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Abstract: In this paper, an ornithopter prototype that mimics the flapping motion of bird 

flight is developed, and the lift and thrust generation characteristics of different wing 

designs are evaluated. This project focused on the spar arrangement and material used for 

the wings that could achieves improved performance. Various lift and thrust measurement 

techniques are explored and evaluated. Various wings of insects and birds were evaluated 

to understand how these natural flyers with flapping wings are able to produce sufficient 

lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on 

different wing designs and materials were conducted and a paramount wing was built for a 

test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. 

A mechanism which produced a flapping motion was fabricated and designed to create 

flapping flight. The flapping flight was produced by using a single motor and a flexible and 

light wing structure. A force balance made of load cell was then designed to measure the 

thrust and lift force of the ornithopter. Three sets of wings varying flexibility were 

fabricated, therefore lift and thrust measurements were acquired from each different set of 

wings. The lift will be measured in ten cycles computing the average lift and frequency in 

three different speeds or frequencies (slow, medium and fast). The thrust measurement was 

measure likewise but in two cycles only. Several observations were made regarding the 

behavior of flexible flapping wings that should aid in the design of future flexible flapping 

wing vehicles. The wings angle or phase characteristic were analyze too and studied.  
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The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could 

flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift 

of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing 

utilizes the near resonance phenomenon of a two-degree of freedom elastic system,  

that is, the wing is supported by the springs for flapping and feathering motions. Being 

oscillated close to the resonance frequency of the system, only by the torque in flapping 

motion, the amplitude gained is a few times higher than that of normal case. The first 

prototype was made from acrylic using a laser cutting machine. The wings were made up 

of carbon rods and kite material Ripstop. First test showed that the wings were too heavy 

for the mechanism to work. The third prototype was a smaller single gear crank design 

which was fabricated using a 3D printer. Initial test proved that the second prototype could 

withstand the high frequency flapping and near resonance amplitude as designed.  

With remote control, the third prototype was able to take off, climb, cruise and land in 

flapping mode successfully. 

Keywords: ornithopter-like flapping wing; albatross-like wing; micro air vehicle (MAV) 

 

1. Introduction 

There is a growing recognized need for miniature flight vehicles with multifunctional capabilities, 

such as micro air vehicles (MAVs) for both military and civilian surveillance [1–4]. Flapping wing 

flight of birds provides us with a sophisticated example of utilizing unsteady aerodynamics to 

mechanize the miniature flight structures at low Reynolds numbers (103–105) [5,6]. We attempt to 

mimic both the long-distance birds, due to their natural long-endurance manner, and their high lift 

production during take-off (start-up). The albatross, as shown in Figures 1 and 2, is chosen to represent 

long distance migratory birds. It is about the size of our intended flapping wing based surveillance 

MAV. We hope to mimic albatross’s flapping flight to achieve this long-distance characteristic.  

It is used for investigating flow characteristic aiming at better design of flapping MAV. The wingspan 

of the albatross is 60 cm. The flapping pattern of the albatross is of the avian type, i.e., vertical motion 

as shown in Figure 3. Our model simulated the complete, three-dimensional, unsteady flow fields 

around this type of wing with large-scale vortices. 

 

Figure 1. Albatross in flight. 
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Figure 2. Albatross wing model. 

 

Figure 3. The flapping pattern of albatross is avian type, i.e., more up/down vertically. 

At University of Glasgow Singapore, we are developing the resonance type flapping wing models, 

as shown in Figures 4 and 5 below. The proposed resonance type flapping wing will utilize the 

resonance phenomenon of a two-degree of freedom elastic system, that is, the wing is supported by the 

springs for flapping and feathering motions, being oscillated, at the resonance frequency of the system, 

as shown in Figure 6 [7]. The amplitudes of flapping and feathering motions and the phase angle 

between them are controlled by changing the amount of the damping. 

 

Figure 4. Near-resonance ornithopter-like flapping wing model. 

 

Figure 5. Near-resonance ornithopter-like flapping wing mechanism. 
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Figure 6. Concept of resonance-type flapping mechanism [7]. 

2. Computational Fluid Dynamics 

Firstly, we examined the flight dynamics as well as unsteady flow characteristics of the flapping 

wings for long-distance bird (e.g., albatross-like) by Computational Fluid Dynamics (CFD). These 

birds mostly flap their wings about their body axis (chordwise) with little change in twist (spanwise), 

as depicted in Figure 7 [8]. Therefore, for preliminary analyses, we apply only chordwise flapping to 

our model. 
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Figure 7. (a) Simplified albatross flapping model with detailed geometry; (b) The wing is 

shown at −15 flapping position about its body (X) axis. 

The flow around the flapping wing was simulated by using ANSYS Fluent® (ANSYS Inc., Canonsburg, 

PA, USA) unsteady three-dimensional compressible Navier–Stokes equations. The machine that ran 

these problems was a 64 bit computer, Intel® Core i7-2600 CPU at 3.4 GHz. It had eight processors at 

16 GByte RAM. The geometric model of the albatross wing was the idealization of an albatross.  

The model wing had a wing span of 30 cm, mean wing chord length of 5 cm, a thickness of 2.5% of 

the mean wing chord length, as shown in Figure 7. The computing domain extended to 50-chord 

lengths in all directions around the full model wing, and that, there were about 107 meshes of the 

tetrahedral type. The flow condition was unsteady transient flow, with the built-in Large–Eddy 

Simulation (LES) turbulence model. 

The chosen wing’s geometry is shown in Figure 7 below, of which Wingspan = 0.88, Wing Surface 

Area = 1.66 × 10−1 m2. This wing was originally set at rest. From past studies [8–11], the starting 

flapping frequency of the albatross wing was at 0.5 rad/s, corresponding to the reduced frequency k 

(defined as ωc/2U∞) of 0.0025. The take-off speed of the albatross (i.e., the freestream velocity in 

body-fitted coordinates), U∞ was approximately 5 m/s. This gave the Reynolds number, based on 

chord Re of 25,000. The wing was set to flap down and up about its body axis (chordwise), mimicking 
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the start-up of the flapping motion (taking-off) and return to its initial position. The flapping (dihedral) 

angle changed from +30° to −30° in downstroke motion, and from −30° to +30° in upstroke motion. 

The input angular velocity about its chord (ωx) is shown in Figure 8. This downwards stroke in the first 

half of the cycle is the lift generation stroke, whereas the upwards stroke in the latter half of the cycle 

is the recovery stroke. 
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Figure 8. (a) Flapping patterns for simplified albatross flapping model about its body axis 

(chordwise, ωx); and (b) the corresponding angular velocity, in each flapping cycle. 

Initially, the wing was positioned at +30 degree dihedral angle. When the flapping motion started, 

the wing flapped downwards about its chord. At the outer half of the wing the flow separated from the 

wing, forming the start-up vortex which more visible at the top. There was flow separation at the 

trailing edge, closer to the root, at the area near the scapula (inboard of the wing). This leads to the 

creation of strong leading edge vortex [8] as shown in Figure 9, resulting in high lift (Figure 10) at the 

beginning of this downstroke motion (at +30 degree dihedral angle). 

 

Figure 9. Vortex structure on the wing, shortly after start-up. The strong leading edge 

vortex on the upper part is clearly shown. 
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Figure 10. Lift coefficient during downstroke and upstroke motion of the wing. 

As time goes on the flow separates across the wing, forming the strong leading edge vortex over the 

wing. In the inboard area near the trailing edge and scapula, the wake (shear layers) becomes more 

obvious. The lift is generated more by to this push-down motion of the wing. After mid-point (dihedral 

angle = 0°), the start-up vortex becomes bigger, and the flow separates from the wing entirely.  

At the leading edge near the alula (about half way between the root and the tip). The wake at the 

trailing edge of the wing also breaks up into outer and inner parts. 

Figure 10 shows the lift coefficient in both downstroke and upstroke motion of the wing. The CL values 

are obtained from directly from ANSYS Fluent® software. The locus of the lift coefficient in both 

downstroke and upstroke motion resembles the inclined Figure 8, as reported in many other literatures 

(e.g., [4,6,8,10,12–15]). Figure 11 shows the lift coefficients derivatives with respect to flapping angle 

(dCL/dα) this is for flight dynamics and control consideration. 
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Figure 11. The lift coefficients derivatives with respect to flapping angle (dCL/dα), from CL. 

Figure 12 shows the vortex structure (invariant-Q) at dihedral angle = −15°. The leading edge 

vortex is dominant, covering the entire the wing. At the wing tip, the wingtip vortices is clear together 

with the wake behind the wing. 
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Figure 12. Isosurface of the vorticity on the upper part of the albatross wing, at dihedral 

angle = −15°. The leading edge vortex covers the whole wing. The trailing edge vortices 

on both ends are outstanding. 

Figure 13 shows the surface pressure on the albatross wing also at dihedral angle = −15°. At the tip, 

there is region of lower pressure, shown in blue color. This is the area where the force is less 

generated. So, we deduce the albatross does maneuvering by flapping its entire wingspan at different 

amplitudes than using (flapping or twisting) its wing tip only. 

(a) (b) 

Figure 13. Surface pressure on the albatross wing at dihedral angle = −15°, upper surface (a) 

and lower surface (b). 

These unsteady flow results show that the albatross generates lift on its wing mainly by vortex lift 

mechanism, as reported in other literatures ([15–28]). The lift is generated by flapping its entire  

left and right wings at different amplitudes than using (flapping or twisting) its wing tip only.  

Any additional spanwise flapping (pitching) will fine-tune its position inflight. Therefore, for the sake 

of developing flapping-wing like MAV (next section), we could introduce only the chordwise flapping 

motion and neglect the spanwise flapping motion. 
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3. UGS Flapping Wing MAV Prototypes 1 

3.1. Mechanism 

A flapping wing mechanism capable of producing flapping motion is designed and built. An overall 

view of this mechanism with a length of 46.5 cm can be seen in Figure 14. This figure also depicts the 

relative scale between the flapping mechanism and the tail. This mechanism is powered by a small 

brushless motor and has a maximum output of 55 W that weight only 15 g. A Lithium–Polymer battery 

that has a nominal voltage of 7.4 V is required to drive the motor. 

 

Figure 14. Overall view of entire flapping mechanism. 

A complete set of computer aided design (CAD) models are developed to ensure an accurate  

fit between parts. The software used to generate CAD models is done using CATIA (Computer  

Aided Three-dimensional Interactive Application (Dassault Systèmes, Cedex, France). The various 

parts of the mechanism can be seen in Figures 15 and 16. 

 

Figure 15. Left side view of flapping mechanism (computer aided design (CAD) model). 
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Figure 16. Right side view of flapping mechanism (CAD model). 

From Figure 16 the brushless DC motor is mounted onto the fuselage of the ornithopter using three 

nylon pillars. The motor is powered directly by Lithium–Polymer battery. In order for both wings to 

flap in sync, a single shaft is installed and attached onto both sides of the driving arms. The driving 

arms are then attached along with the wings. The Styrofoam at the front side of the fuselage is used to 

reduce the impact if the ornithopter would to fall. Carbon fiber sticks are used to strengthen the 

fuselage to prevent twisting and bending stress when it flaps. The Lithium–Polymer battery is placed 

in the front fuselage, so that the center of gravity for the prototype is achievable. 

It is important to make the mechanism as light as possible, therefore the lightest, and most cost 

effective materials available are considered. Initially, carbon fiber which is strong and light-weight is 

one of the considerations. However, there are limited resources to manufacture and cut into the desired 

shape. As a result, the next option is to use cardboard, which is equivalent light-weight and easy to cut 

but not as durable as carbon fiber. Each component and sub-assembly for this ornithopter is weighted 

as shown in Table 1. 

Table 1. Weight of each Component and Sub-assembly. 

Component and Sub-assembly Weight (g)

Kypom Lithium–Polymer Battery 29 
Hacker A10-A12s Brushless Motor 15 
Futaba R6004FF Receiver and Castle Creation Thunderbird 9 Electronic Speed Controller 13 
2× Tahmazo TS-1002 Servo Motor 8 
2× Driving Arm and Linkage 8 
Tail Structure 11 
Main Shaft 6 
Main Gear 7 
Middle Gear 5 
Pinon Gear 1 
Fuselage 15 
Fasteners, Screws, Nuts and Wheel-Locks 7 
Wings 35 
Total Weight 160 
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3.2. Wing Construction 

In the design and construction of any ornithopter, one of the most crucial components governing 

overall performance is the wings. Especially in a flapping-wing air vehicle, the wings are vital to flight 

performance aspects including endurance, speed, manoeuvrability, and many other useful behaviors. 

An effective ornithopter must have wings capable of generating both thrust, the force that propels the 

craft forward, and lift, the force, perpendicular to the direction of flight, that keeps the ornithopter 

airborne. These forces must be strong enough to counter the effects of drag and the weight of the 

ornithopter. The wings produce lift and thrust primarily due to their ability to change shape during the 

flapping motion. As the wing is accelerated, aerodynamic loading causes the wing to deform.  

The result is a fairly large camber change of the wing that results in the normally flat plate shape 

changing to an airfoil shape. The aerodynamic loading also produces large angles of attack that create 

thrust. When these two effects are combined, the airfoil wings are placed in a moving airstream,  

thus creating a flight sustaining lift force. 

In order to achieve the desired flexibility and minimum weight, carbon fiber rods are used in the 

construction of the wings to provide a lightweight and stiff structure of spars, similar to the skeletal 

structure of a flying animal as shown in Figure 17. Ornithopters do not necessarily act like flying 

animals in flight. Typically flying animals have thin and cambered wings to produce lift and thrust. 

Ornithopters with thinner wings have a limited angle of attack but provide optimum minimum-drag 

performance for a single lift coefficient. The Pigeon Hawk has the closest characteristic as our 

ornithopter prototype, with the weight of 181.3 g and therefore the dimension of the constructed wing 

is as shown in Figure 18 [9]. 

There are two different materials used for the wings. The first material used is a polyester film made 

from stretched Polyethylene Terephthalate (PET). It has high tensile strength, and is commonly used in 

ornithopter flights. The second material used is Orcon, which is a better material than PET film.  

The Orcon is a strong and ultra-lightweight material. Unlike other plastic and mylar-like films, Orcon 

will not continue to tear even a small slit is detected. 

Carbon Fiber 
Rods 

 

Figure 17. View of wing skeletal structure—one half. 
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Figure 18. Dimension of the constructed wing [9]. 

Three different types of wings designs with various material and skeletal structure are fabricated. 

The first type is called PET cambered thin wing with a skeletal structure as shown in Figure 19. Figure 20 

shows the PET cambered thin wing that is fabricated using the PET material. 

 

Figure 19. Skeletal structure for polyethylene terephthalate (PET) cambered thin wing 

(CAD Model). 

 

Figure 20. PET cambered thin wing. 

The second type of wing is called Orcon cambered thick wing with a skeletal structure as shown in 

Figure 21. 
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Figure 21. Skeletal structure for Orcon cambered thick wing (CAD model). 

Figure 22 shows the Orcon cambered thick wing that is fabricated using the orcon material. 

 

Figure 22. Orcon cambered thick wing. 

The first two types of wings that are mentioned above are designed to have cambered due to the 

advantages of the increased lift-drag ratios and more desirable stall characteristics. It has a higher lift 

coefficient than the symmetrical airfoil. The top edge of the airfoil is shaped differently than the 

bottom edge, which changes the way air flows over it. This causes the air to move faster, which creates 

more lift. 

The third type of wing is designed with a thin airfoil, called the Orcon flat wing with a skeletal 

structure as shown in Figure 23. 

 

Figure 23. Skeletal structure for Orcon flat wing (CAD model). 
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The lift coefficient is sacrificed for a lighter weight. Lighter weight can produce smaller inertia of 

the wing and thus faster flapping speed, which will in turn increase air velocities. Figure 24 shows the 

Orcon flat wing which is fabricated using the orcon material. 

 

Figure 24. Orcon Flat Wing. 

3.3. Center of Gravity (CG) 

The center of gravity may be defined as the average location of the mass distribution. It is a point in 

space where, for the purpose of various calculations, the entire mass of a body may be assumed to be 

concentrated. The center of gravity is an important point on an aircraft, which significantly affects the 

stability of the aircraft to fly safely. Therefore the center of gravity must fall within specified limits to 

ensure the ornithopter is stable. A simple method is adopted to determine the CG of the prototype 

ornithopter and that is to hang the prototype ornithopter from the ceiling using a kevlar thread as 

shown in Figure 25, the CG is obtained when the prototype ornithopter is equilibrium and balanced 

horizontally with the ground level. 

 

Figure 25. Equilibrium position of the prototype ornithopter. 
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3.4. Lift and Thrust Force Measurement 

The experimental apparatus utilized by the authors include a force measuring load cell, a test 

assembly, and video recording is also taken of the mechanism with the various wing designs flapped. 

This section also presents the calibration of the load cell to ensure that the data measured is accurate. 

After the calibration is done, the data unit of the force measurement is converted from electrical signal 

into gram or Newton unit. 

3.4.1. Force Measuring Load Cell 

The first and most important component of the force measurement system is the transducer. A load 

cell is a transducer that is used to convert the loads generated by the flapping wing into voltage signal 

for subsequent recording and processing. Through a mechanical arrangement, the force being sensed 

deforms a strain gauge. In most cases, four strain gages are used to obtain maximum sensitivity and 

temperature compensation. Two of the gauges are usually in tension, and two in compression. A strain 

gauge is a series of thin wire filaments wound in a serpentine fashion and placed in a Wheatstone 

Bridge configuration. 

Voltage is supplied to the strain gauge and as a load is applied to the wire filaments, they will either 

elongate or shrink, changing the resistance in the wires. This variation in resistance results in different input 

and output voltages from the strain gauge. The difference in voltage is then used to calculate the strain. 

It should be noted that the expected measured thrust and lift are very small, i.e., around 0.1–1.0 N. 

The force measuring load cell utilized in this project is an Omega Engineering, LCMFD-20N load cell 

which is shown in Figure 26. This LCMFD-20N load cell is small in size and capable of providing 

highly accurate readings of a 2041 gram capacity. According to Omega Engineering’s website 

(www.omega.co.uk) on technical specification, this LCMFD-20N load cell has its accuracy (linearity 

and hysteresis combined) and uncertainty of 0.15% FSO (Full-Scale Output), i.e., 0.03 N (0.15% of  

20 N). Since, the accuracy and uncertainty numbers are about 0.03 N (order of 10−2), i.e., about 1 order 

of magnitude less of the expected minimum measured thrust and lift values around 0.1–1.0 N (order of 

10−1 to 1), this is acceptable. In addition, this model is selected because of its high frequency resonant 

characteristics, minimal contamination from off-axis loads, and robust overloading tolerances. 

 

Figure 26. Omega engineering, LCMFD-20N load cell. 

The load cell measures the forces when the prototype ornithopter flaps its wing on a force balance 

by converting these forces into electric signals, which will be displayed on the Omega DP41 digital panel. 
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3.4.2. Test Assembly 

One of the challenges in this project is to design and build a test assembly made of pinewood in 

which the mechanism could flap and also measure both lift and thrust forces with the use of the load 

cell. A flapping mechanism in the test assembly can be seen in Figure 27. The position of the load cell 

is mounted to a fixed point on the test assembly, and by rotating the test assembly vertically together 

with the respective kevlar thread connected to the flapping mechanism, this testing assembly could 

measure the lift and thrust forces generated by the flapping mechanism. In addition, this only allow the 

flapping mechanism to move in either ±X axis, which measures the thrust force, or ±Y axis, which 

measures the lift force. 

G-clamps are used to clamp the test assembly to a metal stand. This allows the wing tests to be done 

at a distance above ground so that we do not take into account the ground effects when the wings  

are flapping. 

Test

 Assembly 

Flapping

 Mechanism 

 

 

Figure 27. Test assembly and flapping mechanism. 

3.4.3. Lift and Thrust Forces Measurement Methods 

As the objective of this project is to characterize the different lift and thrust generation performance 

from three different wing designs, namely PET cambered thin wing, Orcon cambered thick wing and 

Orcon flat wing, different thrust measurement techniques will be investigated. This section presents 
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the various methods for testing the lift and thrust generation of the prototype ornithopter. Kevlar thread 

is used extensively in this project as this innovative thread is light and its strength to weight ratio 

makes it five times as strong as steel. Kevlar thread does not break instantly but progressively, 

providing a non-catastrophic failure mode allowing a margin of safety. 

Thrust Measurement by Swing Method 

In this method, the prototype ornithopter is tightly attached to one end of the connecting kevlar 

thread and the other end is attached to the ceiling, making the body axis of the prototype ornithopter 

perpendicular to the connecting kevlar thread, as shown in Figure 28. The three different pairs of 

wings are tested using this method to measure the thrust produced. 

T Kevlar 
Thread 

α

 

Figure 28. Thrust measurement of swing method. 

When the prototype ornithopter is excited, it produced thrust and moved to an equilibrium position. 

Assuming that all forces act at the center of gravity of the prototype ornithopter as shown in Figure 1, 

the equilibrium equation of the ornithopter after applying voltage is 

T + F + L + W = 0 (1)

where T, F, L, W are the thrust, tension of the connecting kevlar thread, side force, and weight of the 

prototype ornithopter, respectively. T and L are two components of the resultant aerodynamic force 

projected on the ornithopter’s body axis and the direction perpendicular to the ornithopter’s  

axis, respectively. The equilibrium condition in vertical and horizontal directions can be modified  

as follows: 

sin(α + β) + Fcosα + Lcos(α + β) − W = 0 
(2)

Tcos(α + β) − Fsinα − Lsin(α + β) = 0 

where α and β are the swing angle of the connecting kevlar thread and the body angle of the 

ornithopter, respectively, as shown in the Figure 29. 
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Figure 29. Force diagram of swing test. 

The body angle β is the angle between the ornithopter’s body axis and the line perpendicular to the 

connecting kevlar thread. By eliminating the tension F in Equation (2), the thrust is calculated as follows: 

Tcosβ − Lsinβ = Wsinα (3)

Hence, if the ornithopter’s body axis is zero (β = 0°; i.e., the body axis of the ornithopter is 

perpendicular to the connecting kevlar thread), the thrust at equilibrium can be calculated by: 

T = Wsinα (4)

Load Cell Thrust Measurement Experiment Setup 

In this thrust measurement setup, the mounting orientation of the load cell is shown in Figure 30. 

The load cell is fixed onto the test assembly in a stationary position. The front portion of the flapping 

mechanism is attached to the load cell while the top and bottom segments of the flapping mechanism 

are tied vertically to the test assembly with the use of kevlar thread. Thus, after mounting the pair of 

wings onto the flapping mechanism and turn on the motor, the flapping mechanism is constrained by 

the kevlar thread so that it is only capable of motion in the X-direction. 

Motion in the +X direction represented thrust, while motion in the −X direction represented drag.  

As the flapping mechanism is moving in the +X direction, the load cell is under compression and 

therefore the readings displayed on the digital panel are negative values as discussed in Section 2 Load 

Cell Calibration. In this configuration, the thrust produced for the three different wing designs at three 

different flapping frequencies will be measured and then recorded in an Excel spreadsheet. 
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Figure 30. Side view of the load cell thrust measurement setup. 

Load Cell Lift Measurement Experiment Setup 

In the lift measurement setup, the test assembly is vertically rotated where the bottom part of the 

flapping mechanism is attached to the load cell as shown in Figure 31. The kevlar thread is tied 

horizontally at the front and back segments of the flapping mechanism, so that it is only capable of 

motion in the Y direction which the lift force is measured. 

Wing 

Flapping 
Mechanism 

Load Cell 
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 Assembly 

Digital 
Panel 

Kevlar 
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+X Direction 

+Y Direction 

 

Figure 31. Load cell lift measurement setup. 

As the flapping mechanism is moving in the Y direction, the load cell is under both compression 

and tension, which resulting in negative and positive values respectively displayed on the digital panel. 

This is due to the matter of fact that a flapping wing is an aerodynamic machine with two strokes,  

the upstroke and the downstroke. In this experiment, the lift produced for the three different wing 



Aerospace 2015, 2 253 

 

 

designs at three different flapping frequency will be measured and recorded in an Excel spreadsheet. 

Before recording the lift values during the flapping period, the weight of the flapping mechanism with 

the wings attached is measured at static condition. By subtracting the weight measured at static 

condition from all the values obtained during the flapping phase, the true lift force produced by the 

prototype is then recorded for analysis. 

3.4.4. Determination of Flapping Frequency 

The flapping frequency of the wings when different amount of power is supplied to the motor is to 

be determined so as to make a comparison between the three different wing designs, as shown below 

(Figure 32), at the various flapping frequency. 

 

PET cambered 
thin wing 

Orcon cambered 
thick wing 

Orcon flat 
wing 

 

Figure 32. Three different wing designs (bottom view). 

The measurement of the flapping frequency of the prototype is achieved through the use of a digital 

camera. The digital camera is placed in front of the test assembly which allows the author to analyze 

how the wings are flapped in up- and down-stroke manner. The videos are then loaded into the Ulead 

software to process the captured video into frames. There are 25 frames for each second of the video 

recorded. Hence, by calculating the number of frames taken for the prototype to produce a full cycle 

consisting of upstroke and downstroke as shown in Figure 33, the period (T) can be obtained using the 

following equation: 

T = (1/25) × number of frames per full cycle (5)

Once the period is obtained, the flapping frequency (f) is calculated as follows: 

f = (1/T) (6)

Hence, the flapping frequency can then be determined. The figure below shows the motion of the 

flapping wings in one full cycle. 
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Figure 33. Thrust against low flapping frequency (2 full cycles). 

3.5. Lift and Thrust Force Results and Analysis 

This section presents the findings of various experiments that the authors have conducted. The main 

element of this section is the results and analysis of evaluation of different wing designs. The average 

thrust and lift output are measured and compared to different wing designs to understand what styles of 

wings are more effective. The time-varying force profile can be examined to gain understanding into 

why particular wing designs prove more effective than others. The results of thrust and lift testing will 

be analyzed to establish any trends that explain performance differences and this section will be split 

into five different parts: 

• Comparison of thrust generation performance between various flapping frequencies at a 

particular wing design. 

• Comparison of thrust generation performance between wings of various designs against various 

flapping frequencies. 

• Comparison of thrust performance between the load cell measuring setup and swing method. 

• Comparison of lift generation performance between wings of various designs at different 

flapping frequencies. 

• Investigation of lift generation between wings of different designs at various phase angles. 

Thrust generation tests are done using the load cell setup method on the three different wing 

designs. For each wing design, three different flapping frequency staring from low, then medium and 

lastly to high are evaluated. 

It is observed from Figure 33 that the thrust tends to produce four peaks. This is due to the motion 

of flapping wings. For each test, thrust performance is recorded in terms of two flapping cycles that 

consist of upstroke, downstroke, upstroke and downstroke motion, which explains the four peaks that 

are captured in the graph. 

As mentioned in earlier, negative values are obtained when the load cell is under compression. 

Since the load cell is experiencing compression throughout the flapping period, it means that thrust is 

always being generated throughout the flapping cycle. More thrust is generated on the downstroke as 

compared to upstroke. 
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Apart from that, the slight periodic nature of the thrust is due to the inertial effects of the flapping 

mechanism. In the graphs above, the inertial effects have not been removed. When flapping with the 

test set up as described earlier, some inertial effects were present in the thrust direction. This is 

because the clearances between the flapping mechanism and the test assembly did not purely constrain 

the flapping in the vertical direction. 

3.6. Thrust Comparison between Wings of Various Design 

It can be observed from the results as shown in Figure 34 below that Orcon Flat wing has a  

better thrust generation performance as compared to the rest of the wing designs. It is interesting to 

note that the thrust for the Orcon flat wing resulted in a linear relationship when compared against the 

flapping frequency. 

 

Figure 34. Total average thrust against flapping frequency for various wings. 

The flapping wing mechanism constantly appears to produce thrust. The reason for this is that the 

wing is constantly changing its shape and angle of attack dynamically. On the downstroke the wing is 

pitched down, forcing air in the −Y direction, while in the upstroke the wing sweeps forward and up, 

minimizing the movement of air in the direction causing negative thrust. For both cases the thrust is 

relatively constant throughout the cycle. The magnitude of the thrust appears to slightly increase for 

the higher frequency. 

Orcon Flat wing is much flexible than the other wing designs. Flexible wings can attain efficiency 

as more elastic the wing is, the more thrust produced and Orcon material is used to achieve a minimum 

weight. It is observed that PET cambered thin wing has a slightly slower flapping rate. It is because the 

weight of the flapping mechanism with that pair of wings on is 1.6 N, which weights the highest and 

tends to have more inertia. Hence, the motor will require more torque to drive the wings. With the 

same torque, heavier wing will have slightly slower flapping rate which results in a lesser thrust as 

compared to the Orcon Flat wing. 
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3.7. Thrust Comparison between Load Cell Setup and Swing Method 

Swing angle α is the angle between the initial position and equilibrium position of the prototype 

ornithopter, and is determined from digital camera images. As discussed, the thrust produced by the 

ornithopter can be calculated using Equation (5). Table 2 below shows the comparison of thrust results 

obtained from the various wing designs at three different flapping frequency. 

Table 2. Comparison of thrust between load cell and swing method. 

Parameter 
Flapping Mechanism with 

PET Cambered Thin Wing Orcon Cambered Thick Wing Orcon Flat Wing 

At Low Flapping Frequency 

Swing Angle (α) 14° 12° 15° 

Weight (N) 1.6 1.53 1.47 

Swing Method Thrust T = Wsinα 0.387 0.318 0.38 

Load Cell Measurement  

Thrust (N) 
0.343 0.305 0.344 

At Medium Flapping Frequency 

Swing Angle (α) 16° 18° 20° 

Weight (N) 1.6 1.53 1.47 

Swing Method Thrust T = Wsinα 0.441 0.472 0.503 

Load Cell Measurement 
0.438 0.452 0.481 

Thrust (N) 

At High Flapping Frequency 

Swing Angle (α) 22° 28° 28° 

Weight (N) 1.6 1.53 1.47 

Swing Method Thrust T = Wsinα 0.599 0.718 0.69 

Load Cell Measurement Thrust (N) 0.555 0.719 0.67 

Lift generation tests are done using the load cell setup method as mentioned earlier on three 

different wing designs. Three sets of wings are tested at three different flapping frequency staring from 

low, then medium and lastly to high, and the lift force is compared at each speed. As the flapping 

mechanism is moving in the ±Y direction, the load cell is under both compression and tension, which 

resulting in negative and positive values respectively displayed on the digital panel. This is due to the 

matter of fact that a flapping wing is an aerodynamic machine with two strokes, the upstroke and the 

downstroke. During the upstroke, the flapping mechanism will be “pushing” at the load cell, which 

results in a compression at the load cell and negative lift values will be displayed. During the 

downstroke, lift is generated and the flapping mechanism will be “pulling” the load cell, which results 

a tension at the load cell and positive lift values will be shown. 

The first wing design to test is the PET cambered thin wing and the plots in Figure 20 shows the lift 

against a period of time of 10 full flapping cycle for three different flapping frequency. 

It is observed from Figure 35 that as the flapping frequency goes higher, the lift is slightly increased. 

The average lift force generated during the low, medium and high flapping cycle are −0.196, −0.14 and 

−0.218 N respectively. Figure 36 shows the amount of lift force generated at different angles for low 

flapping frequency. 



Aerospace 2015, 2 257 

 

 

Upstroke 

Downstroke 

 

Figure 35. PET cambered thin wing lift against time (10 full cycles). 

Upstroke 

Downstroke 

 

Figure 36. Average lift Force vs. angle (PET cambered thin wing). 

From the figure above, the results are consistent with the research made as discussed in earlier 

section that lift is generated at the down stroke, which reaches the maximum lift of 1.38 N at about  

0° to −10° angle. However, the minimum lift of −1.92 N is reached when the flapping wing is on its 

upstroke. Note that the peak negative lift is greater than the peak positive lift, thus indicating that no 

net lift is generated. 

The second wing design to test is the Orcon cambered thick wing and the plots in Figure 37 shows 

the lift against a period of time of 10 full flapping cycle for three different flapping frequency. 

It is observed from the figure above that the faster the flapping frequency, the higher the lift is 

generated. The average lift force generated during the low, medium and high flapping cycle are −0.23, 

−0.26 and −0.3 N, respectively. Therefore, it is also observed that faster the flapping frequency will 

result a higher negative lift force value. Figure 38 shows the amount of lift force generated at different 

angles for low flapping frequency. 
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Figure 37. Orcon cambered thick wing lift against time (10 full cycles). 

Upstroke 

Downstroke 

 

Figure 38. Average lift force vs. angle (Orcon cambered thick wing). 

From the figure above, the result is similar to the PET cambered thin wing that lift is generated at 

the down stroke, which reaches the maximum lift of 1.46 N at about 0° to −10° angle. However,  

the minimum lift of −2.04 N is reached when the flapping wing is on its upstroke. Note that the peak 

negative lift is greater than the peak positive lift, thus indicating that no net lift is generated. 

The third wing design to test is the Orcon flat wing and the plots in Figure 39 shows the lift against 

a period of time of 10 full flapping cycle for three different flapping frequency. From Figure 39,  

it is observed that faster the flapping frequency, the higher the lift is generated. The average lift force 

generated during the low, medium and high flapping cycle are −0.07, 0.26 and −0.14 N, respectively.  

It is interesting to find that a small amount of lift is generated at medium flapping frequency. Figure 40 

shows the amount of lift force generated at different angles for low flapping frequency. 
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Figure 39. Orcon flat wing lift against time (10 full cycles). 

Upstroke 

Downstroke 

 

Figure 40. Average lift force vs. angle (Orcon flat wing). 

From these figures, the result is similar to the previous two tests that lift is generated at the down 

stroke, which reaches the maximum lift of 1.25 N at about 0° to −10° angle. However, the minimum 

lift of −1.66 N is reached when the flapping wing is on its upstroke. Note that the peak negative lift is 

greater than the peak positive lift, thus indicating that no net lift is generated. 

3.8. Comparison of Lift between Wings of Various Design 

Table 3 shows that the only wing design that produced lift is the Orcon flat wing flapping at 

medium speed. However, most of the data obtained in this lift test has showed that lift forces produced 

are generally negative. This means that the prototype ornithopter will not be able to sustain a flight in 

the air. The Orcon flat wing has shown potential in generating lift with the most lift produced as 

compared to the rest of the wings. This may be due to the advantage of its light weight and flexibility 

of wing design. Having a lighter weight will actually allow the flapping mechanism to flap the wings 

faster. Therefore, improvements and modification are to be made to the wing design in order to 

produce the sufficient lift to sustain a flight. 
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Table 3. Comparison of lift forces. 

Type Low Speed (N) Medium Speed (N) High Speed (N)

PET Cambered Thin Wing −0.196 −0.140 −0.218 
Orcon Cambered Thick Wing −0.225 −0.256 −0.305 
Orcon Flat Wing −0.075 0.264 −0.142 

Figure 41 below shows the cross section view of the three various wing designs. 

 Wing Designs  Cross-Section View 

1. PET cambered thin wing 

 

2. Orcon Cambered Thick Wing 

 

3. Orcon Flat Wing  

Figure 41. Cross-section view of the three different wing designs. 

The next few figures (Figures 42–46) will show the investigation of phase angles against the lift 

generation for the three different wing designs at various flapping frequency. The first wing design to 

be discussed is the PET cambered thin wing, followed by the Orcon cambered thick wing and lastly 

the Orcon flat wing. 

It is observed from the previous figures that as the flapping frequency increases, there is a transition 

from a “smooth circular” graph to a “figure-of-eight” graph. An example of the lift generation from the 

Orcon flat wing flapping at the medium frequency graph as shown below, during the initial 

downstroke, there is a sudden rise in lift until it reaches its peak. When the lift reaches its peak 

somewhere around 30°, it is noticed that constant lift is produced until it reaches at an angle of 0°.  

This could be the leading edge vortex (LEV) that causes it. It appears that LEV can enhance lift by 

attaching the bounded vortex core to the leading edge during wing translation. The vortex, formed 

roughly parallel to the leading edge of the wing, is trapped by the airflow and remains fixed to the 

upper surface of the wing. As air flows around the leading edge, it flows over the trapped vortex and is 

pulled in and down to generate the lift. 

There are two routes that can be seen from the graphs, the first route which is the positive angle 

transit to negative angle (Downstroke) and the second route is the reverse of the first route (Upstroke). 

From Figure 46, the net lift can be easily seen by looking at the difference between the two routes. 
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(c) 

Figure 42. Phase angle vs. lift for PET cambered thin wing. (a) Low speed;  

(b) medium speed; (c) high speed. 
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Upstroke 

Downstroke 

 
(c) 

Figure 43. Phase angle vs. lift for Orcon cambered thick wing. (a) Low speed;  

(b) medium speed; (c) high speed. 
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(c) 

Figure 44. Phase angle vs. lift for Orcon flat wing. (a) Low speed; (b) medium speed;  

(c) high speed. 
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Figure 45. Phase angle vs. lift for Orcon flat wing flapping at 2.7 Hz. 

Net  Lift

 

Figure 46. Net lift generation. 

4. UGS Flapping Wing MAV Prototypes 2 and 3 

With the lesson learnt on the materials from the first prototype obtained in the previous section,  

and from other literatures ([29–33]), we designed, built and flew another two flapping wing MAVs 

using fabrication method such as laser cutting and Rapid Prototyping. 

4.1. Prototype 2 

Our flapping wing MAV would be based on an albatross-like design. In addition to the results 

shown above with inspiration from other ornithopter-like MAVs (e.g., Delfly [34,35]). We introduced 

additional design criteria, e.g., it has to be lightweight, simple and yet strong enough to withstand the 

stress of the flapping motion and the crash landings during test flight. Simplicity is the key here as 

most of the components that would be used would be from hobby shops. 
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4.1.1. Flapping Wing Mechanism 

The flapping wing mechanism function is to convert the motor’s rotary motion into flapping 

motion. It is the most important component of the MAV thus much research was done to assess the 

many different designs available. Generally the mechanism design is about the same to each other with 

only slight modifications. 

Staggered Crank Design 

The staggered crank design in Figure 47 is the most basic of the flapping wing design [36]).  

The connector rods are staggered in a measured distance and angle to ensure that the left and right 

wing are flapping symmetrically. This design is favoured by a hobbyist who wants to attempt to make 

their own Ornithopter using household items. Modifications have to be made so that the motor can be 

used instead of a rubber band as its power source. 

 

Figure 47. Staggered crank. 

Single Gear Crank Design 

The single gear crank design in Figure 48 taken from University of California Biomimetic 

Millisystems Lab [37], looks simple however it is more complicated than it seems. Figure 48 shows 

the wings at the same level. The center point where the connector rod and the wing hinges are 

connected to each other has to expand and contract as the mechanism flaps. Contracting and expanding 

at a very high frequency could result in component failure. 

 

Figure 48. Single gear crank. 



Aerospace 2015, 2 266 

 

 

Dual Gear Crank Design 

Figure 49 shows the dual gear crank design from similarly used in the Festo’s SmartBird [38].  

It features two gears that controls each wing hinges separately. There are different variation to the 

drivetrain design. The one shown in Figure 49, uses the pinion wheel to drive both the secondary 

gears. The secondary gears will rotate in the same direction with each other. In the other design,  

the pinion gear rotates the secondary gear and this secondary gear rotates another secondary gear.  

The secondary gears would rotate counter clockwise to each other. This design is much simpler to 

implement and reduce the wing symmetry misalignment. 

 

Figure 49. Dual gear crank. 

Transverse Shaft 

The transverse shaft design shown in Figure 50 is the other variation of flapping mechanism  

from [39] which allows for the most symmetrical flap, however, it is the heaviest and the most 

complicated design. The rotating gears and the flapping wings are not in the same plane thus the 

connector rod has to be able to rotate. The connector rod has a ball bearing inside and this adds weight 

to just the component itself. The number of gears used in this design is more than any other design. 

The transverse shaft design is usually used for a bigger MAV design where weight could be overcome 

by large wings. 

 

Figure 50. Transverse Shaft. 
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4.1.2. Tail 

The tail design varies with its intended use. Some of the design uses it only for stability but in most 

cases they are used for control as well. For stability, the tail is tilted upwards so that it the downward 

force of the tail would force the nose to pitch up. The angle is typically around 15° or less. For control 

the more common designs implemented are the swinging tail (Figure 51) and the tilting tail (Figure 52) 

due to their simplicity. The swinging tail works by causing a rolling moment to when it swings to 

either side. The tilting tail works like a rudder, when it tilts to the right it causes the MAV to yaw to 

the right. A horizontal stabilizer tail design unlike the other two designs could provide additional 

control. It can act as an elevon, providing pitch and roll control. However, this design requires two 

servos to be used and a more complicated design. 

 

Figure 51. Swinging tail. 

 

Figure 52. Tilting tail. 

4.1.3. Body 

The body is the part where the components like the electronic speed controller, the receiver and the 

battery is located. The body also has to hold all the components from moving around too much. This is 

to prevent the shifting of the center of gravity of the MAV. The components would each be taped 

separately and then hooked to the body by Velcro tape. As the design would not require much space 

the body design could be hollowed. Figure 53 shows the body design with holes in them. This 

significantly reduces the total weight of the body. The body design had to be glued to the flapping 

mechanism at a 90° angle. Small triangles were added in between them as a support structure to 

prevent the body and the flapping wing mechanism from snapping off. 
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Figure 53. Body design. 

4.1.4. Gear and Motor Selection 

The gear design was dependent on the motor that is going to be used. The motor rating affects the 

gear ratio which then affects the flapping frequency. The motor that is used is a brushless outrunner 

motor. Outrunner motors have lower KV ratings meaning they have more torque but less speed. More 

torque is needed than speed for this project as the motors have to turn the gears to flap. The motor also 

needed a front mount so that it could be mounted easily to the flapping mechanism frame instead of a 

separate mount just for the motor. This narrows down to two motors as shown on the Table 4. 

Table 4. Motor specification comparison. 

Specification/Motor Motor 1 Motor 2

Motor Rating (KV) 1200 2800 
Load Speed (rpm) 5800 8350 
Voltage (V) 11.1 4 
Weight (g) 38 25 

Motor 2 was chosen as it was lighter and requires lesser voltage. Voltage is linked to the number of 

cells that the Lithium–Polymer (Li–Po) batteries has and the rating of Electronic Speed Controller 

(ESC). Each cell on a battery is 3.7 V so the higher the voltage the heavier the battery. It is the same 

for ESCs, higher ratings means bigger and heavier ESCs. 

4.1.5. Fabrication and Material 

There were three materials being considered initially: Carbon fiber, balsa wood and acrylic.  

The first material of choice was to use carbon fiber due to it being strong and light. As it turns out, 

CO2 laser cutting a carbon fiber sheet would burn the material. Balsa wood is very light and easy to 

cut; however, due to complex design of the MAV it was decided that it was not a suitable material. 

Hence, acrylic was selected. Acrylic is not as light and strong as carbon fiber however it can use CO2 

laser cutting machine to do precision cutting. 
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4.1.6. CAD Design Dimensions 

In order to find out the total dimensions and the weight that is allowed for flight, a lift equation was 

used. Certain assumptions made before using this equation are as follows: 

1. The resulting lift would be higher in reality due to neglecting other flapping wing effects that 

contribute to lift when flapping. 

2. The coefficient of lift is independent of the location on the wing and time. 

From the assumptions made the equation for a rectangular wing shaped (of the same area) lift could 

be expanded to [38,40]: 

2 2 2 3
0 0

1

3LL f C c l= ϕ ⋅ π ⋅ ⋅ ⋅ρ ⋅ ⋅ ⋅  (7)

where φ0 is flapping angle, f is the flapping frequency, c0 is the chord length and l is the wing span 

length. CL is obtained from the CFD results in the previous section (Section 2). This equation is to be 

used as a rough estimate so that the dimensions and weight of the MAV could be measured. Table 5 

shows the results from using the equation. 

Table 5. Approximated lift generated. 

Parameters Values Unit 

Flapping Amplitude 70 deg 
Flapping Frequency 6.5 Hz 
Lift Coefficient 0.8 
Air Density 1.225 kg/m3

Chord Length 0.13 m 
Wing Span 0.3 m 
Lift 1.684 N 

CAD Design 

Using the dimensions above and the design criteria, a CAD design using SolidWorks was modelled. 

It would incorporate a dual gear crank and a horizontal stabilizer tail design. The dual gear crank was 

the simplest design with not much wing symmetry misalignment. The horizontal stabilizer tail design 

was chosen as it could provide both pitch and roll control. The initial design showed in Figure 54 

featured an articulated wing. This design was not used as there were too many moving parts in the 

design and may complicate things. Therefore the chosen design is the one shown in Figure 55. 

The total weight of the MAV was measured using one of the features in SolidWorks. Now the total 

weight of the MAV plus the components could be compared to the lift equation result. Table 6 shows 

the sum of all the component weights. The two measurements show that the weight of the MAV is 

below the total lift generated. An image of the assembled MAV is shown in Figure 56. 
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Figure 54. Articulated flapping wing. 

 

Figure 55. Single flapping wing. 

Table 6. Total weight of micro air vehicles (MAV). 

Components Values Unit

Brushless Outrunner Motor 25 g 
Radio Receiver 11.5 g 
Servos 9 g 
Li–Po Battery 15 g 
Electronic Speed Controller 10 g 
MAV Design 80.24 g 
Total Weight 150.74 g 
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Figure 56. Assembled flapping wing MAV. 

4.2. Prototype 3 

Learning from the prototype 2, some design considerations were made, i.e., (1) the flapping 

mechanism needs to be more simplified; (2) the number of moving parts need to be reduced;  

(3) the overall design has to be much smaller to reduce weight; and (4) changing the tail design to 

either a tilting or swinging tail would reduce the number of servos used which would reduce weight. 

4.2.1. Flapping Wing Mechanism 

The flapping wing mechanism for prototype 2 had too many moving parts and was not simplified 

enough. A simpler design was needed and thus another look at the single gear crank was taken.  

The design idea was to shift its fixed pivot point from being at the center of the wing to it being at the 

end of the two wing joints. Figure 57 shows this design. The changes made to its pivot point made the 

flapping mechanism worked properly. A simulation test was done using the software and it showed 

that it could hold at high frequency flapping and the flapping movement is synchronized. 

 

Figure 57. Prototype 2 flapping mechanism. 

4.2.2. Tail 

The previous prototype was using an elevon tail design which could provide pitch and roll control 

however it requires two servos to be used. For weight reduction and simplicity sake, a simple tilting 

tail would be used instead. The tail frame would be made up of carbon rods which would be fixed to 

the tail piece and covered with Ripstop. The tail piece has a ball bearing inside it so that the tail could 

tilt easily. Figure 58 shows the tilting tail design. 
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Figure 58. Prototype 2 tail. 

4.2.3. Body 

In previous design the body was made out of acrylic and had to be solvent weld together.  

The design was simpler to implement however it was bearing a lot of weight. In order to reduce more 

weight, carbon rods would be connected to the front piece and the tail piece to form a rigid triangle 

frame. The frame would then be covered with Ripstop and Velcro tape to secure the components to the 

platform. Figure 59 shows the CAD design of the body. 

 

Figure 59. Prototype 2 body. 

4.2.4. Gear and Motor Selection 

The new flapping mechanism uses only two gears (Table 7). This allows more fine tuning to the 

gears which allowed a gear ration of 5.5:1. This was acceptable as the newer motor has a slower load 

speed but higher torque. The new gear is specially hollowed at the center for a ball bearing to be 

inserted so that it can spin freely around the connecting part of the front piece. 

Table 7. Motor specification comparison. 

Specification/Motor Motor 1 Motor 2

Motor Rating (KV) 1700 2800 
Load Speed (rpm) 7800 8350 
Voltage (V) 7 4 
Weight (g) 20 25 
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4.2.5. Fabrication and Material 

In the first design, a laser cutting machine was used. For this second prototype, a Rapid Prototyping 

Machine or also known as a 3D printer would be used. A 3D printer allows for more freedom of 

design. An extruded part could be combined during the design process easily, compared to assembling 

the parts after it has been fabricated. The chosen material was PLA as the design such as the gears 

needed the material to be strong and durable. 

4.2.6. CAD Design Dimensions 

Figure 60 shows the completed CAD design of prototype 3. Table 8 below shows that the lift is 

more than the weight thus the prototype fabrication can proceed. 

 

Figure 60. CAD design prototype 2. 

Table 8. Lift and weight comparison. 

Component Weight (g) Parameter Value 

Brushless Outrunner Motor 20 Flapping Amplitude (degree) 50 
Radio Receiver 11.5 Flapping Frequency (Hz) 10 
Servos 4.5 Lift Coefficient 0.8 
Li–Po Battery 4 Air Density (kg/m3) 1.225 
Electronic Speed Controller 10 Chord Length (m) 0.1 
MAV Design 14.77 WingSpan (m) 0.15 
Total Weight 64.77 Lift (g) 977 

4.2.7. Flight Test 

Figure 61 shows the assembled prototype. Similarly a dry run test was done for the flapping 

mechanism. Everything was working normally. Next it was the tethered flight. The MAV was also 

able to move in a circular motion. Finally the free flight test was carried out via remote control.  

The MAV was held until it flapped at high frequency after which it was hand thrown in the forward 

direction. After it was thrown, the MAV continued to fly forward while slowly pitching upwards.  
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The left and right controls were tested and the MAV showed that it could maneuver left and right.  

The last test was the pitching control. Increasing the rpm of the motor pitches the MAV upwards and 

decreasing the rpm pitches the MAV downwards. The test was a success, the MAV showed that it can 

fly and was able to be controlled remotely. The video clip can be seen at Youtube website: 

http://youtu.be/hp-Kpw6sll0. 

 

Figure 61. Assembled prototype 2. 

Figure 62 shows the flight trajectory captured using Optitrack in our lab. The left figure shows our 

intended flight path. The right figure shows the actual trajectory of its body. The up/down motion due 

to the upstroke and downstroke of the wings at 10 Hz flapping frequency has been filtered out using 

notch filter, hence, the trajectory appears smooth as shown in the right figure. The gradual increase 

during 1.0 < t (s) < 2.0 is due to initial throw to gain altitude and speed by the pilot. Subsequently,  

(2.5 < t (s) < 7) the flapping wing flies at steady altitude and land (t > 7 s). It is clear that the second 

prototype was able to take off, climb, cruise and land in flapping mode successfully. 

Besides unstable flight, certain segments of the flight test were captured well by the Optitrack 

system. It was then imported into MATLAB. In Figure 62 below the plots on the right segment was 

captured from three different test flights while the plots on left segment was obtained from the 

Simulation performing similar outcomes of the captured data. 

 

Figure 62. Flight trajectory of the second flapping wing prototype using Optitrack.  

Left: Intended flight path simulation; Right: Actual flight path captured by Optitack. 
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5. Conclusions 

This paper reports the research and development of our in-house near-resonance type albatross-like 

flapping wing models for MAV. The flapping wing models mimic the long-distance migratory bird, 

similar to albatross. CFD results show that the albatross generates lift on its wing mainly by vortex lift 

mechanism. They do maneuvering by flapping its entire left and right wings at different amplitudes 

than using (flapping or twisting) its wing tip only. During forward motion, the wings produce a largely 

tilted leading edge vortex ring. The flight dynamic parameters is estimated, and used as guidance to 

predict flying characteristics of this type of ornithopter-like flapping wing MAV. With CFD results, 

we designed, built and flew two near resonance flapping wing MAVs. To test the flapping wing 

mechanism, a test cell was made to house the prototype and the load cell. When measuring the 

aerodynamic forces produced in the experiments, it was found that thrust was constantly generated, 

while lift was periodic in nature following a sinusoidal trend. It was found that lift is predominantly 

generated on the downstroke, with negative lift being generated on the upstroke. It was found out that 

the thin wing has both lift and thrust produced on than the PET film and thick cambered wing. Flexible 

wing generated higher velocities, frequency, lift and thrust. In observing the wing angle motion, it was 

found out that the lift occurs most when the wing is at 0° and −10°, while negative lift at 30° and 45°. 

The design sections of prototypes 2 and 3 have been discussed and evaluated the conceptual 

designs. There were two fabrication methods that were used, laser cutting and 3D printing. Although it 

seemed that the 3D printing was a better fabrication method as it allows for more complicated design it 

does has its limitations in the area of melting point and breaking strength. The third prototype could 

withstand the high frequency flapping and near resonance amplitude as designed. With remote control, 

the third prototype was able to take off, climb, cruise and land in flapping mode successfully. 
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