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Abstract: This article considers a novel approach to using global positioning system (GPS) signal
strength readings and estimated velocity vector for estimating the attitude of a small fixed-wing
unmanned aerial vehicle (UAV). This approach has the benefit being able to estimate full position,
velocity and attitude states of a UAV using only the data from a single GPS receiver and antenna.
Two different approaches for utilizing GPS signal strength within measurement updates for UAV
attitude in a nonlinear Kalman filter are discussed and assessed using recorded UAV flight
data. Comparisons of UAV pitch and roll estimates against measurements from a high-grade
mechanical gyroscope are used to show that approximately 5° error with respect to both mean
and standard-deviation on both axes is achievable.

Keywords: UAV attitude estimation; GPS estimation filter; GPS signal authentication

1. Introduction

The ability to estimate an aircraft’s full position, velocity and attitude (PVA) state vector using
only a single global positioning system (GPS) antenna and receiver has several benefits. For example,
an important potential use of GPS signal strength based attitude estimation on unmanned aerial
vehicles (UAVs) is to provide an information source to warn a user if a GPS receiver is under a
spoofing attack, such as those that have been demonstrated on small UAVs [1]. In this context, the
ability to map GPS signal strength to attitude, or conversely, predict the expected signal strength
given an known UAV attitude (e.g., from an inertial measurement unit (IMU) ) would provide an
additional layer of information for authenticating GPS signals. That is, a GPS spoofer would not be
able to have the a priori knowledge of the UAVs attitude dynamics, and therefore would not be able
to spoof the sensitivity to GPS signal strength to receiver antenna attitude. Furthermore, for many
applications, GPS-only attitude estimates could eliminate the need for carrying and integrating an
IMU within the navigation system. That said, it is important to acknowledge that IMU systems have
become extremely lightweight and cost-effective for integration with GPS on small UAV navigation
systems [2–4]. However, the availability of GPS-only based attitude estimates double be used as an
additional information source within a fault-tolerant estimation algorithm, such as Gu. et al. 2016 [5].
Finally, as an additional update source, when properly fused with other sensors, this could help
improve the accuracy and robustness of the overall navigation system. A single sensor that offers a
non-drifting PVA solution is attractive for many reasons.

For use in spacecraft applications, GPS signal-to-noise ratio (SNR) or signal strength readings have
been used to provide coarse attitude estimates. For example, Axerad and Behre used data from the GPS
Metrology (GPS-MET) mission to show that 3°–10° attitude estimation performance is achievable [6].
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Additionally, Wang et al. [7] report 15° satellite attitude estimation performance. Likewise, Lightsey
and Masden [8] proposed the use of GPS signal strength from multiple antennas as an alternative
to traditional carrier-phase based attitude determination. More recently, GPS SNR-based attitude
estimation approaches have been suggested and evaluated as a low-power option for small-satellite
platforms. For example, Ang et al. proposed that GPS signal strength for coarse attitude should be
combined with magnetometers to improve attitude performance from magnetometers alone during
periods in which the spacecraft is in eclipse and sun-sensor readings are unavailable [9].

Despite the promising results for Earth orbiting satellites, GPS signal strength based attitude
estimation approaches have not been evaluated for use aerial vehicles, such as fixed-wing UAVs.
While the overall concept remains similar for the UAV attitude application, adopting these methods
to aerial platforms requires some additional considerations that should be detailed and evaluated
experimentally. First, for the case of fixed-wing aerial vehicles, the GPS signals must traverse the
Earth’s neutral atmosphere, while this is not case for the satellite applications. Similarly, for aerial
platforms, low elevation satellites experience more significant multipath effects due to reflections from
the Earth surface [10]. These issues may require some additional considerations when designing the
estimation algorithm. Another important difference for the UAV application is that because fixed-wing
UAVs can also estimate the heading and pitch angles from the GPS velocity vector, this should be
leveraged. Because of these considerations, this paper performs an experimental study on the use
GPS signal strength measurements for the attitude estimation of a small fixed-wing UAV. As such,
the main contributions of this paper are the description of algorithm formulations that use of GPS
signal strengths for UAV attitude estimation, as well as the subsequent experimental evaluation of
their performance. This will allow others to consider the use of GPS signal strength for attitude in
other aerial vehicle applications.

The rest of this paper is organized as follows. Section 2 discusses the approaches for relating GPS
signal strength to attitude, Section 3 discussed the experimental set-up which includes a description
of the West Virginia University Phastball UAV research platform. Finally, Section 4 shows the result
of the calibration process and the attitude estimation performance of the approaches considered and
Section 5 summarizes the findings.

2. Methodology

2.1. Satellite Elevation Angle with Respect to Antenna Bore-Sight, α

The key to observing attitude from GPS signal strength is that the receiver’s antenna gain profile
is not perfectly uniform. Because of this, the signal strength drops as the angle of the satellites
location goes away from the bore-sight. In this paper, we refer to this angle as the satellite’s elevation
with respect to the antenna bore-sight, and we denote it with α. This α-angle is similar to the
traditional satellite elevation angle, however, it takes into account the rotation due to changes in
attitude. To determine α, first, the vector that defines the location of the satellite with respect to the
location of the aircraft as defined in Earth-Centered-Earth-Fixed (ECEF) coordinate to the vehicle’s
body-axis coordinate system, which is determine using the GPS receiver solution for position and
the satellite ephemeris, must be transformed to the UAV’s body-axis. This transformation is shown
in Equation (1):

Rk
b,u = Cb

nCn
e Rk

e,u (1)

where R is the cartesian vector of the relative position vector of the satellite with respect to the UAV, the
subscript b denotes the body-axis, the subscript e denotes the ECEF coordinate system, the superscript
k denotes a satellite index and the subscript u refers to the user-platform, UAV. The transformation
matrix, Cb

n, defines the transformation from a locally-level navigation frame to the UAV body-axis, and
is defined in terms of three Euler angles: φ-roll, θ-pitch, ψ-yaw, as shown in Equation (2) [11]:
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Cb
n(φ, θ, ψ) =

 c(θ)c(ψ) −c(θ)s(ψ) s(θ)
c(φ)s(ψ) + s(φ)s(θ)c(ψ) c(φ)c(ψ)− s(φ)s(θ)s(ψ) −s(φ)c(θ)
s(φ)s(ψ)− c(φ)s(θ)c(ψ) s(φ)c(ψ) + c(φ)s(θ)s(ψ) c(φ)c(θ)

 (2)

where c(·) represents the cosine function and s(·) represents the sing function. The transformation
matrix, Cn

e , defines the transformation from the ECEF frame to a locally-level navigation frame, and is
defined in terms of the latitude, Φ, and the longitude, λ, of the aircraft as shown in Equation (3).

Cn
e (Φ, λ) =

−s(Φ)c(λ) −s(Φ)s(λ) c(Φ)

−s(λ) c(λ) 0
−c(Φ)c(λ) c(Φ)s(λ) −s(Φ)

 (3)

Once the relative position of the satellite with respect to the UAV is represented in the UAV’s
body-frame coordinates, the satellite elevation with respect to antenna bore-sight angle is calculated
using the tangent inverse as shown in Equation (4).

α = atan
(

−Rb,u(3)

||
[
Rb,u(1) Rb,u(2)

]
||2

)
(4)

where Rb,u(·) indicates an element of the Rb,u vector and || · ||2 indicates the L2 norm. Note that the
negative sign in Equation (4) is due to the fact that within the UAV’s body-frame, the positive axis is
down, whereas we want to represent the vertical component with up as positive.

2.2. GPS Signal Strength to α Mapping

This section discusses methods developing an empirical calibration of the satellite’s elevation
with respect to the UAV GPS receiver antenna’s bore-sight vector to GPS signal strength. As was
described in the previous section, α is dependent on the platform’s Euler angles, as such, an empirical
model GPS signal strength as a function of α can be used as an observation model for updating the
UAV’s attitude estimates. In order to develop an empirical calibration model, a data set in which the
UAV attitude is known (e.g., directly measured or from GPS/Inertial Navigation System (GPS/INS)
sensor fusion [3]) is required, once this calibration has been completed, attitude can be estimated
directly from GPS signal strength.

2.3. Compensating GPS Signal Strength Measurements for Known Effects

In order to only leave the UAV attitude dependent signal within the GPS signal strength
measurements, it is important to pre-process these values in order to model and compensate for
other known contributors to changes in the signal strength readings [6]. Of these effects, the largest
contributor is the space loss that occurs due to the signal traversing the ≥20,000 km orbital altitude of
the GPS constellation [10]. The space loss can be modeled as a function of the distance between the
UAV and the GPS satellite [6] as provided in Equation (5).

SLk
u(dBw) = 20log10(||Rk

e,u||2) (5)

Next, it is important to model the non-uniformity of the GPS transmission antenna gain.
In particular, the GPS transmission antenna is tailored such that the amount of energy is approximately
equal across the visible surface of the Earth [10]. As such, there is slightly more antenna gain
(i.e., 2.5 dB [6]) for satellites that in the horizon with respect to the user’s position on the surface of the
Earth. For highest accuracy, a look-up table of each GPS satellite’s unique transmitter gain profile can
be implemented as in Axelrad and Behre [6]. However, for simplicity, in this study, a simple sinusoidal
loss function is adopted [10], as shown in Equation (6) .

TGk
u(dBw) = 2.5sin(π − el.ku) (6)
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where el.ku represents the elevation angle to the satellite from the user’s location independent of the
antenna’s orientation. As shown in Equation (7), el.ku is calculated in a similar manner as α, but without
considering the Cnb transformation.

Rk
n,u = Cn

e Rk
e,u (7)

with el.ku then determined using Equation (8).

el. = atan
(

−Rn,u(3)

||
[
Rn,u(1) Rn,u(2)

]
||2

)
(8)

Finally, as signal strengths are typically reported in terms of a ratio C/No(dBw/Hz) with respect
to an assumed noise density, in order to get a number closer to zero, one can add the assumed noise
density, as defined in Equation (9) , to measurements in order to have them explicitly represent receive
power [12].

No(dBw/Hz) = 10log10(KT) (9)

where K is the Boltzmann constant (1.38× 10−23 J/K) and T is the assumed noise temperature (290
Kelvin), such that No = –204 dBw/Hz [12]. Note that, for this application, considering Equation (9) is
optional as it is constant term that will purely shift the signal strength measurements and will yield no
impact to the functional dependency on α or satellite location.

2.4. Look-up Table Calibration

The first approach described models the compensated signal strength as a function of α in the
form of a look-up table. This is the primary approach adopted by Axelrad and Behre [6] for the
application of satellite attitude estimation. To apply this method, a flight with known UAV position
and attitude is used to derive α and the signal strength values are compensated for known non UAV
attitude effects as discussed in the previous section. Then, the measurements are simply grouped into
bins of α, such that a mean and standard deviation of compensated signal strength measurements
can be calculated for each bin can be stored for future use. This approach has the benefit of not only
mapping α to signal strength, but also providing standard deviation values per each table bin that are
then used as measurement noise variance to make a measurement-error covariance matrix, Rmeas.

2.5. Polynomial Fit Calibration

The second approach considered in this study employs a polynomial fit instead of a look-up table.
With this a approach, the coefficients of a third order polynomial are determined using least square
regression to the data. In our case, a third order polynomial was chosen simply because higher order
polynomial fits yielded coefficients for the higher order terms that were nearly zero. For the polynomial
fit, the standard deviation of the data residuals of the fit are used to define measurement-error variance.

2.6. Elevation Dependent Weighting of Signal Strength Observations

As mentioned in the introduction, for UAVs that are at relatively low altitudes, it is well known in
GPS estimation filtering that low-elevation measurements are of lower quality due to the increased
presence of Earth surface multipath reflections and from traversing more of the neutral atmosphere.
Additionally, at lower elevation angles, the distance between the UAV and GPS satellite is significantly
increased, which will amplify any error in the space loss model in Equation (5) as well increase
the attenuation due to the signal traversing more of the Earth’s troposphere, whose day-to-day wet
delay variations are uncertain. Finally, for the same reasons, a sudden change in signal strength for a
relatively high-elevation satellite intuitively yields more information about changes in UAV attitude.
Due to these reasons, a technique explored in this study is to weight the compensated GPS signal
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strength measurements by the satellite elevation angle using a sinusoid weighting models as shown in
Equation (10).

R(j, j)meas =
1

sin(el.ju)
R(j, j)meas (10)

where R(j, j) represents an element of the filter’s measurement error-covariance matrix that
corresponds to the jth GPS signal strength measurement. Additional details on the Kalman filter
implementation are discussed in Section 2.8. In this study, estimation performances with and without
sinusoidal weighting are considered.

2.7. Process Model for UAV Attitude and GPS Heading

Another important distinction between the UAV attitude estimation application and previous
satellite attitude estimation studies is the selection of the process model for attitude and the fact that
the GPS estimated velocity vector is available to reduce the problem. If one were to employ GPS
signal strength attitude in a multi-sensor fusion context, the attitude process model is where additional
sensors such as an IMU could be added. However, in this study, the focus is to consider the case in
which only GPS information is available for attitude estimation. Therefore, the process model for
estimating attitude is simply a random-walk model that uses subjective judgment to assign process
noise levels. This process model was selected as it represents a worst-case for an attitude estimator’s
ability to predict attitude, and therefore helps to establish an upper bound of the expected estimation
performance of the approaches considered. As such, the discrete process model for the UAV attitude
used in the paper is offered by Equation (11).φj+1

θj+1
ψj+1

 =

φj
θj
ψj

+

wφ

wθ

wψ

 (11)

where wφ was selected to be 7 deg.√
s , wθ was selected to be 1 deg.√

s , and wψ was selected to be 3 deg.√
s and

the process model is applies at 10 Hz. These values were chosen by simply evaluating the maximum
change of each attitude state over between 10 Hz sampling steps. That is, typically, the amplitude of
the change in the pitch angle of a UAV is smaller than the amplitude in the change of the roll for a
fixed-wing UAV doing a coordinated turn.

In addition, because it is a safe assumption for fixed-wing UAVs that the vehicle is always
moving with some velocity, and that GPS position and velocity estimates are readily available for our
application, an estimate of the UAV’s yaw angle is available by assuming it to be coincident with the
GPS derived heading angle, ΨGPS ≈ ψ, where GPS heading with respect to due North is determined
using GPS velocity as shown in Equation (12).

ΨGPS = atan2(VGPS
E , VGPS

N ) (12)

where atan2(·, ·) is the four-quadrant tangent inverse and VGPS
E,N are the GPS velocity components in

the East and North directions, respectively. Furthermore, using GPS heading, a GPS “psuedo-pitch”,
ΘGPS ≈ θ, can be isolated and inferred using only the GPS velocity vector, where ΘGPS is defined as
shown in Equation (13):

ΘGPS = atan
(

VGPS
U

||[VGPS
E ,VGPS

N ]|2

)
(13)

where VGPS
U is the velocity in the vertical direction with respect to a locally-level geodetic frame.

Equation (13) is derived by first breaking Cb
n(θ,φ,ψ) of Equation (2) into three sequential rotation

matrices Cb
n(θ,φ,ψ)=R(φ)R(θ)R(ψ). Then, using ΨGPS, the rotation through R(ψ) is done first, allowing θ

to be isolated, which is the result shown in Equation (13). This is an approach similar to the acceleration
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vector attitude estimation (AVAE) strategy that we derived in previous work [3]. Note that this
approach does not consider the Coriolis terms that are present due to fact that Ċb

n 6= 0, but nonetheless,
in practice, ΘGPS yields a very good approximation of θ. Because of the presented algorithms use of
the GPS velocity vector, it is only relevant for UAVs that are in-flight. That is, before and after take-off,
whenever there is little or no velocity of the UAV, heading and “psuedo-pitch” estimates will not be
observable using GPS velocity. Further, this is not applicable to platforms that “hover” in place, such
as quad-rotors.

2.8. Nonlinear Kalman Filter

Using the process model and observational models described in the previous sections, a nonlinear
Kalman filter can be employed to estimate the UAV attitude directly from GPS signal strength
measurements. In this study, the specific estimator chosen is an unscented Kalman filter (UKF) [13,14].
The UKF is ideal for this application primarily because it does not require any analytical linearization
of the observation models, but instead uses a statistically sampled set of sigma points to perform a
weighted least squares regression to linearize the measurement model about the current filter state. By
not requiring an estimator that linearizes the analytical form of the measurement model, the update
strategy can easily employ a look-up-table. For brevity, the specific details for implementing a UKF
are not reviewed in this paper, but can be found in many good references such as the textbooks by
Simon 2006 [15] or Crassidis and Junkins [16].

To offer clarity with respect to the presented filter implementation, the models that have been
detailed in the previous section are summarized here with respect to their corresponding elements of
the nonlinear Kalman filter framework. These include: state vector, x, measurement vector z, output
vector, y, process model f , observation model h, as well as, the process noise Q and measurement
noise R covariance assumptions used within the implementations that is presented. These terms make
up the Kalman Filter’s classic predictor-corrector structure, over discrete-time index k and are related
to one another when considering the process-model,

xk|k−1 = f (xk−1|k−1, uk, wk) (14)

and the measurement-update, or state correction, which is conducted by using the predicted states to
model the observed measurements:

yk|k−1 = h(xk|k−1, dk, vk) (15)

where the process-noise, wk, is assumed to be distributed wk ∼ N(0, Q) and the measurement-noise,
vk, is assumed to be distributed vk ∼ N(0, R). The process-model f allows for the possibility of a
system input, u, and the observation model, h allows for a system input d.

The state vector in the presented formulation consists of the UAV attitude, x = [φ, θ, ψ]T , and the
process model f is discussed in Section 2.7. That is, in the presented algorithm, which considers the
use of GPS information alone, no additional sensor information (e.g., from an Inertial Measurement
Unit, Dynamic Model, Magnetometers, etc.) is offered to predict the UAV attitude. As such, a random
walk process that models the uncertainty attributed to accepting the previous epoch’s best estimate as
the current epoch’s attitude is used. This process is driven by the assumed process noise covariance,
which is parameterized as listed in Section 2.7, with the following structure:

Q =

w2
φ 0 0

0 w2
θ 0

0 0 w2
ψ

 (16)

The filter’s measurement vector, z , consists of all of the GPS signal strength measurements after
compensating them for knows effects as discussed in Section 2.3, for satellites 1 to N and the GPS
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estimates of heading and pitch, z = [SS1, . . . , SSN , ΨGPS, ΘGPS]T . For this measurement vector, the
observational models, hSS of the signal strength measurements consists of the modeled signal strength
values that come from either the polynomial fit or the look up table approach. These models are
a function of the antenna bore-site angle, which was shown to be a nonlinear function of the UAV
attitude in Section 2.1. For the GPS heading and pitch measurement updates, the observation models
simply extracts the predicted yaw or pitch angle from the predicted state vector respectively, that
is hΨGPS

= [0, 0, 1] and hΘGPS
= [0, 1, 0]. Finally, to model the uncertainty of these measurements,

the measurement-error covariance, R, where for GPS signal strength readings, depending on the
approach used the assumed error-variance for each measurements is either from the standard deviation
of the polynomial fit or the sample standard deviation of the look-up table model. Further, as
discussed in Section 2.6, GPS satellite elevation deponent scaling of the assumed measurement
variance is considered in order to compensation of poor low-elevation measurements. Finally, for the
GPS-based heading and pitch estimates, 3°of uncertainty is assumed. Similar to the process-noise
covariance matrix, these values make up a diagonal measurement-error covariance matrix, as shown
in Equation (17).

R = diag
[
v2

SS1 , . . . , v2
SSN , v2

ΨGPS , v2
ΘGPS

]
(17)

3. Experimental Set-up

The experimental UAV used for this study is West Virginia University’s (WVU’s) Red
Phastball Platform as shown in Figure 1, The Red Phastball is primarily used for sensor fusion
research [17–19] and its avionics package [20] was updated for this study to include a Novatel
OEM-615® dual-frequency GPS/Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS)
receiver, in which GPS pseudorange, carrier-phase and signal strength measurements were recorded
at a rate of 10 Hz. In addition, for use in signal strength calibration and as pitch and roll reference
solutions, the Red Phastball flew a Goodrich VG34® mechanical vertical gyroscope and the analog
pitch and roll measurements were recorded using a micro-controller with a sampling rate of 50 Hz. In
order to synchronize the GPS and gyroscope’s attitude measurements, the GPS receiver’s pulse per
second (PPS) signal was recorded as an analog signal at a rate of 50 Hz using the same micro-controller
that was used to recorded the vertical gyroscope measurements. The VG34® reports an absolute
attitude within 0.1° of the true vertical.

Figure 1. West Virginia University’s Red Phastball research unmanned aerial vehicle (UAV).

It is important to mention that the flight test conducted for this study took place at WVU’s
Jackson’s Mill flight testing facility, which is an open air-field located in a valley will small hills nearby.
As such, signal blockages and their associated drops in GPS signal strength that occur due to the
topography of the local environment, such as manmade buildings (e.g., urban canyon problem ), are
not considered in this work.

4. Results

For experimental results, the output of calibration procedure is first presented followed by an
analysis of attitude estimation performance using the various approaches discussed in Section 2.
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4.1. Calibration Model

To illustrate the calibration approaches, a plot of all of the empirical readings and the two
calibration curves in shown in Figure 2.
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Figure 2. Empirical curve and calibration curves determined for mapping global positioning system
(GPS) signal strength measurements to the antenna bore-sight angle, α.

As shown in Figure 2, as one would intuitively expect, the closer α is to the zenith direction
(i.e., α of 90◦), the higher the received signal strength reading. Furthermore, Figure 2 illustrates that
the polynomial fit approximates the distribution reasonably well, and that the standard deviations of
the look-up table suggest similar levels of uncertainty across all values of α. To offer additional insight,
using the known UAV attitude, the calibration models are used to predict the received signal strength
based on the known α for a single satellite, GPS Pseudorandom Noise Number (PRN) 6, as shown
in Figure 3.
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Figure 3. Example of calibration model for GPS PRN 6, which is at an elevation angle of 40° during
this UAV flight.
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Figure 3 shows that both models do a good job of capturing the information of the reduction
in signal strength as a function of attitude. This is due to the fact that over this timescale of a few
minutes, only changes in the UAV attitude will change α, as el.ku and Rk

e,u will remain more or less
constant when considering the fact that the satellites are ≥20,000 km away and have an orbital period
of 12 h. The result of Figure 3 would be the end product for authentication, if this information were
used to detect the presence of spoof GPS signals. Note that the approach taken in the paper elected
was to perform calibration offline, but for applications that have an Inertial Navigation System, this
calibration could be performed online during the initial portion of a flight.

4.2. Attitude Estimation

Finally, using the calibration model for GPS signal strength as a function of α, the performance of
an estimator’s ability to estimate UAV attitude based off of GPS signal strength is considered. In total,
four processing strategies are considered. These include both calibration approaches with and without
the use of elevation dependent observation weighting. For labeling the results figures and tables, these
approaches are denoted as follows:

• Poly-Flat: Using the polynomial model without elevation dependent weighting.
• Poly-ElvDep: Using the polynomial model with elevation dependent weighting.
• LUT-Flat: Using the look-up table model without elevation dependent weighting.
• LUT-ElvDep: Using the look-up table model with elevation dependent weighting.

Table 1 lists the mean and standard deviation estimation errors over the entire flight test
for the four approaches with respect to the Goodrich VG34® mechanical vertical gyroscope as a
reference attitude.

Table 1. Mean and standard deviation attitude estimation performance of the GPS signal strength
based attitude estimates.

Strategy Roll Pitch

µ (°) σ (°) µ (°) σ (°)

Poly-Flat –10.4 5.6 2.6 4.1
Poly-ElvDep –9.3 4.3 0.5 3.0

LUT-Flat –8.2 7.6 –0.3 3.2
LUT-ElvDep –7.0 7.3 –1.1 2.7

As indicated in Table 1, attitude estimates with precision of better than 5° is obtainable using GPS
information alone on a fixed-wing UAV. Pitch estimates are near zero mean, however a bias remains in
the roll estimates. In addition, it is apparent that the use of elevation dependent weighting slightly
increases the accuracy of the estimator. Furthermore, the higher fidelity of the look-up table calibration
model approach yields slightly more accurate estimates, however, for roll, the polynomial approach
yielded slightly smoother estimates. For reference, Figure 4 shows the estimates of polynomial
calibration model with the use of elevation dependent weighing against the gyroscope reference values
for pitch and roll angles.

While roll estimation is less accurate than pitch, it has no a priori information available from the
GPS velocity vector, so this is expected. Furthermore, considering that the signal amplitude for roll is
much large than for pitch (i.e., 60° for roll vs. 20 for pitch), the relative percentage errors are comparable.
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Figure 4. Comparison of GPS signal strength based attitude estimate and mechanical gyroscope
measurements. Note that pitch and roll are plotted on different scales.

5. Conclusions

This paper considered UAV attitude estimation based upon GPS signal strength measurements
that are compensated for known losses. This has the benefit of GPS alone being used for a full position,
velocity, attitude (PVA) state estimator. Alternatively, it could be incorporated into a navigation system
to improve robustness, offer fault-tolerance, serve as a back-up solution, or assist in the detection of
malicious GPS signal spoofing. The approach leverages the fact that abrupt changes in attitude will lead
to loss or gain of signal strength depending on the relative orientation of a satellite’s location and the
antenna bore-sight angle, but does not consider the impact of GPS signal strength changes that could
be induced due to the local environment such as buildings, foliage, etc. Two calibration approaches
were considered along with elevation dependent measurement weighting. The experimental UAV
flight data analysis demonstrates that attitude estimates with a coarseness of around 5° are achievable
using only GPS signal strength measurements. While the level of attitude estimation accuracy when
using GPS information alone was determined to be coarse in comparison to other state of the art
methods, this work assessed its standalone performance using fixed-wing UAV flight data with the
motivation that this technique has the potential to be an important building block for incorporation
within an GPS anti-spoofing defense or a fault-tolerant multi-sensor fusion navigation system. Future
work will asses if the availability of additional signal strength observations from multi-constellation
Global Navigation Satellite System (GNSS) can further reduce the roll estimation error.
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Abbreviations

The following abbreviations are used in this manuscript:

ECEF Earth Centered Earth Fixed
GLONASS Globalnaya Navigazionnaya Sputnikovaya Sistema
GPS Global Positioning System
GPS-MET GPS Metrology Mission
IMU Inertial Measurement Unit
PPS Pulse Per Second
PVA Position, Velocity, Attitude
SNR Signal to Noise Ration
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
VG34 Vertical Gyro Model Number 34
WVU West Virginia University
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