same rotational direction. The arrow sign 

in indicates the directional movements of common multirotor UAVs. 

(a) (b) 

(c) (d) 

Figure 1. Schematic of movement for typical multirotor: (a) quadrotor; (b) hexarotor;  

(c) octorotor_type1; and (d) octorotor_type2. 

3. Overview of the Proposed Flight Path Planner 

In the proposed flight path planner, we first adopt multi-RRT algorithm to randomly generate 

potential flight path candidates by generating collision-free waypoints. However, the paths generated 

are, in general, not optimal due to existence of redundant waypoints; we next propose an improved  

A-star algorithm to refine the path from the starting node to the goal node. Finally, Bezier curves are 

incorporated to reshape the flight path for a smoothed flight and to further reduce the flight cost by 

removing unnecessary waypoints. 
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A flow chart of the path planning for multirotor UAVs is illustrated in Figure 2. We first specify the 

start and goal headings of the UAV. Next, the multi-RRT algorithm is applied to construct the 

available paths. If there is no available candidate, the algorithm reports an error. If at least one 

qualified path is found, we continue to apply the improved A-star algorithm and Bezier curves to 

complete simplification and smoothed path. 

 

Figure 2. Flow chart of the proposed path planner. 

3.1. Rapidly-Exploring Random Tree (RRT) 

The basic-RRT algorithm for path planning has been shown to be efficient in high-dimensional 

environments [11]. However, the paths found are not necessarily optimal. The basic-RRT searches for 

 

1
lc
iϕ −

1
lc
iσ −

i i iF G H= +

1iF +

cgF



Aerospace 2015, 2 175 
 

 

the path from the starting node to the goal nodes by growing a bunch of random trees in a  

high-dimensional environment until the goal node becomes a node of the random tree. A tree is grown 

from the starting node to the goal node by adding a new edge and a new node at each iteration.  

The basic-RRT algorithm works with three steps: 

(1) Generation of random nodes: pick the random nodes in 3D environment. 

(2) Expansion: pick a random node and then build connection between this node and the nearest 

node in the random tree. 

(3) Termination condition: join the goal node to the random tree. 

The multi-RRT uses two random trees to generate a possible path. The random trees are generated 

bi-directionally: one is built from xstart and the other is expanded from xgoal. When a linkage connects 

xnearest and xnew with some obstacles interfered, the multi-RRT algorithm regenerates a new random tree 

in terms of xrand. When the environment of the path planning is relatively complicated, i.e.,  

the chance of collision between obstacles is relatively high, the convergence rate of the multi-RRT is 

better than that of the basic-RRT. When a random node connects two random trees, the node yields a 

feasible path, as shown in Figure 3. 

 

Figure 3. Random node connecting two random trees. 

3.2. A-Star Algorithm 

The path planning described above ensures efficient and collision-free motion of a multirotor in a 3D 

environment with unknown static obstacles. This section describes the basic A-star algorithm and how 

we use it to smooth a path for multirotors. 

In general, there will be bifurcations of the flight path when there are obstacles around. Collision 

free waypoints are generated for an appropriate potential flight path, which is constituted by several line 

segments. The potential flight paths are next smoothed to avoid sharp flight paths. 

The basic A-star algorithm possesses three parts: 

(1) An open list: save all next reachable nodes from the current node. 

(2) A closed list: save already through nodes from the starting node to the current node. 

(3) An evaluation function: determine the order of the expanded nodes; the cost equation at each 

node of A-star is set as 



Aerospace 2015, 2 176 
 

 

௜ܨ = ௜ܩ + ௜ (1)ܪ

where the subscript i denotes the ith node in the multi-RRT, Gi is the ith moving cost from the starting 

node to the current node, Hi is the estimated cost of the ith node from the current node to the goal 

node, and Fi is the total moving cost from the starting node to the goal node. There are three 

operational steps: 

Step 1 Add the starting node to the open list. 

Step 2 Find the lowest Fi on the open list referring to the current node and add the ith to the closed 

list with the ith node canceled from the open list. 

Step 3 Check whether the ith node can reach the adjacent nodes. If the ith node is not on both 

lists, add it to the open list. If the ith node is on the open list, and the new F is lower than 
the original F, then the new F refers to the original F; update the last index of the adjacent 

node as the current node. 

Step 4 If the goal node is on the closed list, the path is found. If the goal node is not on the closed 

list, repeat Step 2. If the open list is empty, there is no available path. 

The basic A-star algorithm divides the environment into several grids before conducting path 

planning and memorizing the indices of via the points. However, this requires a significant amount of 

memory. Therefore, we propose an improved A-star algorithm instead by considering only the absolute 

values of the flight path angles, i.e., the moving cost Gi, as follows: 

(1) when the climbing angle ߪ௜ିଵ௟௖  and the yaw angle ߮௜ିଵ௟௖  are less than 90° ܩ௜ = ௜ିଵ௟௖ݏ݅ܦ × (1 + sin ௜ିଵ௟௖ߪ + sin߮௜ିଵ௟௖ ) + ௟ (2)ܩ

(2) when ߪ௜ିଵ௟௖  is greater than 90° and ߮௜ିଵ௟௖  is less than 90° ܩ௜ = ௜௟௖ݏ݅ܦ × (2 + sin( ௜ିଵ௟௖ߪ − (2ߨ + sin߮௜ିଵ௟௖ ) + ௟ (3)ܩ

(3) when ߪ௜ିଵ௟௖  is less than 90° and ߮௜ିଵ௟௖  is greater than 90° ܩ௜ = ௜௟௖ݏ݅ܦ × (2 + sin ௜ିଵ௟௖ߪ +sin(߮௜ିଵ௟௖ − ((2ߨ + ௟ (4)ܩ

(4) when ߪ௜ିଵ௟௖  and ߮௜ିଵ௟௖  are greater than 90° ܩ௜ = ௜௟௖ݏ݅ܦ × (3 + sin( ௜ିଵ௟௖ߪ − sin(߮௜ିଵ௟௖+(2ߨ − ((2ߨ + ௟ (5)ܩ

The estimated cost Hi is given by 

(1) when ߪ௜௖௚ and ௜߮௖௚ are less than 90° ܪ௜ = ௜௖௚ݏ݅ܦ × (1 + sin ௜௖௚ߪ + sin ௜߮௖௚) (6)

(2) when ߪ௜௖௚ is greater than 90° and ௜߮௖௚ is less than 90° ܪ௜ = ௜௖௚ݏ݅ܦ × (2 + sin(ߪ௜௖௚ − (2ߨ + sin ௜߮௖௚) (7)

(3) when ߪ௜௖௚ is less than 90° and ௜߮௖௚ is greater than 90° ܪ௜ = ௜௖௚ݏ݅ܦ × (2 + sin ௜௖௚ߪ + sin( ௜߮௖௚ − (8) ((2ߨ
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(4) when ߪ௜௖௚ and ௜߮௖௚ are greater than 90° ܪ௜ = ௜௖௚ݏ݅ܦ × (3 + sin(ߪ௜௖௚ − (2ߨ + sin( ௜߮௖௚ − (9) ((2ߨ

where the range of i is the total number of multi-RRT nodes, Gl denotes the current node, ݏ݅ܦ௜௖௚ is the 

distance from the previous node to the current node, ݏ݅ܦ௜௖௚ is the distance from the current node to 

the goal node, ߮௜ିଵ௟௖  and ௜߮௖௚ are, respectively, the yaw angles from the current node to the adjacent 

node and the yaw angles from the current node to the goal node through the adjacent node of the 
current node, ߪ௜ିଵ௟௖  and ߪ௜௖௚ are, respectively, the climbing angles from the current node to the 

adjacent nodes and the climbing angles from the current node to the goal node through the adjacent 

node of the current node. 

3.3. Flight Path Refinement 

Here, we introduce the improved A-star algorithm to resolve the optimality problem. In Figures 4  

and 5, the green arrow indicates the start headings of the UAV, the red arrow refers to the goal 

heading, i denotes the index of the nodes, xstart and xgoal, and the blue lines are the paths generated by 

the multi-RRT algorithm. 

 

Figure 4. Computing ߮ଶ௟௖ and ߪଶ௟௖. 
The climbing angle of UAV is controlled by the angles of pitch and roll. The angle of horizontal 

rotation is generated by changing the yaw angle. In Figure 4, let i = 2 and compute the yaw angle ߮ଶ௟௖, 

the climbing angle ߪଶ௟௖, and ݏ݅ܦଷ௟௖, which is the distance between the nodes indexed i = 2,3. Next, 

substituting ߮ଶ௟௖, ߠଶ௟௖ (all less than 90°) and ݏ݅ܦଷ௟௖ into Equation (2) obtains the moving cost G3. 

 

Figure 5. Computing ߮ଷ௖௚ and ߪଷ௖௚. 
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In Figure 5, we compute	߮ଶ௖௚, ߪଷ௖௚ (all less than 90°) and ݏ݅ܦଷ௖௚, which are the distances between the 

third node and xgoal. Next, substituting the three variables into Equation (6) to gives the estimated cost H3. 

Finally, substituting G3 and H3 into Equation (1), one obtains the total moving cost index F3 repeating 

the process results in a class of refined flight paths. 

3.4. Bezier Curves 

We next apply Bezier curves [28] to shorten and smooth the path. To proceed, we define the Bezier 

curves of degree nk as 

(ݐ)௞ܥ =෍ܤ௜,௡ೖ(ݐ)௞ ௜ܰ௡ೖ
௜ୀ଴  (10)

where k indicates the index of the Bezier curve, k ∈ {1, 2, l, m}, kNi are the control nodes of the Bezier 
curves, and (ݐ)݇݊,݅ܤ are the Bernstein polynomials of degree nk as ܤ௜,௡ೖ(ݐ) = ݊௞!݅! (݊௞ − ݅)! ௜(1ݐ − ௡ೖି௜ (11)(ݐ

When two or more Bezier curves need to be joined together, the interconnected points should be 

continuous, i.e., the first- and the second-order derivatives of two successive Bezier curves should 

remain the same at the interconnected point. The first-order derivative of Bezier curves is given by 

(ݐ)௞ܥ = ෍ܤ௜,௡ିଵ(ݐ)௞ܦ௜௡ିଵ
௜ୀ଴  (12)

where the first control nodes kDi = n(kNi+1 − kNi). The second-order derivative of Bezier curves is 

(ݐ)௞ܥ = ෍ܤ௜,௡ିଶ(ݐ)௞ܧ௜௡ିଶ
௜ୀ଴  (13)

where the second control nodes kEi = n(kNi+2 − 2kNi+1 + kNi). The requirement of continuity in the Bezier 

curves is ܥ௞(1) = ௞ାଵ(0) (14)ܥ

then ݊௞൫ ܰ௞ ௡௞ − ܰ௞ ௡௞ିଵ൯ = ݊௞ାଵ൫ ܰ௞ାଵ ଵ − ܰ௞ାଵ ଴൯ (15)ܥሷ௞(1) = ሷ௞ାଵ(0) (16)ܥ

and ݊௞(݊௞ − 1)൫ ܰ௞ ௡௞ − 2 ܰ௞ ௡௞ିଵ + ܰ௞ ௡௞ିଶ൯ = ݊௞ାଵ(݊௞ାଵ − 1)൫ ܰ௞ାଵ ଶ − 2 ܰ௞ାଵ ଵ + 2 ܰ௞ାଵ ଴൯ (17)

We denote {A1, A2, l, Am} the waypoints of the improved A-star algorithm. When the waypoint 

number m = 3, C1 refers to the fourth-order Bezier curve. When the waypoint number m > 3, {C1, l, Cm−2} 

constitutes the sixth-order Bezier curves and {C2, C3, l, Cm−4, Cm−3} are the eighth-order Bezier curves. 
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When m = 3, the Bezier curve of C1 section is 

(1) fixed control nodes ܰଵ ଴ = ଵ (18)ܰଵܣ ଶ = ଶ (19)ܰଵܣ ସ = ଷ (20)ܣ

(2) movable nodes ܰଵ ଵ = ܰଵ ଴ + ଵߙ ܰଵ ଴ ܰଵ ଶሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (21)ܰଵ ଷ = ܰଵ ଴ + (1 − (ଵߙ ܰଵ ଴ ܰଵ ସሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ
 (22)

When m > 3, the Bezier curves of {C1,l, Cm−2} sections are 

(1) fixed control nodes: ܰଵ ଴ = ଵ (23)ܰଵܣ ଶ = ଶ (24)ܰ௠ିଶܣ ସ = ௠ିଵ (25)ܰ௠ିଶܣ ଺ = ௠ (26)ܰଵܣ ଺ = ܰଶ ଴ + 0.5 ܰଵ ଶ ܰଶ ସሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (27)

ܰ௠ିଷ ଼ = ܰ௠ିଶ ଴ = ܰ௠ିଷ ସ + 0.5 ܰ௠ିଷ ସ ܰ௠ିଶ ସሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (28)

(2) movable control nodes: ܰଵ ଵ = ܰଵ ଴ + ଵߙ ܰଵ ଴ ܰଵ ଶሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (29)ܰଵ ଷ = ܰଶ ଴ + (1 − (ଵߙ ܰଶ ଴ ܰଶ ସሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (30)ܰ௠ିଶ ଷ = ܰ௠ିଶ ଴ + ௠ିଶߙ ܰ௠ିଶ ଴ ܰ௠ିଶ ସሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (31)ܰ௠ିଶ ହ = ܰ௠ିଶ ସ − (1 − (௠ିଶߙ ܰ௠ିଶ ସ ܰ௠ିଶ ହሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ (32)

(3) interconnected nodes: ݊ଵ൫ ௡ܰభଵ 		− ௡ܰభିଵଵ ൯ = ݊ଶ( ଵܰଶ − ଴ܰଶ ) (33)݊ଵ(݊ଵ − 1)൫ ௡ܰభଵ 		− 	2 ௡ܰభିଵଵ + ௡ܰభିଶଵ ൯ = ݊ଶ(݊ଶ − 1)( ଶܰଶ − 2 ଵܰଶ + ଴ܰଶ ) (34)݊௠ିଷ൫ ௡ܰ೘షయ௠ିଷ 		− ௡ܰ೘షయିଵ௠ିଷ ൯ = ݊௠ିଶ( ଵܰ௠ିଶ − ଴ܰ௠ିଶ ) (35)݊௠ିଷ(݊௠ିଷ − 1)൫ ௡ܰ೘షయ௠ିଷ − 2 ௡ܰ೘షయିଵ௠ିଷ + ௡ܰ೘షమ௠ିଷ ൯= ݊௠ିଶ(݊௠ିଶ − 1)( ଶܰ௠ିଶ − 2 ଵܰ௠ିଶ + ଴ܰ௠ିଶ ) (36)
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When m > 3, the Bezier curves {C2, C3, l, Cm−4, Cm−3} are 

(1) fixed control nodes: 

ସܰ௜ିଵ = ,௜ܣ ݅ ∈ ሼ3,4, ݈, ݉ − 2ሽ (37)

଼ܰ௜ = ଴ܰ௜ାଵ = ସܰ௜ + 0.5 ସܰ௜ାଵ ସܰ௜ , ݅ ∈ ሼ2,3, ݈,݉ − 3ሽ (38)

(2) movable control nodes: 

ଷܰ௝ = ଴ܰ௝ + ௝ߙ ଴ܰఫ ସܰఫሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ, ݆ ∈ ሼ2,3, ݈,݉ − 3ሽ (39)

ହܰ௝ = ଴ܰ௝ାଵ + (1 − (௝ߙ ଴ܰఫାଵ ସܰఫାଵሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ, ݆ ∈ ሼ2,3, ݈,݉ − 3ሽ (40)

(3) interconnected nodes: ݊௥൫ ௡ܰೝ௥ 		− 	 ௡ܰೝିଵ௥ ൯ = ݊௥ାଵ൫ ଵܰ௥ାଵ − ଴ܰ௥ାଵ ൯, ݎ ∈ ሼ1,2, ݈,݉ − 3ሽ (41)݊௥(݊௥ − 1)൫ ௡ܰೝ௥ 	− 	2 ௡ܰೝିଵ௥ + ௡ܰೝషమ௥ ൯= ݊௥ାଵ(݊௥ାଵ − 1)( ଶܰ௥ାଵ − 2 ଵܰ௥ାଵ + ଴ܰ௥ାଵ ), ݎ ∈ ሼ1,2, ݈,݉ − 3ሽ (42)

where αj ∈ {0, 1} is the weighting factor; in general, the initial weighting factor is set to be 0.5. 

Selection of the weighting factor depends on the relationship of the movable control nodes between the 

fixed control and interconnected nodes. Taking Figures 6–9 as examples, we assume that the improved 

A-star algorithm generates the blue path and that {A1, A2, l, A5} are the waypoints of the path. Before 

applying the Bezier curves, it is necessary to determine control nodes, as indicated in Figure 6.  

Figures 7–9 illustrate the sixth-order, eight-order and sixth-order Bezier curves constituted by the sets 

of control nodes {1N0, 1N1, l, 1N6}, {2N0, 2N1, l, 2N8} and {3N0, 3N1, l, 3N6}, respectively. 

 

Figure 6. Positions of the control nodes. 

 

Figure 7. Result of the sixth-order Bezier curve C1 constituted by the nodes {1N0, 1N1, l, 1N6}. 
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Figure 8. Result of the eighth-order Bezier curve C2 constituted by the nodes {2N0, 2N1, l, 2N8}. 

 

Figure 9. Result of the sixth-order Bezier curve C3 constituted by the nodes {3N0, 3N1, l, 3N6}. 

Recall that the resulting path determined above could be interfered with obstacles, we select control 

nodes of the Bezier curves so that the modified curves could avoid the obstacles. For example,  

in Figure 10, the curve C3 collides with the orange-colored obstacle. One may consider adding movable 

control nodes between the fixed control nodes and the interconnected nodes of the obstacle and change 

the weighting factor α3 to shift the control nodes, 3N3 and 3N5. This leads C3 away from the obstacle,  

see Figure 11. 

 

Figure 10. C3 collides with the obstacle. 
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Figure 11. C3 avoids the obstacle. 

4. Simulation Results 

4.1. Path Planning in 3D Environment 

To evaluate the performance of the proposed multirotor UAV path-planning algorithm, we consider 

three scenarios. 

4.1.1. Scenario 1 

The flight path is generated by the multi-RRT algorithm with four waypoints (the red line in  

Figure 12). We adopt the improved A-star algorithm in blue line to refine the path moving cost. After 

conducting the improved A-star algorithm, the number of waypoints decreases from four to three  

(see Table 1), i.e., m = 3. Incorporating Equations (18)–(22) yields a Bezier curve illustrated as the 

green line in Figure 12. 

 

Figure 12. Results of path planning via the multi-RRT and improved A-star algorithms and 

the finalized path after introducing Bezier curves in Case 1 (unit: m). 
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Table 1. Waypoints of the paths generated by the multi-RRT (rapidly-exploring random 

tree) and improved A-star algorithms. 

Path Planning Waypoints of Case 1 

Multi-RRT Waypoints (m) Improved A-Star Waypoints (m) 

(0, 0, 0) (0, 0, 0) 
(1954.4, 2314.1, 949.1) – 

(1835.4, 3852.4, 2187.2) (1835.4, 3852.4, 2187.2) 
(4000, 4000, 4000) (4000, 4000, 4000) 

4.1.2. Scenario 2 

After fulfilling the improved A-star algorithm, the number of waypoints of the path decreases from 

eight to four (see Table 2). Combining Equations (18)–(22) yields the Bezier curves, as illustrated in 

Figure 13. 

Table 2. Waypoints of the paths generated by the multi-RRT and improved A-star algorithms. 

Path Planning Waypoints of Case 2 

Multi-RRT Waypoints Improved A-Star Waypoints 

(0, 0, 0) (0, 0, 0) 
(1912.0, 168.0, 998.2) (1912.0, 168.0, 998.2) 
(896.3, 780.5, 2840.6) – 

(1457.6, 685.9, 3181.4) – 
(1970.7, 1418.5, 3100.2) – 
(2546.3, 2283.6, 3708.4) (2546.3, 2283.6, 3708.4) 
(3647.9, 2638.7, 2909.5) (3647.9, 2638.7, 2909.5) 

(4000, 4000, 4000) (4000, 4000, 4000) 

 

Figure 13. Results of path planning via the multi-RRT and improved A-star algorithms and 

the finalized path after introducing Bezier curves in Case 2 (unit: m). 
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4.1.3. Scenario 3 

The resulting path retains four waypoints, i.e., m = 5. Using Equations (23)–(42) generates the 

corresponding. Note, however, that the flight path may still collide the obstacles as shown in Figure 

14a and Table 3. We adjust the movable nodes so that the flight path can avoid the obstacle. Here,  

the weighting factor α2 in Equations (31) and (32) is increased gradually so that the curves will bypass 

the obstacles. The satisfactory result with α2 = 0.9 is finally reached (Figure 14b). 

(a) (b) 

Figure 14. Path planning result of the multi-RRT and A-star algorithms and the finalized 

path after introducing Bezier curves in Case 3 (unit: m). (a) The finalized path collides 

with obstacles; (b) The finalized path avoids the obstacles. 

Table 3. Waypoints of the paths generated by the multi-RRT and improved A-star algorithms. 

Path Planning Waypoints of Case 3 

Multi-RRT Waypoints (m) Improved A-Star Waypoints (m) 

(0, 0, 0) (0, 0, 0) 
(728.6, 167.3, 427.8) (728.6, 167.3, 427.8) 

(2047.3, 330.4, 2878.3) (2047.3, 330.4, 2878.3) 
(1646.4, 2410.6, 3002.1) – 
(2020.5, 3962.2, 3558.8) (2020.5, 3962.2, 3558.8) 
(3291.3, 3888.5, 2807.2) – 

(4000, 4000, 4000) (4000, 4000, 4000) 

4.2. Comparison of Performance 

In [28], the authors adopted an integrated RRT and Dijkstra algorithms to characterize the flight 

path for UAVs. Our study, instead, uses the multi-RRT and improved A-star algorithms. We have 

recorded computation time under the same scenario for performance comparison. The PC equipped 
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with CPU i7 3.4 GHz and RAM 3 GB was adopted. Note that the comparison did not include  

the part of the construction of Bezier curves, which relies on extra tunings of the weighting factor α.  

The integrated RRT and Dijkstra algorithms consumed 12.804 s, as shown in Figure 15a, and the 

integrated multi-RRT and improved A-star algorithms used 0.225 s, see Figure 15b. 

(a) (b) 

 
(c) 

Figure 15. Flight paths generated by different algorithms under the same scenario: (a) RRT 

(red-dotted line) and Dijkstra algorithms (blue line); (b) integrated multi-RRT (red line) and 

improved A-star algorithms (blue line) (unit: m); and (c) multi-RRT (red line) and improved 

A-star (blue line) and Bezier curving refinement (unit: m). 
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Concerning about the computational efficiency, Figure 15c shows the smoothed fight path, which 

took extra time of 0.39 s for each try of α while incorporating Bezier curves for smoothing. We have 

considered three tries (α = 2, 1, 0.5). This figure shows the result with α = 0.5. Table 4 summarizes the 

required computation time. 

Table 4. Comparison of computational efficiency. 

Results of Comparison of Computation Time 

Algorithms 
RRT  

+ Dijkstra 
Multi-RRT  

+ Improved A-Star
Multi-RRT + Improved A-Star  
+ Bezier’s Curving Refinement 

Total time (s) 12.804 0.225 1.395 

5. Conclusions 

This study proposed a novel path planning method for multirotor UAVs in a 3D environment.  

To account for real-time navigation, a multi-RRT algorithm was introduced to characterize the 

preliminary flight paths in an efficient manner. The proposed improved A-star algorithm tailored for 

multirotor UAVs was incorporated to mitigate flight path costs by reducing the number of waypoints. 

As for flight path smoothing, control nodes of the Bezier curves were determined to refine the paths.  

A variety of scenarios, from single to multiple obstacles, were numerically simulated and evaluated.  

The results showed that the combined use of the proposed improved A-star algorithm and the Bezier 

curves produced smooth flight paths with less cost while remaining computational efficiency. 
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