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Abstract: This article describes an image processing algorithm to identify the size and
shape of a spherical reflecting celestial body prominently depicted in images taken from
a spacecraft with an optical camera, with the purpose of estimating the relative distance
between target and observer in magnitude and direction. The approach is based on the
fact that in such images, the pixels belonging to the target’s hard edge have the highest
values of the image derivative; therefore, they are easily recognizable when the image is
processed with a gradient filter. Eventual extraneous points polluting the dataset (outliers) are
eliminated by two methods applied in sequence. The target center and radius are estimated
by non-linear least squares using circular sigmoid functions. The proposed image processing
has been applied to real and synthetic Moon images. An error analysis is also performed to
determine the performance of the proposed method.
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1. Introduction

Autonomous positioning has been a topic of research for many years [1], but its implementation
has proven more complicated than autonomous attitude determination. As missions become more
complex, it is desirable for a spacecraft to be able to estimate its position independently from ground,
if not all of the time, at least as a back up in case of a loss of communication, either accidental or
foreseen. In particular, spacecraft orbiting or en route to a satellite or a planet other than the Earth
are periodically out of line-of-sight from any ground station and, thus, have to rely on their on-board
capabilities. Utilizing pre-existing sensors to obtain a navigation solution is an attractive solution to
the backup autonomous navigation problem. Among those, optical cameras have been a mainstay of
spacecraft sensor arrays since the beginning of space exploration. The availability of onboard cameras,
together with the advancement of the fields of image processing and feature identification, has led to the
proposed approach of an algorithm for autonomous spacecraft positioning via analysis of optical images
of a reflective celestial body in the proximity of the spacecraft itself.

The first optical navigation approaches used cameras to take pictures of target illuminated bodies
against a background of cataloged reference stars. This technique was first proposed in the 1960s
(see [2]). This approach was then adopted in six Voyager flybys of the outer planets [3,4] and Cassini’s
orbital operations at Saturn [5]. In particular, for the Voyager II Uranus approach and encounter, [3,4]
presented the optical observables. These observables were based on measuring the angular distances
between stars and the observed body (considered as a circle) and require the use of two cameras.
The approach proposed in this paper uses a single camera and does not use observed stars. The main
reason is the optimal observation of stars and illuminated bodies is associated with different exposures
(integration time). To observe stars and bodies, two cameras are needed.

The work in [6] adopts the Canny edge detection algorithm to identify the Moon edges. Then,
the potential false edges are removed, and the limb profile is identified by the Levenberg–Marquardt
ellipse least-squares algorithm. The line-of-sight (LOS) vector to the centroid of the observed object
is then obtained. The approach taken in this study is different and optimized for use in small on-board
computers. More accurate edge detection algorithms and optimization techniques are certainly available
in the literature. Many alternative approaches to better select contours (hard edge pixels) do exist.
Laplacian, Sobel, Roberts and Prewitt operators, as well as Gaussian derivatives and Gabor filters are
certainly more accurate (while computationally more intensive) than the proposed simple numerical
gradient, and an extensive literature exists on the comparison subject. Pushing the accuracy to select
better pixels has been analyzed, and it has been found unnecessary, because the final accuracy (what
really matters) is provided by the results of nonlinear least-squares estimation using circular sigmoid
functions. To avoid computationally-intensive approaches, simple image differentiation is here adopted
to select the pixels of interest. Using these pixels, accurate Moon radius and centroid are estimated by a
fast nonlinear least-squares using circular sigmoid functions.

The works in [7,8] contain a thorough comparison analysis between various different mathematical
approaches to perform the best fitting of circles and ellipses. While this study deals with the same
problem, it does not follow the above approach for the following two reasons: (1) the image-plane
ellipse eccentricity of the observed Moon is really small (almost negligible) for a typical imager; and (2)
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when the ellipse eccentricity is so small (as in our physical example), the least-squares estimation of the
ellipse orientation (and the difference of the semi-axes) is unreliable (unobservable parameters). In this
case, circle least-squares estimation is numerically more stable.

The pin-hole camera model performs gnomonic projection, and this projection introduces radial
distortion. This means that the spherical Moon is observed as an ellipse. However, using the 1944×2592

Aptina imager with a 0.0022-mm pixel size and 16-mm focal length (this allows one to observe the Moon
for an entire cislunar trajectory), the worst radial distortion (the Moon is observed as far as possible
from the optical axis) is less than one pixel. These (really small) radius and centroid corrections (due
to this small radial distortion) are easy to implement. This correction depends on the specific imager
adopted. The elliptical best fitting approach is discouraging because (for such small eccentricity) the
ellipse orientation becomes unobservable. Analytical studies and extensive numerical tests are done to
support the proposed approach.

This work refines a previous study [9], focusing on the analysis of Moon images, both real and
synthetic. However, the basic idea is applicable to any spherical reflective celestial body within
relative proximity to the spacecraft. In this study, the Moon radius and centroid is estimated in two
steps. First, Taubin’s technique [10] has been adopted just to obtain a crude first estimation. This first
estimation is then used to select the set of pixels between two radii across the Moon’s hard edge, and
it is used (as the initial guess) for the subsequent accurate iterative nonlinear least-squares estimation
approach using circular sigmoid functions. Circular sigmoid functions accurately describe the actual
gray tone smooth transition at the hard edge. During this nonlinear least-squares, the smoothing
parameter (k) is also estimated.

The image processing approach is described in detail in the following sections. Further, several
application examples are illustrated, together with an error analysis.

2. Concept

The starting point of the method is the realization that in an image taken by a spacecraft of a reflective
celestial body, if the illumination conditions are right and the pointing appropriate, the target will figure
prominently in the image, against a mostly black background. Therefore, processing the image with a
gradient filter, pixels belonging to the hard edge have the highest magnitudes, which makes them easily
identifiable. These points can then be best fitted to estimate the apparent target radius and center and,
thus, the relative distance between observer and target. Several steps need to be taken to ensure that the
data points are properly selected and that the best fitting is accurate enough. The proposed algorithm can
be summarized as follows:

• The geometrical illumination conditions and the expected size of the observed body are first
computed. These data allow one to determine whether the target is sufficiently illuminated and
of sufficient size to perform the estimation process.
• The image differentiation is obtained with a fourth order Richardson extrapolation.
• The pixels of the gradient image are sorted in descending mode. Eventual outliers present in this

set, due to noise or background stars, are then eliminated by two sequential filters.



Aerospace 2015, 2 438

– The first filter validates an edge pixel based on eigenanalysis of a small gradient box around
the pixel and by investigation of the same box in the original image.

– The second filter is a modified version of the RANSAC algorithm.

• The edge points selected are then used to obtain the first estimate of center and radius. The Taubin
best fitting algorithm [10] is used.
• The first estimate is refined via non-linear least-squares using a circular sigmoid function to

describe the edge transition.

Required inputs to the image processing software are (see Figure 1):

• Camera: This includes focal length (f ) in mm and imager data (number and size of rows and
columns).
• Image: This is the image (made of Nr rows and Nc columns) taken at the specified time.
• Time: This is the time instant at which the image is taken. This time is used to compute the Moon

and Sun positions in J2000.
• Position: This input consists of a raw estimate of the spacecraft position, E{r}, and its accuracy,
σr. These data are used to estimate the Moon’s radius on the imager and the expected illumination
condition. This position estimate is very rough, having typical an accuracy of less than 10,000 km.
• Attitude: This input consists of the spacecraft attitude, E{q}, and attitude accuracy, σq. These

data are used to compute the spacecraft-to-Moon vector in the J2000 reference frame.

Figure 1 illustrates the algorithm.

Figure 1. Image processing general flowchart.

Input of the proposed approach are: (1) the time, (2) the camera focal length (f ), (3) the pixel size
(d), (4) the Nr ×Nc image, and (5) an rough estimation of the position (E{r0}) with it’s accuracy (σr).
From time the inertial positions of Moon (rm) and Sun (rs) can be computed. Using the knowledge
of the camera parameters and E{r0} it is possible to derive important internal parameters, such as the
expected Moon radius (in pixel) on the imager and the observed body illumination conditions. If the



Aerospace 2015, 2 439

image is synthetic (e.g., generated by EDGE), then a simple convolution filter will smooth the image
from pixellation. The image gradient is then generated using numerical differentiation and theN highest
derivatives are selected (most of them belong to the Moon edge while a few are outliers due to the
Moon topology). The outliers are then eliminated by two sequential filters, a box-based one followed
by RANSAC. Once the outliers are eliminated a preliminary estimation of the Moon center and radius
can be performed by least-squares using Taubin approach. Using this initial estimate, a set of pixels
across the estimated Moon edge and angularly close to the Sun direction in the imager, are identified.
These pixels are then used to obtain an accurate estimation of the Moon center and radius using circular
sigmoid function as reference model. This allows us to estimate the vector to the Moon in the camera
reference frame (r̂b

0). Finally, using the camera attitude (q̂0) is then possible to compute the vector to the
Moon in the inertial reference frame (r̂J2000

0 ).
The first check on the data is done using the rough expected value for the parameters, and the

following section describes these calculations done for the Moon; however, they are applicable to
any (almost) spherical celestial body. The following is based on geometric considerations alone and,
thus, does not involve processing of the image data. This is why the parameters are described as
“expected” values.

3. Expected Radius and Illumination Parameter

As the relative positions of observer, target and light source change, the visible part of the target
varies. These changes can lead to cases in which the target is too thin or completely dark from the
point of view of the observer, and therefore, no analysis can take place. The algorithm catches these
degenerate cases before they can cause critical errors further down in the process. Two parameters
are introduced to describe the target’s shape (from now on, for simplicity, the term “target” will refer
just to the illuminated portion rather than the whole object, as this is what the camera is actually able
to observe): one is the expected radius of the target pr, and the other is the cross-length measured at
its thickest point pi (see Figure 2), which is referred to as the illumination parameter. Both of these
distances are measured in pixels, and they are estimated from the camera parameters (focal length f ,
pixel size d) and the observation geometry. For this purpose, the observer’s position is needed; however,
even a high uncertainty (σD ≥ 10,000 km) has a very small impact on pr and pi, as long as the spacecraft
is further from the target than a certain threshold. Such a rough position estimate can be considered
known a priori to start the analysis.

Figure 2. Expected Moon radius (pr) and illumination parameter (pi).
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To begin, the expected radius and illumination angle are computed as:

pr =
f

d
· Rm√
|ro|2 −R2

m

(pixels) (1)

ϑ = arccos(r̂s · r̂o). (2)

where r̂s is the Sun-to-Moon rays’ direction, ro the observer-to-Moon vector and Rm the Moon radius.
The expected radius is of great importance, not only because the illumination parameter is measured in
relation to it, but also because it predicts the overall size of the target in the image, which is used in
subsequent parts of the algorithm. The value of pi is determined differently depending on the values of
pr and ϑ.

3.1. Full or New Moon

With reference to Figure 3, the angle αm can be derived from simple trigonometry:

|ro| sinαm = Rm. (3)

This equation also allows one to define a critical distance, rcr, as the distance at which αm = ϑ:

rcr sinϑ = Rm (4)

Whether |ro| is greater or smaller than rcr, together with the value of ϑ, determines the case, according
to the following scheme:

if |ro| < rcr and

{
ϑ < π/2 then pi = 2pr (Full Moon)
ϑ > π/2 then pi = 0 (New Moon)

(5)

Figure 3. Full/new Moon geometry.
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3.2. Gibbous Moon

The gibbous Moon occurs when:

|ro| > rcr and ϑ <
π

2
. (6)

For this configuration (see Figure 4), pi can be computed by finding the auxiliary variables x and αe:

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (7)

sinαe = Rm
cosϑ

x
→ αe (8)

which allows one to find the “excess” factor pe:

pe = pr
tanαe

tanαm

(9)

and therefore,

pi = pr + pe =

(
1 +

tanαe

tanαm

)
pr (10)

Figure 4. The gibbous Moon geometry.

3.3. Crescent Moon

The crescent Moon occurs when:

|ro| > rcr and ϑ >
π

2
(11)
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In this case (see Figure 5), the two variables x and αe can be found according to:

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (12)

sinαe =
− cosϑ

x
Rm → αe (13)

and therefore:

pi = pr − pe =

(
1− tanαe

tanαm

)
pr (14)

Figure 5. The crescent Moon geometry.

Differentiating among these cases is important to properly initialize the algorithm. For this purpose,
the analytical relations described above are supplemented with thresholds to ensure that the system
works properly; for instance, when pi is lower than a certain value, the crescent is deemed too thin to be
a reliable source of information, and the target is considered invisible.

3.4. Special Case: Cropped Target

It is also possible for the target not to be completely within the field-of-view. The images’ boundaries
are set with a rectangular mask proportional to the dimensions of the image itself. At each step, the
cumulative brightness within the mask is computed and compared with a threshold value, for example
a value tested to provide good performance is 1/10 of the maximum gray tone. From the amount of
threshold crossings, it is possible to determine if and how many times the target has been cropped by the
frame. An example application is depicted in Figure 6.
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Figure 6. Processing of a cropped image. (a) Cropped image of the Moon; (b) Results of
the cropped detection.

The values of pr and pi are used to initialize the following parameters:

• Number of pixels in the gradient image to be analyzed (N ): This number has to be proportional
to the length of the visible Moon arc. However, at this stage, it is impossible to know the angular
width of the target; moreover, the presence of the terminator introduces a number of high contrast
pixels that are not part of the Moon edge. Ultimately, N is chosen to be proportional to pr and pi,
according to the following:

N = k πpr (15)

where k is a factor that varies linearly with pi, from a minimum value (two) when pi ≤ 10 to a
maximum equal to twice the minimum, when pi ≈ 2pr.

k = 2

(
1 +

pi − 10

2 pr − 10

)
(16)

• The size of the box for box-based outliers removal (s): Because of the way the code works, the box
has to be chosen small enough that the segment of the Moon edge within the box appears almost
straight. Extensive testing has shown that the best choice is to take s = d0.8pre, with a lower limit
of s = 3 and an upper limit of s = 21.
• RANSAC maximum distance: This is chosen equal to dmax = 5 pr/100.
• Number of tests for RANSAC (NT ): RANSAC randomly selects for testing a subset of all of the

possible triplets of pixels remaining after the box-based outliers’ removal. Testing has shown that
the best choice is to have:

NT =
1

5

(
N1

3

)
=
N1 (N1 − 1)(N1 − 2)

30
(17)
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where N1 is the number of selected pixels remaining after the box-based outliers’ filter rejection.
The value of 500 is enforced as an upper limit.
• Convergence tolerance for circular sigmoid function (CSF) least squares [9]: At the k-th iteration,

the convergence check is performed on the solution variation ∆Xk =
√
|∆r2

k + ∆c2
k −∆R2

k|.
Assuming the requirement accuracy is 0.3 pixel (in the center and radius estimation), the CSF-LS
converge criteria is assumed to be 1/50 smaller than that, ∆Xmin = 0.3/50.
• The number of iterations for CSF least squares is Niter = 50.

As indicated in Figure 1, several checks are implemented throughout the code. Failure to pass any of
the tests causes the process to abort.

• Check 1 (after internal parameter computation):

1. The Moon is too small (apparent diameter less than a set number of pixels) or too big (the
Moon is completely or almost completely filling the image).

2. The Moon is new (or otherwise, its illuminated fraction is negligible) or out of frame
altogether.

• Check 2 (after box-based outlier removal; see Section 4.2):

– Too many outliers have been identified, leaving the pool of valid data below a set limit.

• Check 3 (after RANSAC-based outlier removal; see Section 4.3):

– Too many outliers have been identified, leaving the pool of valid data below a set limit.
– The estimated radii found by RANSAC are not consistent with the expected apparent radius

previously found.

• Check 4 (after Taubin; see Section 5.1):

– The radius found is not consistent with the expected value.
– The computed center position of the Moon is out of the imager and too far away form the

optical axis.

• Check 5 (inside and after CSF-LS):

– The maximum number of iterations is exceeded.
– The estimates of the radius and center are too different from the results of Taubin.

4. Gradient-Based Image Processing Algorithm

The gradient-based image processing approach is based on the expectation that the part of the image
with the strongest variation of gray tones is the Moon’s observable hard edge. Pixels with the highest
derivatives are the most likely to belong to the hard edge. However, the presence of bright stars, Moon
surface roughness and other unexpected objects within the field-of-view creates several bright gradient
pixels, which are not in fact part of the Moon hard edge. These points, called outliers, must therefore
be eliminated from the dataset prior to using a best fitting algorithm to determine the sought geometrical
properties. In this work, two separate outlier removal methods are implemented in sequence.
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4.1. Image Differentiation

The gradient of the discrete gray tone function is computed by numerical differentiation; in particular,
the gradient is computed using four-point central difference with a single Richardson extrapolation.

The row and column four-point central partial differences computed at pixel [r, c] are:
g′r(r, c) =

8[I(r + 1, c)− I(r − 1, c)]− [I(r + 2, c)− I(r − 2, c)]

12h

g′c(r, c) =
8[I(r, c+ 1)− I(r, c− 1)]− [I(r, c+ 2)− I(r, c− 2)]

12h

(18)

These derivatives are accurate with order h4, where h is the pixel dimension. The image gradient is
then computed as:

g′(r, c) =
√
g′2r (r, c) + g′2c (r, c) (19)

A single Richardson extrapolation requires computing Equation (19) one time with step 2h (getting
g′2h) and one time with step h (getting g′h). Therefore, the true derivative can be written as:{

g′|true = g′2h + c (2h)4

g′|true = g′h + c h4
(20)

Equating these two equations, we obtain:

g′h − g′2h = c h4(24 − 1) → c h4 =
1

24 − 1
(g′h − g′2h) (21)

and therefore:
g′|true = g′h +

1

24 − 1
(g′h − g′2h) (22)

An example of the application of a single Richardson extrapolation is done using the six-hump camel
back function:

f(x, y) =
x2

4

(
4− 21

40
x2 +

x4

8

)
+
xy

4
+ y2

(
y2

4
− 1

)
(23)

Using a single Richardson extrapolation a 4–5 orders of magnitude accuracy gain can be obtained.
In this specific example, central two points and central four-points provide 10−3 and 10−8 level accuracy,
respectively. However, when using Richardson extrapolation, central two-point and central four-point
provide 10−8 and 10−13 level accuracy, respectively. Because it provides almost the machine error
accuracy, the four-point central differentiation with Richardson extrapolation is selected to evaluate the
image gradient.

The image gradient pixels are sorted by gradient value in descending mode, and the outliers are then
eliminated with two methods discussed below.
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4.2. Box-Based Outlier Identification

The first approach is based on a local analysis around the pixel being considered as potentially
belonging to the target’s edge. A mask like the one in Figure 7, whose size depends on the parameter
pr, is centered on a candidate pixel. If the pixel does indeed belong to the target’s edge, then it is
likely to be part of a sequence of pixels of comparable brightness distributed along a preferred direction.
Moreover, the pixel should sit on the border between two areas where the gray tone “flattens” (the
inside and outside of the target) and which therefore should appear as dark in the gradient image. If the
pixel does not satisfy all of these conditions, it is rejected. To perform this analysis, first, the tensor of
inertia of the gradient image within the mask is computed, and then, the eigenvectors and eigenvalues are
found. The eigenvector associated with the minimum eigenvalue (continuous line direction in Figure 7) is
inclined by an angle γ with respect to the row axis direction and represents the direction of the supposed
edge. If γ mod π < π/2, then the farthest pixels from the edge line are those marked by “D”, while if
γ mod π > π/2, the farthest pixels are those marked by “U”. Several conditions have to be satisfied for
the pixel to be accepted:

• The ratio between the eigenvalues must be lower than a certain threshold, chosen experimentally
at 0.3. This indicates that the distribution of bright pixels has a preferential direction.
• The values of the gradient in the pixels furthest from the edge line should be small, as both should

be far from areas of variable brightness. Moreover, their gray tones should differ noticeably, as
one belongs to the target and the other to the night sky.
• For the pixels along the continuous line in Figure 7, the ratio of their gradient values should be

close to one (gmin/gmax > 0.6), as they both supposedly belong to the edge.
• For the pixels marked by “D” in the same figure, the ratio of their gray tone values should be close

to zero (gmin/gmax < 0.3), as one belongs to the night sky and the other to the target.

Figure 7. Mask for the box-based outlier identification technique (mask size: 7× 7).

4.3. RANSAC for Circle and Ellipse

The second technique is the standard RANSAC algorithm, which is an abbreviation for “random
sample consensus” [11]. It was developed for robust fitting of models in the presence of many data
outliers. The algorithm is very simple and can be applied in the fitting of many geometric entities, such
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as lines, circles, ellipses, etc. It is a non-deterministic iterative algorithm, in the sense that it produces a
reasonable result only with a given probability, which increases as more iterations are allowed. It works
by selecting random subsets of size equal to the number of unknown parameters and then checks whether
the remaining data points lie further than a certain threshold from the curve determined by the initial
subset. Repeating this process for many randomly-chosen subsets is likely to find and remove the
outliers. More formally, given a fitting problem with n data points and unknown m parameters, starting
with Nmin = n, the classic RANSAC algorithm perform Ntest times the following steps:

1. selects m data points at random;
2. finds the curve passing through these m points, thus estimating the associated m parameters;
3. counts how many data items are located at a distance greater than a minimum value dmin from the

curve; they are Nk;
4. if Nk < Nmin, then set Nmin = Nk.

The basic cycle is depicted in Figure 8.
Crucial to a successful implementation of RANSAC is the method used for the random selection

of subsets. A purely random selection approach may persist in choosing outliers, with a great waste
of computational time. On the other hand, a procedure based on deterministic inner loops can also be
inefficient, if by chance, one outlier is selected by the outmost loop. Therefore, as an improvement of
the basic method, a technique originally developed for pyramid star identification [12] has been adopted,
which always selects different subsets by continuously rotating the dataset indexes.

Figure 8. RANSAC flowchart.

5. Circle Best Fitting

Once the pixels in the image have been selected, the algorithm determines the geometric
characteristics of the observed body, that is apparent radius and center position within the image.
The problem of recognizing geometrical entities and reducing them to a minimal set of parameters,
sometimes called feature extraction, is very important in image processing for a number of applications in
computer graphics and computer vision. Consequently, a great amount of research exists on developing
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methods to efficiently and unequivocally recognize geometrical shapes within an image; in particular,
much literature is available regarding circle identification. Identifying geometrical figures within a
discrete representation of the physical world reduces essentially to a best fitting problem. Currently,
feature recognition techniques for conic curves fall within one of the following categories:

• Geometric fit: Given a set of n data points, iteratively converge to the minimum of:

Lg =
n∑

i=1

d2
i (x) (24)

where di are geometric distances from the data points to the conic and x is the vector of the
parameters to be found.
• Algebraic fit: di are replaced with some other function of the parameters fi, and thus, a new cost

function is defined:

La =
n∑

i=1

f 2
i (x) (25)

These functions typically are algebraic expression of the conic in question, which are usually simpler
than the expression for geometric distances.

Historically, geometric fit has been regarded as being the more accurate of the two. However, this
accuracy comes at the price of added computational cost and the possibility of divergence. Algebraic fit
is typically reliable, simple and fast. A common practice is to use an algebraic fit to generate an initial
guess for a subsequent iterative geometric fit, but in recent years, new algebraic fitting routines have
shown such a degree of accuracy that geometric fits cannot improve it noticeably [13].

5.1. Taubin Best Fitting

The following is a description of the Taubin best fitting method, first described in [10], but using a
formalism found in [13]. This algorithm is used to obtain an initial estimate of the sigmoid best fitting
algorithm. Given the circle implicit equation as:

a (x2 + y2) + b x+ c y + d = a z + b x+ c y + d = 0 (26)

the Taubin best fit minimizes the function:

FT (a, b, c, d) =
n
∑

i(a zi + b xi + c yi + d)2∑
i(4a

2 zi + 4ab xi + 4ac yi + b2 + c2)
(27)

which is equivalent to minimizing:

FT (a, b, c, d) =
∑
i

(a zi + b xi + c yi + d)2 (28)

subject to the constraint:
4a2 z̄ + 4ab x̄+ 4ac ȳ + b2 + c2 = 1 (29)

where the bar sign indicates the simple average of the variables.

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, and z̄ =
1

n

n∑
i=1

(x2
i + y2

i ) =
1

n

n∑
i=1

zi. (30)
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One important property of this method is that the results are independent of the reference frame.
By reformulating this problem in matrix form, it becomes apparent how it is equivalent to a generalized
eigenvalue problem. Indeed, define:

A =


a

b

c

d

 , Z =

z1 x1 y1 1
...

...
...

...
zn xn yn 1

 , and M =
1

n
ZTZ =


z̄z̄ z̄x̄ z̄ȳ z̄

z̄x̄ x̄x̄ x̄ȳ x̄

z̄ȳ x̄ȳ ȳȳ ȳ

z̄ x̄ ȳ 1

 , (31)

then the best fitting problem can be rewritten as:

AT M A = 0 subject to AT N A = 1, (32)

where:

N =


4z̄ 2x̄ 2ȳ 0

2z̄ 1 0 0

2ȳ 0 1 0

0 0 0 0

 (33)

Therefore, the optimization problem is equivalent to the following generalized eigenvalue problem:

M A = η N A (34)

Since, for each solution, [A, η]:
AT M A = η AT N A = η (35)

then, to minimize AT M A, the smallest positive eigenvalue is chosen. Because matrix N has rank three,
such an eigenvalue is found by explicitly solving the cubic characteristic equation without the necessity
of implementing SVD or other computationally-intensive algorithms.

6. Numerical Tests

To support the capability of the developed image processing code, three numerical examples of a
partially-observed Moon are presented here. All of these tests have been performed with no information
about time, camera data and the observer, Moon and Sun positions. The image derivative is obtained
using the four-point central approach with no Richardson extrapolation. This information clearly helps
to define the best values of the internal parameters. Since this help is missing, the internal parameters
have been adopted with the same values in all three tests. These values are:

1. Maximum number of highest derivatives selected: N = 1, 500;
2. Box-based outlier elimination: box size = 21× 21;
3. Box-based outlier elimination: derivative ratio > 0.6;
4. Box-based outlier elimination: corner ratio < 0.3;
5. Box-based outlier elimination: eigenvalue ratio < 0.3;
6. RANSAC: minimum distance dmin = 4 pixels;
7. RANSAC: number of tests = 100.
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6.1. Example 1: Real Image, Four-Times Cropped

The original image of Example 1, shown in Figure 9, was intentionally cropped from a real image
(taken from Earth) to validate the capability of the software to face multiple cropped Moon images.
Being cropped four times is also the maximum number of cropped segments possible. The four figures
of Figure 9 show the four main phases of the image processing. Once the image differentiation has been
computed, the first 1490 points with the highest derivatives have been selected. This number differs from
N = 1500, because the image is small, and the number of points selected is also a function of the total
number of pixels (N = 1500 is also the maximum number).

The box-based outliers elimination approach discarded 375 points, while RANSAC eliminated
an additional five points. The resulting points are shown in the bottom right of Figure 10 using
white markers.

The bottom right of Figure 10 shows the results obtained by the Taubin fitting approach to estimate
the circle parameters (Moon center and radius). The maximum distance from the estimated circle (worst
residual) of the selected points was 2.9 pixels. The Taubin estimation gives a Moon center located at
row 185.56 and column 187.34 and radius 218.03. Using this estimate, the set of points shown by white
markers in Figure 11 of the Moon edge have been selected. These points are then used by CSF-LS to
perform the nonlinear least-square estimation of the Moon center and radius using the circular sigmoid
function. The new estimate implies a variation of −0.7, −0.5 and 0.4 pixels for row and column center
coordinates and for radius, respectively.

Figure 9. Example 1: Original image.
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Figure 10. Example 1: Image processing phases (data in pixel). (a) 1490 highest derivatives;
(b) 21× 21 box approach removed 375 outliers; (c) RANSAC removed 5 outliers using 100
tests and dmin = 4; (d) Body center inside image. Row center = 185.5991, Column center =
187.339, Radius = 218.0337 (worst residual = 2.9321).

Figure 11. Example 1: Circular Sigmoid Function (CSF)-LS final estimation. Center (white
mark) inside the image. Row center: 186.169 pixel (∆r = −0.71781). Column center:
187.8695 pixel (∆c = −0.53055). Radius: 217.6452 pixel (∆R = 0.38853).
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6.2. Example 2: Synthetic Image Cropped

In the second example, the test image is a synthetically-generated image. All of the relevant data and
results are shown in Figures 12–14.

Figure 12. Image convolution using a 3×3 mask. (a): original image; (b) convoluted image.

Figure 13. Example 2: Image processing phases (data in pixel). (a) 1500 highest derivatives;
(b) 21 × 21 box approach removed 911 outliers; (c) RANSAC removed 229 outliers using
100 tests and dmin = 4; (d) Body center inside image. Row center = 189.0829, Column
center = 437.5094, Radius = 89.0182 (worst residual = 4.9575).
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Figure 14. Example 2: Circular Sigmoid Function (CSF)-LS final estimation (data in pixel).
Center (white mark) inside the image. Row center: 189.2105 (∆r = −0.12759). Column
center: 437.1483 (∆c = 0.3611). Radius: 89.0247 (∆R = −0.0064852).

6.3. Example 3: Real Image with Center Far Outside the Imager

All of the relevant data and results are shown in Figures 15–17.

Figure 15. Example 3: Original image.
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Figure 16. Example 3: Image processing phases (data in pixel). (a) 1500 highest derivatives;
(b) 21 × 21 box approach removed 35 outliers; (c) RANSAC removed 0 outliers using 100
tests and dmin = 4; (d) Body center outside image. Row center = 551.8926, Column center
= −393.0706, Radius = 612.8029 (worst residual = 2.995).
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Figure 17. Example 3: CSF-LS final estimation (data in pixel). Center outside the image.
Row center: 556.0114 (∆r = −4.1188). Column center: −386.4042 (∆c = −6.6663).
Radius: 605.5698 (∆R = 7.233).

7. Error Analysis

This section is dedicated to the error analysis associated with the following sources:

1. Estimated position error: This analysis quantifies how the error in the measured Moon radius (in
pixel) affects the spacecraft-to-Moon distance computation (in km).

2. Estimated attitude error: This analysis quantifies how the error in the camera attitude knowledge
affects the spacecraft-to-Moon direction (unit-vector).

3. Image processing errors: This Monte Carlo analysis shows the distribution of the Moon radius and
center estimated by the image processing software when the image is perturbed by Gaussian noise.
This is done in the three cases of crescent, gibbous and full Moon illumination.

7.1. Position and Attitude Uncertainty Propagation

This section investigates the sensitivity of the Moon estimated radius to the position estimation error.
It also investigates the error in the Moon center direction because of the attitude estimation error.

The Moon radius (in pixel) is directly related to the spacecraft-to-Moon distance. The
spacecraft-to-Moon vector is rom = rm − r, where rm and r are the Moon and spacecraft position
vectors in J2000, respectively. Vector rm is simply derived from time, while the spacecraft position
vector, r, can be considered a random vector variable with mean r̄ and standard deviation σr, that
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is r ∼ N (r̄, σrû), where û is a random unit-vector variable uniformly distributed in the unit-radius
sphere. Neglecting the ephemeris errors, the uncertainty in the spacecraft vector position coincides with
the uncertainty in the spacecraft-to-Moon distance, σD = σr.

The Moon radius in pixels in the imager is provided by:

r =
f

d

Rm√
D2 −R2

m

(36)

where d is the pixel dimension (in the same unit of the focal length, f ), Rm = 1737.5 km is the Moon
radius and D is the spacecraft-to-Moon distance. This equation allows us to derive the uncertainty in the
Moon radius in the imager:

σr =

∣∣∣∣ ∂r∂D
∣∣∣∣
r̄

σD =
f DRm

d (D2 −R2
m)3/2

σr (37)

The inverse of Equation (37):

σD =
d (D2 −R2

m)3/2

f DRm

σr (38)

provides important information about the accuracy required by the radius estimation. This equation
tells you how the radius estimate accuracy is affecting the spacecraft-to-Moon vector length and,
consequently, how this estimate is affecting the estimation of the spacecraft position.

Equation (38) has been plotted in Figure 18 as a function of the Moon radius error and for four values
of the Moon distance, D = 50,000 km, D = 150,000 km, D = 250,000 km and D = 35,000 km.

Figure 18. Moon distance error vs. distance.
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The Moon direction uncertainty (in pixels) is caused by the uncertainty in the attitude knowledge.
Consider the attitude q ∼ N (q̄, 2σqû) with mean q̄ and standard deviation 2σq. The displacement with

respect to the camera optical axis is c =
f

d
tanϑ, where ϑ is the angle between the estimated Moon

center and the camera optical axis. Therefore, the radial uncertainty in the Moon center direction is
provided by:

σc =
f

d

∣∣∣∣ 1

cos2 ϑ

∣∣∣∣
q̄

σq (39)

7.2. Image Processing Error

Image processing error quantification requires performing statistics using a substantial set of images
with known true data. Since no such ideal database is currently available, the analysis of the resulting
estimated parameters (Moon radius and centroid) dispersion is performed by adding Gaussian noise to
the same image. The Moon illumination scenario plays here a key role, since when the Moon is fully
illuminated, the number of data (pixels) used to perform the estimation will be twice as much as in the
partial illumination case (under the same conditions: distance to the Moon and selected camera). For
this reason, two scenarios have been considered:

1. Partially-illuminated Moon (results provided in Figure 19);
2. Fully-illuminated Moon (results provided in Figure 20).

Figure 19. Image processing error results: partial illumination case.
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Figure 20. Image processing error results: full illumination case.

The results of the tests done using partially illuminated Moon are shown in Figure 19. The image
selected is real, and it was taken on 6 March 2013 at 05:24:30 using a focal length f = 100 mm.
The statistics of the results obtained in 1000 tests by adding Gaussian noise with zero-mean value and
standard deviation σ = 10 gray tone are given. The code estimates the Moon radius and center (row
and column) by least-squares using the circular sigmoid function (CSF-LS). The results show the three
parameters estimated as unbiased and with a maximum error of the order of 0.2 pixels (with respect to
the original picture). The histogram of the number of iterations required by the least-squares to converge
shows an average of eight iterations. The central-upper plot in Figure 19 shows the ellipsoid distribution
of the Moon center error due to the fact that the estimation uses just data on one side of the Moon,
on the illuminated part.

The results of the tests done using the fully illuminated Moon are shown in Figure 20. Furthermore,
in this case, the image is real and was taken in Houston on 25 February 2013 at 22:33:00 CDT using
a focal length f = 105 mm. The statistics of the results obtained in 1000 tests by adding Gaussian
noise with zero-mean value and standard deviation σ = 10 gray tone are given. The code estimates
the Moon radius and center (row and column) by least-squares using CSF-LS. The results show the
three parameters estimated as unbiased and with a maximum error of the order of 0.01 pixels, one order
magnitude being more accurate than what was obtained in the partial illuminated case. The histogram of
the number of iterations required by the least-squares to converge shows an average of three iterations.
The central-upper plot in Figure 19 shows the unbiased Gaussian distribution of the Moon center error.
These more accurate results are due to the fact that the estimation uses data all around the Moon edge.
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8. Conclusions

This paper presents an image processing algorithm for visual-based navigation capable of estimating
the observer to Moon vector. This information is then used for autonomous onboard trajectory
determination in cislunar space. The proposed method first identifies the Moon edge pixels by numerical
differentiation using Richardson extrapolation. This creates gradient images where most of the brightest
pixels belong to the Moon edge. However, some of these pixels are generated on the Moon surface
(outliers) due to the combination of illumination and Moon topology (craters). Two sequential filters
are then adopted to remove these unwanted outliers. The first filter is provided by a box-based method
that discriminates the edge pixels based on a local analysis of both the original and the gradient images,
while the second filter is a standard RANSAC approach for circles. Once a subset of pixels belonging
to the Moon edge has been identified, they are then used to perform the first (crude) estimation of the
Moon centroid and radius. This is done in closed-form using Taubin’s method to perform least-squares
best fitting estimation of a circle. This first estimate is then used to apply a subsequent accurate
iterative nonlinear least-squares approach to estimate the Moon center and radius using circular sigmoid
functions. Circular sigmoid functions accurately describe the actual gray tone smooth transition at the
hard edge. In particular, this transition is described by a smoothing parameter, which is also estimated.
Preliminary analysis of the algorithm’s performance is studied via processing both real and synthetic
lunar images.
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