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Abstract: To propel a lightweight structure, a hybrid wing structure was designed; the wing’s
geometry resembled a rotor blade, and its flexibility resembled an insect’s flapping wing. The wing
was designed to be flexible in twist and spanwise rigid, thus maintaining the aeroelastic advantages
of a flexible wing. The use of a relatively “thick” airfoil enabled the achievement of higher strength
to weight ratio by increasing the wing’s moment of inertia. The optimal design was based on a
simplified quasi-steady inviscid mathematical model that approximately resembles the aerodynamic
and inertial behavior of the flapping wing. A flapping mechanism that imitates the insects’ flapping
pattern was designed and manufactured, and a set of experiments for various parameters was
performed. The simplified analytical model was updated according to the tests results, compensating
for the viscid increase of drag and decrease of lift, that were neglected in the simplified calculations.
The propelling efficiency of the hovering wing at various design parameters was calculated using the
updated model. It was further validated by testing a smaller wing flapping at a higher frequency.
Good and consistent test results were obtained in line with the updated model, yielding a simple,
yet accurate tool, for flapping wings design.

Keywords: flapping wing; Reynolds number; hovering wing; micro air vehicles (MAV); airfoil; tests;
figure of merit; rotating blade

1. Introduction

For several decades, men have been designing and flying micro air vehicles (MAVs, vehicles with
wing span less than 15 cm). Due to their small dimensions and low forward speed, the Reynolds
numbers for MAVs are roughly between 5 ˆ 104 and 5 ˆ 105 [1]. Reynolds number is defined as
the ratio between inertia forces and the viscous forces and therefore in the quoted range (5 ˆ 104

and 5 ˆ 105) the viscous force applied on the wing is more substantial than the inertial force, and
the aerodynamic regime becomes unsteady. McMasters and Henderson [2] have shown a relevant
alternation of the aerodynamics coefficients with both a decrease of lift, a decrease of lift-to-drag ratio
and an increase of drag when the Reynolds number of the fixed wing is smaller than 105. Therefore,
a MAV design could not be inspired by full scale aircraft design methodology, and should be inspired
by small flyers in nature—birds and insects.

A major progress has been made in understanding the aerodynamic of insects’ flight, due to new
developments in high-speed videography, and computational modeling. It was discovered that most
insects flap their wings back and forth to generate lift and thrust. The various flapping wing patterns
have been investigated and illustrated in the literature [3–5]. To understand the motion of the wings,
it is reiterated in the next lines.
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The forward motion of the wing, dorsal-to-ventral, is called the down stroke, and the backwards
motion, ventral to dorsal, is called the upstroke. Towards the end of each stroke, the wing decelerates
while increasing its angle of attack (AOA), until it reaches a complete stop at 90˝, and accelerates back
while decreasing its AOA. The flapping motion generates the figure eight (Figure 1), which is often
approximated as a flapping plane. As insects fly forward, their flapping plane inclines forward [6].
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The wing’s flexibility was discovered to play an important role in delaying stall and in generating 
a passive mechanism of adaptive washout. The flexibility is distinct in three categories: Spanwise, 
chordwise and twisting flexibility. Ifju et al. [13] investigated thirty different kinds of skeleton and 
membrane formation mounted on a MAV platform. The highest stall angles of attack, and thus the 
highest lift coefficients, were achieved by using the most chordwise flexible structures. Aono et al. [14] 
showed that wing flexibility could enhance the aerodynamic forces, using a combination of 
experimental and computational approaches. In particular, the elastic twisting of the wing was shown 
to produce substantially larger mean and instantaneous thrust due to shape deformation-induced 
changes at the effective AOA. Albeit, in the spanwise direction, a rigid leading edge was shown to 
produce larger lift coefficients compared to wings having flexible leading edges [17]. 

The wing’s aspect ratio was shown to have little effect on the aerodynamic performance of the 
air vehicle. Usherwood and Ellington [19] used five hawk moth wings, adjusted to aspect ratios 
ranging from 4.53 to 15.84, mounted on a motor, and measured “early” and “steady” horizontal and 
vertical forces on the rotor. They discovered that aspect ratio appears to have remarkably little effect 
on the force coefficients that can be achieved by revolving wings. However, it should be noted that 
in this study rotary wings were used instead of flapping wings. The use of rotary wings neglects the 
unsteady lift enhancement mechanisms, as well as inertial forces generated by the acceleration and 
deceleration of the wing. A study [20] conducted on various flyers ranging between 0.02 and 270 g 
body mass demonstrated that flyers with low aspect ratio wings generate a bit more lift per unit 
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Various unsteady lift mechanisms have been suggested [7–13] and have been validated in
numerous experiments. In these experiments, a vast variety of wings, at different sizes and shapes,
have been built to study the aerodynamics of flexible flapping wing at low Reynolds numbers.
The instantaneous and mean lift and drag were measured as a function of various parameters such as
wing’s structure, wing’s flexibility, wing’s aspect ratio, stroke amplitude and flapping frequency.

Most studies shared similar wing structure architecture—all were flat, built from a membrane
stretched within a frame, inspired by the structure of insects’ wings. To obtain a high strength to
weight ratio and a high Young’s modulus, the frame was often built from carbon or glass composite
sheet [13–15], aluminum [16] or titanium alloy [17]. The membrane was manufactured from nylon [18],
Mylar [18], paper [17], latex [13] or polyester [15].

The wing’s flexibility was discovered to play an important role in delaying stall and in generating
a passive mechanism of adaptive washout. The flexibility is distinct in three categories: Spanwise,
chordwise and twisting flexibility. Ifju et al. [13] investigated thirty different kinds of skeleton and
membrane formation mounted on a MAV platform. The highest stall angles of attack, and thus the
highest lift coefficients, were achieved by using the most chordwise flexible structures. Aono et al. [14]
showed that wing flexibility could enhance the aerodynamic forces, using a combination of experimental
and computational approaches. In particular, the elastic twisting of the wing was shown to produce
substantially larger mean and instantaneous thrust due to shape deformation-induced changes at the
effective AOA. Albeit, in the spanwise direction, a rigid leading edge was shown to produce larger lift
coefficients compared to wings having flexible leading edges [17].

The wing’s aspect ratio was shown to have little effect on the aerodynamic performance of the air
vehicle. Usherwood and Ellington [19] used five hawk moth wings, adjusted to aspect ratios ranging
from 4.53 to 15.84, mounted on a motor, and measured “early” and “steady” horizontal and vertical
forces on the rotor. They discovered that aspect ratio appears to have remarkably little effect on the
force coefficients that can be achieved by revolving wings. However, it should be noted that in this
study rotary wings were used instead of flapping wings. The use of rotary wings neglects the unsteady
lift enhancement mechanisms, as well as inertial forces generated by the acceleration and deceleration
of the wing. A study [20] conducted on various flyers ranging between 0.02 and 270 g body mass
demonstrated that flyers with low aspect ratio wings generate a bit more lift per unit flight muscle
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mass. However, these results were not conclusive since different species were examined with different
flap beat patterns.

The stroke amplitude of many insects in free-flight [21–23] ranges approximately from 90˝ to
180˝. During flight, an insect can change the amplitude to control its aerodynamic force [24–26].
Sane and Dickinson [21] studied the effects of varying stroke amplitudes and other parameters using a
dynamically scaled mechanical model of the fruit fly. Their results showed that the lift to drag ratio
increases as the amplitude increases. Wu and Sun [27] validated their results by numerically solving
the Navier–Stokes equations describing the unsteady aerodynamic forces of a model fruit fly wing.
A similar conclusion can be derived by re-analyzing the data of Meng et al. [28], who calculated the
aerodynamic forces generated by a corrugated flapping wing. In their study, the lift to drag ratio
increases as the stroke amplitude increases, for all corrugated wing models.

Unlike the experimental tests presented in the literature on micro flapping wings (see typical
examples in [29–36]), the present study aims at designing a macro flapping wing structure, in order
to propel a light weight air vehicle, and to find the optimal parameters which will provide the
best propelling efficiency in hovering. A hybrid wing structure was designed; the wing’s geometry
resembled a rotor blade, and the wing’s flexibility resembled a flapping wing. The use of relative
”thick” airfoil made it possible to achieve higher strength to weight ratio by increasing the wing’s
moment of inertia. In order to find the best design parameters, a simplified analytical model was
developed to describe the propelling efficiency. This model was improved empirically based on the
experimental data, and was validated on a second set of experiments based on a smaller wing flapping
at a higher frequency, yielding good results.

2. Preliminary Considerations

2.1. Wing Load, Profile and Dimensions

A 1 kg payload was chosen, relatively heavy, in order to simplify the manufacturing and
measuring of the wing, despite the low efficiency of flapping wings at these sizes. According to
Alerstam et al. [37] the wing load of birds that weigh between 1 and 10 kg is between 60 and 90 N/m2.
Since the synthetic wing is stiffer than the birds’, a wing load of 90 N/m2 was chosen. Assuming a
typical structure’s weight to payload ratio of 1.8, a wing area of 0.2 m2 was needed. The aspect ratio
was set to be 6 for a slender wing with high efficiency. These figures yielded a wing span of 1.1 m and
a chord length of 0.185 m.

As the desired characteristics for the wing’s airfoil were thinness, symmetry, and compatibility for
low Reynolds numbers, in order to resemble insect’s wings, the chosen airfoil was S9033. This SELIG
airfoil is designed especially for low Reynolds numbers [38]. According to wind tunnel test results
conducted by Kruger et al. [39], this airfoil will stall at an AOA of 7˝ at Reynolds number of 36,000.

2.2. Flapping Frequency

A linearly twisted rotating wing was assumed in order to minimize the induced drag and to
obtain a constant distributed load along the wing. Two parameters: Minimum drag (Figure 2) and
an un-stalled wing (Figure 3) were the constraints for the flapping frequency, yielding a value of
3 Hz. The flapping frequency of 3 Hz produces an effective AOAs smaller than 7˝.Furthermore, this
frequency (3 Hz) is far from the region where the drag increases exponentially. One should note that
unlike the aerodynamics of a stationary wing, the frequency of a flapping wing affects the effective
AOA of the wing. The explicit formulation for the effective AOA is derived in Section 3. Furthermore,
one of the main lifting mechanisms for insect aerodynamics is the leading edge vortex [10]. Although
this mechanism is highly effective at low Reynolds numbers, at high Reynolds number a stalled wing
will only decrease its efficiency. Therefore, in this study, only small AOA’s were tested, there were no
flow detachments at the leading edge, and the lift vortex was shed from the tip of the wing (as for the
blade of a helicopter) and not from the leading edge (as for the wings of insects).
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3. Wing Model

3.1. The Rotating Wing Model

The following equations are based on helicopters aerodynamics [40].
The distribution of the lift along the wing span is given by:

BL
Br
“

1
2

ρ ¨ a ¨ c prq ¨UT prq
2
¨ αe f f prq (1)

where ρ is the density of the fluid, a is the slope of the lift line, c is the chord length, UT “ Ω ¨ r is the
tangent velocity, Ω is the rotational velocity and αe f f , the effective AOA, being composed of three
components: The collective AOA (a constant AOA along the wing span), α0, the geometrical twist of
the wing, αtw, and the angle of the induced velocity, ϕ, can be written as:

αe f f “ α0 ` αtw ´ ϕ (2)

where the collective AOA, α0 is defined as:

α0 “ 3 ¨
ˆ

2CT
σ ¨ a

`
λ

2

˙

(3)
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with CT, the trust coefficient given by:

CT “
mg

ρ ¨ π ¨Ω2 ¨ r24 (4)

while r2 being the radius at the free tip of the rotating wing and λ, the inflow at hovering, being
derived from the momentum equation, is written as:

λ “

c

CT
2

(5)

The solidity, σ, is defined as:

σ “
Nb ¨ c
π ¨ r2

(6)

where Nb is the number of blades.
The geometrical twist along the wing span is given by:

αtw “
`

αtip ´ αroot
˘ r´ r1

r2 ´ r1
(7)

where r1 is the radius at the hub. The angle of induced velocity is written as:

ϕ “
UN
UT

(8)

where UN “ λ ¨Ω ¨ r2 is the normal velocity, assuming the wing has no vertical velocity, besides the
inflow. The distribution of the drag along the wing is given by the following equation:

BD
Br
“

1
2

ρ ¨ C prq ¨UT prq
2
¨ CD `

BL
Br
¨ ϕ (9)

The parasite drag, Dp “ 0.5 ¨ ρ ¨C ¨UT
2 ¨CD, is caused by friction. The tangent velocity of the fluid,

right next to the wing equals to the wing’s velocity, and decreases gradually towards the standing
fluid far from the wing. Due to fluid’s viscosity, there are inter layer shear forces, which transfer the
momentum from one layer of fluid to the next, and thus creating a parasite drag force on the wing.

The induced drag, Di “ pBL{Brq ¨ ϕ, is caused by the diversion of the lift vector backwards by the
induced velocity. In order to generate lift, the flow must be provided with a downward momentum.
This downward velocity decreases the effective AOA and creates a lift component in the opposite
direction of wing’s velocity, i.e., in the drag direction. Therefore, lift generation will always produce
induced drag, even in an ideal frictionless world.

The total drag can be calculated by summing the drag along the wing span and along the sweep
angle (θ), to yield:

D “
Nb
π
¨

π
ż

0

dθ

r2
ż

r1

BD
Br

dr (10)

3.2. The Flapping Wing Model

A simplified mathematical model (Figure 4) of the flapping motion aimed at capturing only the
gross phenomena is next derived and presented. This model is inviscid, quasi-steady and does not take
into consideration the complex lift mechanisms mentioned in the introduction. The choice to describe
the aerodynamic behavior of the wing through moments was made to yield a direct relationship
between the measured and the calculated parameters.
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The wing is rotating around a vertical axis similar to a helicopter blade. At the end of the stroke
the wing reverses its angle of attack, and rotates backwards. For insects, this back-and-forth movement
generates the figure eight (Figure 1), which is often approximated as a flapping plane. The intuitive
vertical movement, the up-and-down flap, is created passively due to the aerodynamic forces.

Based on Figure 4, where the x coordinate is parallel to the hub axis, one can write the various
force components in x direction (out-of-plane) as:

ÿ

Fx “ Faerodynamic`Fstructural ` Fcentripetal ` Finertial “ 0 (11)

where the four force components are given by:

Faerodynamic ” L “ Nb
π ¨

πr

0
dθ

r2r

r1

BL
Br dr “ Nb

π ¨
πr

0
dθ

r2r

r1

1
2 ρ ¨ a ¨ C ¨UT

2 ¨ αe f f ¨ dr

“
Nb
π ¨

πr

0
dθ

r2r

r1

1
2 ρ ¨ a ¨ C ¨UT

2 ¨ pαtw ´ ϕq ¨ dr
(12)

with:
αtw “

`

αtip ´ αroot
˘ r´ r1

r2 ´ r1
(13)

ϕ “
UN
UT

(14)

UT “ Ω ¨ r (15)

Fstructural “ KsX` Ksd
.

X (16)

while the stiffness Ks (static case) and Ksd (dynamic case) are derived from the finite element analysis,
by solving the case of a wing subjected to a concentrated load at its tip.

One should note that Fcentripetal is proportional to sin px{r2q. Since x ăă r2, the centripetal force
can be neglected.

Finertial “ Mi
..
X (17)

To calculate the mass Mi we used the expression for the natural frequency of a cantilever beam [41],
expressed as:

ω1,cantilever_beam “ 3.526

d

E ¨ I
mbeam ¨ L3 (18)
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and the expression for the natural frequency of a spring-suspended weight:

ω1,weight_on_spring “

d

K
Mi

(19)

where the stiffness K is taken from the equation of the tip displacement of a cantilever beam subjected
to a tip force, namely:

K “
3EI
L3 (20)

Equating between the natural frequency of the beam and the natural frequency of the weight
(Equations (18) and (19)), yields:

Mi “
3

p3.526q2
mbeam (21)

Equation (12) can be simplified by assuming that the vertical flap movement is more substantial
then the inflow (valid for relatively heavy wings at relatively low flapping frequency), namely the
normal velocity, can be written as:

UN “ λ ¨Ω ¨ r2 `
.

X ¨
ˆ

r
r2

˙2
«

.
X ¨

ˆ

r
r2

˙2
(22)

Substituting Equation (16), together with Equations (13)–(15) into Equation (12) yields:

Faerodynamic “ KaΩ2 ` KadΩ
.

X (23)

where:

Ka “
1
2 ρaC

r2
ş

r1

r2
”

αroot `
`

αtip ´ αroot
˘ r´r1

r2´r1

ı

dr

“ 1
2 ρ BCL

Bα C
„

´

αroot `
`

αtip ´ αroot
˘ r1

r2´r1

¯

pr2
3´r1

3q
3 `

`

αtip ´ αroot
˘ pr2

4´r1
4q

4pr2´r1q

 (24)

and

Kad “ ´
1
2

ρ
BCL
Bα

C

r2
ż

r1

r ¨
ˆ

r
r2

˙2
dr “ ´

1
8

ρ
BCL
Bα

C

`

r2
4 ´ r1

4˘

r2
(25)

One should note that the above expressions could be obtained only under the following
assumptions:

‚ There are no interactions between the wing and its wake, shed from the previous stroke.
‚ αroot and αtip are constant and do not depend on the angular velocity Ω.
‚ There is no chordwise deformation of the airfoil.

Substituting the various force components (Equations (16), (17) and (23)) into Equation (11), yields
a second order differential equation:

KaΩ2 ` KadΩ
.

X` KsX` Ksd
.

X`Mi
..
X “ 0

or
..
X` KadΩ`Ksd

Mi

.
X` Ks

Mi
X “ ´ Ka

Mi
Ω2

(26)

By neglecting the damping effect in Equation (26) (the coefficient multiplying the velocity
.

X), an
analytical solution for the vertical movement at the wing tip could be derived for a sinusoidal type
angular velocity, Ω “ A ¨ sinωt, having the following form:
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X “ C1sinωnt` C2cosωnt´
1
2

KA2
ˆ

1
ωn2 ´

1
ωn2 ´ 4ω2 cos2ωt

˙

(27)

where:

ωn “

d

Ks

Mi
; K “ Ka

Mi
. (28)

One should note that such a neglection is expected to cause a larger vertical movement, which
will then be readjusted and corrected by the experimental results.

Each force is divided differently along the wing span, and a calculation of the moment should be
the integral of the force along the span. In order to facilitate the calculation each force was replaced
with a concentrated force at the tip of the wing, and thus simplifying the moment calculations.

The bending moment at the root of the wing (the out-of-plane bending moment) is calculated
from the vertical displacement, namely:

Mvertical_root “ ´Ks ¨ X ¨ r2

“ ´Ksr2 pC1sinωnt` C2cosωntq ` 1
2

Ka
Ks

A2
ˆ

1´ 1
1´4p ω

ωn q
2 cos2ωt

˙

¨ r2
(29)

3.3. The In-Plane Bending Moment

The sum of the in-plane bending moments around the root, with reference to the z axis can be
written as:

ÿ

Mz “ Maerodynamic`Mmotor `Minertial “ 0 (30)

where the aerodynamic moment can be written as:

Maerodynamic “ Maerodynamic_parasite `Maerodynamic_induced (31)

with:

Maerodynamic_parasite “ ´

r2
ż

r1

BD1

Br
¨ rdr “ ´

1
2

ρc pAsinωtq2
r2
ż

r1

CD¨r3dr (32)

and

Maerodynamic_induced “ ´
r2r

r1

BL
Br ¨ ϕ ¨ rdr “ ´

r2r

r1

BL
Br ¨

´

λ`
.

X
Ωr

r2

r2
2

¯

¨ rdr

“ ´

r2r

r1

BL
Br ¨

´
b

1
2ρπΩ2r2

3
BL
Br `

.
X

Ωr
r2

r2
2

¯

¨ rdr

“ ´

r2r

r1

„

´

BL
Br

¯
3
2
b

1
2ρπΩ2r2

3 `
BL
Br ¨

.
X

Ωr
r2

r2
2



¨ rdr

(33)

BL
Br
“

1
2

ρc pΩrq2
BCL
Bα

«

αroot `
`

αtip ´ αroot
˘ r´ r1

r2 ´ r1
`

.
X

Ωr
r2

r22

ff

(34)

The inertial moment can be written as:

Minertial “ ´I
.

Ω (35)

while:

I “ m

r2
ż

r1

r2dr “
1
3

m
´

r2
3 ´ r1

3
¯

;
.

Ω “ Aωcosωt. (36)
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The in-plane bending moment at the root, can now be written as:

Mhorizontal_root ” Mmotor

“ ´Maerodynamic_parasite ´Maerodynamic_induced ´Minertial
(37)

To obtain non-dimensional moments, a division by
´

0.5 ¨ ρc2Ωmax
2r2

3
¯

is performed for all the
moments involved.

3.4. The Experimental Wing Model

The first step was to obtain the twist along the wing (αtw), as was a priory assumed by applying the
aerodynamic loads calculated according to Equation (1) on the quarter of the wing’s chord (Figure 5).
To get a wing stiff in bending while flexible in twisting, the wing was designed from a single fiberglass
laminate, opened at its trailing edge (Figure 6). One should note that a similar structure was designed
by Delaurier [42] to propel an ornithopter.Aerospace 2016, 3, 19 10 of 21 
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Using the ANSYS Finite Element Code [43] with designated laminated shell elements, the laminate
composition of the wing was determined to be comprised from four layers (45˝, ´45˝)sym each at
a thickness of 0.15 mm (Figure 7), yielding a total skin thickness of 0.6 mm. The parameters of
each lamina were inserted into the element properties, according to the properties of the Young’s
modulus in the fiber direction (Ex), the Young’s modulus perpendicular to the fiber (Ey) and the shear
modulus of the laminate (Gxy). All parameters were validated by a calibration experiment (presented
in Subsection 4.1).
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3.5. The Experimental Flapping Mechanism

The flapping mechanism was a crank-rocker four-bar linkage (Figure 9). The crank was driven by
an electric motor, at a constant angular velocity ω1. The wing was connected to the rocker, and flapped
back and forth at an angular velocity ω3 (Figure 10). The length of the bars was set to produce flap
amplitude of 90˝ (Figure 11).
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3.6. Test Set-Up

The test setup consisted of the following main parts (Figure 12): Wing, wing axis, angle adjuster,
flapping mechanism and driving motor.
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The flapping mechanism was attached to a test table. The driving motor (700W Bosch drill)
was connected to the drive shaft of the flapping mechanism. The angle adjuster’s bar was tightened
vertically to the wing axis. The wing axis was inserted into the wing, and a string was tied between
the wing’s trailing edge and the angle adjuster’s bar (Figure 12), thus defining the minimum AOA
at the root of the wing. Two pairs of strain gages were bonded on the wing axis (at 90˝ between
the two pairs) (Figure 13), enabling the readings of in-plane and out-of-plane bending moments.
A linear variable differential transformer (LVDT) was used to measure the sweep angle of the wing,
throughout its movement. The time derivative of the sweep angle yielded the angular velocity of the
wing. The vertical displacement of the wing was measured using a laser rangefinder placed statically
above the wing tip, while the angle of attack at the wing tip was defined by measuring the upper wing
camber with the same laser rangefinder.
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4. Results

4.1. Structural Analysis

The wing’s flexibility creates an aeroelastic coupling between the wing’s geometrical formation
and the aerodynamic forces generated by it. This aeroelastic problem was solved iteratively,
by assuming a geometrical twist (a certain αtip for a given αroot), calculating the distributed lift
force using rotary wing’s equation, applying the force on the wing using a finite element analysis, and
correcting the geometrical twist according to the structural analysis results.

The various material properties used for calculation of the wing were based on test results
performed on two rectangular specimens, produced by the same method as the wing. The specimens’
laminations were (45˝, ´45˝, 90˝, 0˝)sym and (90˝, 0˝,90˝, 0˝)sym. The specimens were tested for tensile
and bending and their results are presented in Figure 14.
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Then a finite element (FE) model was generated for the rectangular specimens and loads similar
to the ones used in the test campaign were applied on the FE model. The model properties were altered
to produce similar results to the experiments’ within an error of up to 5% (see Table 1).

Table 1. A comparison between the experiments results and the finite element analysis.

Load Type Laminate
Model Properties

Load (N)
Displacement (mm)

Ex (GPa) Ey (GPa) Gxy (GPa) Test FE Error (%)

Bending (45˝, ´45˝,90˝, 0˝)sym 45 8.6 3.8 20 4.22 4.43 4.976

(90˝, 0˝,90˝, 0˝)sym 45 8.6 3.8 20 2.14 2.15 0.467

Tensile
(45˝, ´45˝,90˝, 0˝)sym 45 8.6 3.8 2000 0.40 0.38 5.000

(90˝, 0˝,90˝, 0˝)sym 45 8.6 3.8 2000 0.32 0.31 3.125

The chosen parameters for the wing’s finite element model were therefore:

Ex “ 45pGPaq, Young’s modulus in the fiber direction;
Ey “ 8.6pGPaq, Young’s modulus perpendicular to the fiber;
Gxy “ 3.8pGPaq, shear modulus of the laminate;
γxy “ 0.32, Poisson ratio.

4.2. Reynolds Numbers of the Tested Wings

The first wing to be tested was described in Section 2 and had a wing span of 1.1 m and a chord
of 18.5 cm. Due to technical testing difficulties, encountered during the tests, the flapping frequency
was limited to only 1.5 Hz, and not at 3 Hz as originally planned. The Reynolds number was then:

pReqlong´wing “
V ¨ L

ν
“

Ωr2 ¨ r2

ν
“

1.5π ¨ 1.1 ¨ 1.1
15.7 ¨ 10´6 “ 30, 000 (38)

Based on the test results for the first wing, our preliminary calculations were updated, and built a
smaller wing, in order to attain a higher efficiency. The smaller wing had a wing span of 55 cm and a
chord of 14 cm. It was flapped at 2.5 Hz and at Reynolds number of:

pReqshort´wing “
2.5π ¨ 0.552

15.7 ¨ 10´6 “ 15, 000 (39)
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4.3. Torsion at the Wing Tip

First, the laser rangefinder was placed above the wing tip at middle stroke, and the upper wing
camber, was measured as a function of the AOA at the root. The measured results were compared to
those obtained by the finite element analysis (see results in Figure 15). An image of the twisted wing is
shown in Figure 16.

Aerospace 2016, 3, 19 14 of 21 

( ) 2 2
6

1.5 1.1 1.1Re 30,000
15.7 10long wing

r rV L π
ν ν −−

Ω ⋅⋅ ⋅ ⋅= = = =
⋅

 (38) 

Based on the test results for the first wing, our preliminary calculations were updated, and built 
a smaller wing, in order to attain a higher efficiency. The smaller wing had a wing span of 55 cm and 
a chord of 14 cm. It was flapped at 2.5 Hz and at Reynolds number of: 

( )
2

6

2.5 0.55Re 15,000
15.7 10short wing

π
−−

⋅= =
⋅

 (39) 

4.3. Torsion at the Wing Tip 

First, the laser rangefinder was placed above the wing tip at middle stroke, and the upper wing 
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is shown in Figure 16. 
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4.4. Moments at the Wing Root

The vertical and in-plane bending moments at the root of the wing, were measured and compared
it to the analytical solution described in Subsections 3.2 and 3.3. The wing of 1.1m span and a chord
length of 18.5 cm was flapped at a frequency of 1.5 Hz, at three angles of attack, as shown in Figure 17.
The analytical solution was then corrected empirically, by minimizing the natural frequency of the
wing ωn by 0.68, and by adding a phase of 0.2π (phase delay) to match both solutions. The amplitude
of the natural vibration (Equation (27)) was chosen to be C1 = 0.005 and C2 = 0, where C1 and C2 are
the coefficients of the sine and cosine terms forming the response of the wing. The differences between
the analytical calculations and the experimental results are due to the mathematical neglections that
were made during the derivations of the equations. In Equation (27) in Section 3, the damping effect
on the vertical movement of the wing was neglected, which in physical experiment acts to decrease
the amplitude of flapping. This effect can be represented as a decrease in the natural frequency of
the wing. In addition, the transition effects, which occur at the end of each flapping stroke were also
neglected. These effects, such as clap-and-fling [7] and wake capture [44], may result in a phase delay.
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Figure 17. Non-dimensional in-plane and out-of-plane bending moments at the wing’s root vs.
non-dimensional time (T is the period of flapping), at Re = 30,000 and (a) AOA = 5˝; (b) AOA = 12˝;
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The improved mathematical model was validated through tests on a second wing, having a span
of 55 cm and a chord length of 14 cm, at a flapping frequency of 2.5 Hz. A good agreement between
the model predictions and the measured results (Figure 18) was found.
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4.5. Vertical Displacement

Next, the laser rangefinder was placed at different locations along the flap stroke, and compared
its vertical displacement of the wing tip to the relevant analytical solution, as shown in Figure 19,
yielding a good matching.
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Figure 19. Non-dimensional vertical deflection at the wing tip along the flap movement vs.
non-dimensional time (T is the period of flapping), at Re = 30,000 and AOA = 12˝. The dots represent
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4.6. Hover Efficiency for Flapping Wings—The Figure of Merit

At the end of the study, the hover efficiency for the flapping wing, what it is also called the figure
of merit (FM) was investigated. The present research suggested a flapping wing structure to propel
a lightweight air vehicle. Then a simplified analytical model was developed aimed at “catching”
the aerodynamic performances of the wing, and improved it empirically based on subsequent tests.
The improved model, validated by a second set of measurements on a shorter wing, enabled the
extrapolation beyond the envelope of the measurements. The figure of merit of the hovering flapping
wing was investigated by examining the effect of wing span, aspect ratio, flapping frequency and
stroke amplitude on it. To isolate the influence of each parameter, for each parameter calculation all
the other parameters were set to be those of the long wing and evaluated the figure of merit of both
wings with these parameters.

The figure of merit calculation method was adopted from helicopters aerodynamics [40]. It is the
ratio between the ideal moment required to propel the rotor, and the actual moment. The ideal moment
consists of the in-plane bending moment generated by the induced drag, and the actual moment as
presented in Equation (40):

FM f lapping “
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“
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(40)

where the moments were defined in Subsection 3.3, and are averaged over time as follows:

M “
ω

π

π
ω
ż

0

M ¨ dt (41)

The lift force is reflected through the induced aerodynamic moment (Equation (33)).
The propelling efficiency of the flapping wing was compared to the efficiency of a rotating wing

having similar characteristics (Equation (41)). In the rotating system, since the angular velocity is
constant, there is no inertial moment, nor vertical movement of the wing. Therefore, only the inflow
produces the induced AOA.

FMrotating “
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“
Maerodynamic_induced
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(42)
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The results of the hovering efficiency for a rotating vs. flapping wing are presented in Figure 20a–d.
In each figure one parameter was changed and all the other were set to be those of the long wing.
An alteration of these fixed parameters within the experimental envelope (AOA—5˝ to 15˝, Aspect
Ratio—4 to 6, wing span—0.55 to 1.1 m, flapping frequency—1.5 to 2.5Hz) does not change qualitatively
the curves plotted in Figure 20. As expected, the rotating wing has a much better efficiency than the
flapping wing as a function of aspect ratio and wing span. When investigating the flapping wing, its
efficiency is not influenced by the flapping angular frequency, however when increasing its stroke
amplitude, the FM slightly increases.

In this study, the aerodynamic moments in the horizontal plane were negligible (less than 10%)
compared to the inertial ones. However, the vertical aerodynamic moments, caused mainly by the lift
force, were substantial, and constituted more than 90% of the total vertical moments. These vertical
forces had a profound effect on the final efficiency.
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Figure 20. Figure of merit (FM) of rotating and flapping wings as a function of: (a) aspect ratio; (b) wing
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1.5 Hz, AOA 5˝, wing span 1.1 m, stroke amplitude 90˝. The dashed lines represent extrapolation.

5. Discussion, Conclusions and Further recommendations

In the present study an insect inspired flapping wing structure was designed based on simplified
aerodynamic model, and the parameters affecting its performances were investigated. The focused
parameters were: The wing span, the aspect ratio, the flapping frequency and the stroke amplitude.
Each of these parameters might have implications on future design of flapping-winged MAVs.

5.1. The Wing Span Influence

As was expected, the propelling efficiency of the flapping wing, at the measured span (1.1 m
span) was very poor, compared to that of the rotating one (Figure 20b). These poor performances are
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due to the high inertial moment required to accelerate and decelerate the flapping wing at each stroke.
The wing’s mass is proportional to the third power of the wing's span (as other two dimensions, chord
length and thickness are given as percentage of the wing’s span); therefore propelling using flapping
wings becomes more efficient only at micro air vehicles (wing span less than 15 cm). Although the
model predicts high efficiency at small wing spans, it should be validated through experiment, since
there are other phenomena that were not significant at our wing span. Additionally, flapping winged
flyers enhance their efficiency by elastically storing the energy required to accelerate and decelerate the
wing, by flapping at the resonance frequency of the spring–mass system [25]. Therefore such kinetic
energy storing for future design of MAV, is recommendable. To implement this idea, a torsion spring
should be placed at the wing’s root, and the spring’s rate should be designed to fit the wing’s mass
and the desired flapping frequency.

5.2. Wing Aspect Ratio Influence

Unlike stationary wings, the present model predicts that a smaller aspect ratio will increase the
propelling efficiency of the flapping wing (Figure 20a). A slender wing has a large moment of inertia
around the root, and consequently requires more power to accelerate. The study of Usherwood and
Ellington [19], which showed that the wing’s aspect ratio has little effect on the force coefficients,
obviously did not take in consideration the inertial forces applied on the wing. This property of
flapping wings should be taken into account in the design of future flapping-winged MAV.

5.3. Wing Flapping Frequency and Stroke Amplitude Influences

Based on the model developed and tested in the present study, the wing flapping frequency has
no effect on the propelling efficiency (Figure 20d), assuming that the flow is inviscid, incompressible
and non-rotational. On the other hand, an enhancement of the flapping stroke amplitude improves
the propelling efficiency (Figure 20c), namely, for the same inertial moment more lift is produced.
A similar conclusion can be derived by reanalyzing the data of Meng et al. [28] who calculated the
aerodynamic forces generated by a corrugated flapping wing. In their study, the lift to drag ratio
increases as the stroke amplitude increases, for all corrugated wing models. Insects, such as bees,
beetles and dragonflies [24], have stroke amplitudes of about 150˝, presumably for this reason. Most
studies to date, investigating flapping wings, use a four-bar linkage flapping mechanisms [14,16,17,45].
Using this type of mechanism makes it technically difficult to achieve amplitudes larger than 90˝.
Our study suggests that future development in the field would require the design of an alternative
flapping mechanism capable of achieving stroke amplitudes larger than 90˝.
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